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-based q-RASPR modeling of
power conversion efficiency of organic dyes in dye-
sensitized solar cells†

Souvik Pore, Arkaprava Banerjee and Kunal Roy *

Different computational tools are now popularly used as an alternative to experiments for predicting several

property endpoints of industrial importance. Recently, read-across and quantitative structure–property

relationship (QSPR) have been merged to develop a new modeling technique read-across structure–

property relationship (RASPR) which appears to have much potential in predictive modeling. This

approach is also promising for modeling relatively smaller data sets as the similarity-based RASPR

descriptors are computed from multiple structural and physicochemical features. To understand the

potential of RASPR in data gap filling, we have undertaken a case study of modeling Power Conversion

Efficiency (PCE) of different classes of organic dyes used in Dye-Sensitized Solar Cells (DSSCs) for

renewable energy generation. We have used a large dataset of 429 compounds covering 4 classes of

organic dyes. We initially performed read-across analysis using different similarity measures with

structural analogues for query compounds and calculated the weighted average predictions. Based on

the read-across optimized settings, RASPR descriptors were calculated, and these were then merged

with the chemical descriptors, and finally, a single partial least squares (PLS) model was developed for

each of the dye classes after feature selection, followed by additional Machine Learning (ML) models.

The external prediction quality of the final RASPR models superseded those of the previously developed

QSPR models using the same level of chemical information. The important structural features and

similarity measures contributing to the PCE have been extracted using the RASPR method which can be

used to enhance the PCE values in the newly designed dyes. The RASPR method may also be efficiently

applied in modeling other properties of interest in a similar manner.
Introduction

Population growth has resulted in a signicant rise in energy
demand. To address this issue, alternative sources of energy in
the form of renewable resources like solar energy, wind energy,
geothermal energy, etc. should be increasingly used.1 Solar
energy has been one of the most signicant forms of renewable
energy where the energy coming from the sun in the form of
heat, and the radiation is converted into electrical energy by
photovoltaic (PV) solar cells.2 The benets of assimilating solar
energy lie in its free availability, environmental friendliness,
and sustainability.3 PV solar cells have undergone signicant
changes in their structures and composition since their
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development. PV solar cells can be classied into four genera-
tions based on their structural composition; 1st generation
(Silicon Wafer based), 2nd generation (thin lm based), 3rd
generation (organic material-based), and 4th generation
(perovskite-based solar cells).4 Dye-Sensitized Solar Cells
(DSSCs) represent one of the important types of 3rd generation
PV solar cells in which different types of organic dyes are used
as photosensitizers.5

The basic architecture of DSSCs is shown in Fig. 1a. It
consists of 7 layers, namely a transparent substance (mainly
glass or polymer), a transparent conductive oxide (TCO) layer
(mainly Fluorine doped tin oxide (FTO), and Indium doped tin
oxide (ITO) are used), a blocking layer (ZnO, In2O3, MgO, etc.),
a semi-conductive oxide (SCO) layer (mainly TiO2) coated with
photoactive dye, electrolyte solution and a counter electrode
(Pt). In DSSCs, transparent substance – TCO layer – blocking
layer – SCO layer – dye together form a photoanode (PA), and
counter electrode – TCO layer – transparent substance is united
to form the cathode. Electrolytes like iodide/triiodide (I−/I3

−)
solution is used for the preparation of DSSCs, where the elec-
trolytes play an important role in the regeneration of dye by
redox reaction.6 In DSSCs, the electrons are generated when the
This journal is © The Royal Society of Chemistry 2023
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Fig. 1 (a) Basic structure of a Dye-Sensitized Solar Cells (DSSCs) (b) Mechanism of electricity generation in DSSCs.
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dye undergoes photoexcitation by absorbing radiation coming
from the sun. The electrons are excited to the lowest unoccu-
pied molecular orbital (LUMO) from the highest occupied
molecular orbital (HOMO), and subsequently, electrons are
transported to the TCO layer by the conduction band of the
nanostructured SCO layer. From the TCO layer, the electrons
ow through the external circuit and get collected at the plat-
inum counter electrode site. The electrons are then transferred
to the HOMO of dyes for their regeneration by the redox reac-
tion of electrolytes which is catalyzed by a platinum counter
electrode.6,7 The whole process for the generation of electrons is
shown in Fig. 1b.

In DSSCs, the dye is the key element for the generation of
solar power, because it controls photon harvesting and electron
generation.7 The dyes used in DSSCs can be classied into two
groups namely metal-based inorganic dyes and metal-free
organic dyes. The latter types are preferred due to having
This journal is © The Royal Society of Chemistry 2023
a low production cost, synthetically feasible, environment
friendly, and easy to modify structure.8 Most of the metal-free
organic dyes have donor–p–acceptor (D–p–A) type structural
conguration in which conjugated p-systems like polyenes and
oligothiophenes act as p spacers and have a rod-like congu-
ration for the effective intramolecular charge transfer (ICT) by
photoexcitation. The donor units are composed of different
aromatic moieties like coumarins, triphenylamines, and
porphyrins while the acceptor end contains structures like
carboxylic acids and cyanoacrylic acids.7,8 The organic dyes have
lower solar power conversion efficiency (PCE) as compared to
the metal-based inorganic dyes due to the poor absorption at
red and near-infrared spectrum of solar radiation, charge
recombination at semi-conductive oxide layer surface and
aggregation of dyes.8 In the recent past, different types of
structural modications have been performed to increase the
absorption of solar radiation and PCE, like increasing the
Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3413
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electron-donating ability of the donor and p-spacer by intro-
ducing an electron-donating group or increasing the electron-
accepting ability of the acceptor by introducing the electron
withdrawing group or increasing the length of p-spacer.9

Therefore, by altering the structures, it is possible to generate
new dyes with higher PCE values while maintaining the same
properties for all other performance-controlling factors. For
designing a new dye molecule, a well-known scheme should be
developed and checked before the synthesis of the molecule.

In the last few years, due to the low cost in computational
methods and faster generation of results, in silico approaches
have been extensively used to explore molecules to determine
their properties. In silico approaches help to identify the active
structural moieties responsible for the desired property and
thus reduce synthetic complexities.10–12 Different types of in
silico approaches like Quantitative Structure–Property Rela-
tionship (QSPR),13,14 Read-Across (RA)15,16 and various Machine
learning (ML)17–20 methods are being used in the eld of mate-
rials science. QSPR is a method that represents a mathematical
relationship between the chemical structure and the property,
and are developed based on the Organization for Economic Co-
operation and Development (OECD) principles.13,14 Read-across
(RA) is a similarity-based algorithm that predicts the response
value of the query compounds by utilizing the similarity values
of its close congeners, and this method is a potential alternative
to the QSPR approach where lower number of data points are
available.15,16 ML is a subset of Articial Intelligence (AI) that
enables machines to learn from previous data and improve their
performance.17–20

In the recent past, various in silico studies have been con-
ducted to explore the different classes of organic dyes.21–31 A
cascaded QSPR model was developed by Li et al.29 using
quantum chemical molecular descriptors in which combined
quantum chemical calculation and machine learning methods
were used to establish a relationship between PCE and molec-
ular structures of different organic dyes. The PCE of
phenothiazine-containing DSSCs was modeled by Kumar and
Kumar24 using the CORAL soware employing hybrid descrip-
tors resulting from the combination of SMILES and hydrogen-
suppressed graph (HSG). Combined QSPR modeling and
quantum chemical analysis were performed by Kar et al.21 for
273 arylamine organic dyes to understand the electron transfer
mechanism and photo-physical properties of dye. Venkatraman
et al.31 developed a QSPR model for different phenothiazine
derivatives using different structural descriptors and eigen-
value (EVA) descriptors obtained from vibrational frequencies.
Krishna et al.26 developed multiple Partial Least Squares (PLS)
QSPR models for 1200 organic dyes of 7 classes, in order to
know the important structural features contributing to higher
PCE values. In the study, they have also designed 10 coumarin
dyes using important structural feature obtained from the
coumarin model with % PCE ranging from 8.93 to 10.62. Ven-
katraman et al.30 designed 5 novel phenothiazine dyes by the de
novo design method using QSPR analysis and all new dyes show
PCE over 9%. Kar et al.28 developed a QSPR model to establish
the relationship between PCE and quantum chemical descrip-
tors calculated from density functional theory (DFT) and time-
3414 | Sustainable Energy Fuels, 2023, 7, 3412–3431
dependent DFT (TD-DFT) methods to understand the basic
electron transfer mechanism for arylamine-organic dye sensi-
tizers. Seven indoline-based dyes with D–A–p–A molecular
conguration designed using QSPR analysis were explored by
Roy et al.27 using density functional theory (DFT) and time-
dependent DFT (TD-DFT) methods to understand the
different optoelectrical properties of dyes used in DSSCs. A
QSPR model was proposed by Wen et al.22 which was obtained
by combining the machine-learning approaches and computa-
tional quantum chemistry method and was used for virtual
screening and to check the synthetic accessibility of the
different organic dyes. In silico methods are thus important not
only for the prediction of PCE values but also to explore the
important structural and physicochemical properties of dyes
that control the performance of DSSCs before synthesis of the
dyes to save time, money, and resources.

In the present work, we have adopted a novel Quantitative
Read-Across Structure–Property Relationship (q-RASPR)
approach, which is analogous to the Quantitative Read-Across
Structure Activity Relationship (q-RASAR) rst reported by
Banerjee and Roy,32,33 to generate different predictive models for
the PCE using a wide array of compounds from 4 different
classes. The q-RASPR is a supervised machine learning (ML)
approach and is a combination of Read-Across and QSPR.
Compound specic similarity and error-based measures were
used as RASPR descriptors and combined with the initial
descriptors to generate different predictive models.15,16,32

Different ML approaches in the form of Random Forest (RF),
Gradient Boosting (GB), Extreme Gradient Boosting (or
XGBoosting), Support Vector Machine (SVM), Linear Support
Vector Machine (Linear SVM), Ridge Regression (RR) and Partial
Least Squares (PLS) models were adopted to predict the PCEs of
organic dye-based DSSCs.

Materials and methods
Data collection

The current work deals with q-RASPR modeling of different
organic dyes used in DSSCs for which experimental PCE and
descriptor values are collected from the previous literature.26 To
demonstrate the performance of the q-RASPR approach, in
comparison to the previous QSPR models using the same
combination of original descriptors and similarity descriptors
computed from them (same level of chemical information), we
have collected a total of 429 compounds distributed across 4
representative datasets, i.e. coumarins, carbazoles, indolines,
and diphenylamines. One of the primary objectives of the
current work is to evaluate the novel q-RASPR approach for the
enhancement of the quality of predictions of the power
conversion efficiency of DSSCs. As shown by Banerjee et al.
(2023),34 q-RASPR models might be very useful even when the
data set size is small as the similarity-based descriptors derived
from the original structural and physicochemical variables act
like latent variables thus allowing the usage of a greater amount
of chemical information while using a lower number of
regressing variables thus maintaining a more favorable degree
of freedom. This is why we have taken here into consideration
This journal is © The Royal Society of Chemistry 2023
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specically the dye families with a relatively smaller number of
data points. The original training and test sets were retained for
the q-RASPR modeling analysis aiming at comparing with the
previously developed QSPR model by Krishna et al.26 We used
the same combination of structural and physicochemical
descriptors as used in the original analysis. The dataset in each
case was prepared by combining the descriptors of ve indi-
vidual models of the previous work and removing the common
descriptors of these models. The logarithmic conversion of the
endpoint parameter PCE was not required as it represents the
performance of the solar cell. The datasets contain 56 coumarin
dyes (42 training and 14 test compounds), 35 diphenylamine
dyes (25 training and 10 test compounds), 179 carbazole dyes
(125 training and 54 test compounds), and 159 indoline dyes
(121 training and 38 test compounds). These datasets were used
as input les for the calculation of the RASPR descriptors. The
list of original structural and physicochemical descriptors used
for read-across similarity computations (Table S1†) and the list
of similarity descriptors used in q-RASPR model development
(Table S2) are given in ESI SI-1.†
Table 1 Optimized hyperparameter settings and methods used for
RASPR descriptor calculationa

Datasets Method s g CTC

Coumarins GK 1.75 — 8
Carbazoles GK 2 — 5
Indolines LK — 0.5 5
Diphenylamine LK — 0.5 2

a GK = Gaussian kernel, LK = Laplacian kernel, CTC = Close training
compound.
Read-across hyperparameter optimization

Read-across is a data-gap lling method in which information
of one or more chemicals is/are used to predict the endpoint of
a target chemical. In read-across, structural similarity between
a source compound (or a training compound) and a target
compound (or a test compound) is used for the calculation of
the endpoint value.15,16,35 A java-based tool Read-Across-v4.1
(available from https://sites.google.com/jadavpuruniversity.in/
dtc-lab-soware/home) was used for the computation of read-
across-based predictions. This tool utilizes 3 different
similarity-based methods, i.e., Euclidean distance (ED)-based
similarity, Gaussian kernel (GK)-based similarity and the Lap-
lacian kernel (LK)-based similarity methods for the computa-
tion of the predictions for the query compound(s).16 In
compliance with the theory associated with Machine Learning,
there is a need for the optimization of the hyperparameters
associated with the three different similarity-based approaches.
The Euclidean distance-based predictions require the optimum
number of close source compounds, the Gaussian kernel-based
predictions require the optimum value of s and the number of
close source compounds while the Laplacian kernel-based
predictions require the optimum value of g and the number
of close source compounds.

To select the optimum values for s, and g, the training set is
randomly divided into 5 sub-training and sub-test sets by the
sorted response-based division algorithm.36 Read-across-based
predictions and validation metrics were calculated using these
5 sub-training and sub-test sets for each value of s, g, and CTC;
and the average of external validation metrics for the subtest
sets of 5 divisions was taken. The selection of the optimum s

and g depends on whether the QF1
2 value (subtest set) is

maximum for the GK and LK methods, respectively, and then
the same values of s and g were applied for the original training
and test sets at each value of close source compounds (CTC)
between 2 to 10. The CTC value which corresponds to the
This journal is © The Royal Society of Chemistry 2023
maximum QF1
2 value (subtest set) in the ED approach is

selected. These optimized settings of the s, g and CTC values
were used for the computation of the RASPR descriptors. Note
that the subtest sets are derived from the training set itself and
different from the actual test set.

RASPR descriptor calculation

As dened by Todeschini and Consonni, a descriptor is “the nal
result of a logic and mathematical procedure which transforms
chemical information encoded within a symbolic representation
of a molecule into a useful number or the result of some stan-
dardized experiments”.37 In the present work, we have used
different structural and physicochemical descriptors along with
RASPR descriptors to develop predictive models. Different simi-
larity and error-based measures obtained from the read-across-
based predictions were used as RASPR descriptors.38 We have
used RASAR-Desc-Calc-v2.0 (available from https://
sites.google.com/jadavpuruniversity.in/dtc-lab-soware/home)
for RASPR descriptor calculation for both training and test sets.
The calculation of the RASPR descriptors for the training set
involves the Leave-same-out (LSO) algorithm38 which does not
take the identical compound among the list of close source
compounds. The optimized similarity-based method and the
associated optimized hyperparameters were used for the
computation of the RASPR descriptors. These RASPR descriptors
were then combined with the initial structural and physico-
chemical descriptors and aer subsequent feature selection
based on cross-validation, q-RASPR models were generated. The
optimized hyperparameter settings along with the similarity-
based approach used for the calculation of the RASPR descrip-
tors are shown in Table 1.

Feature selection and PLS model development

In the present work, we have used the Best Subset Selection
(BSS) method to identify the signicant descriptors or features
that can inuence the performance of DSSCs. Feature selection
is important to reduce model noise and identify the signicant
descriptors for PCE in order to lower the risk of overtraining or
overtting.39,40 Signicant descriptors for the models were
identied by using the tool Best Subset Selection v2.1 (available
from https://dtclab.webs.com/soware-tools) using the cross-
validation statistics.

Best Subset Selection (BSS) is an algorithm that helps to
identify the best descriptor combinations by developing models
using a specic number of descriptor subset of input descriptors.
Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3415
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This algorithm generates models using every possible combina-
tion of the descriptors, and the best combination is selected
based on different internal validation metrics. Best Subset
Selection is actually a grid search that identies all possible
combination of models from a given number of descriptors but
the lters in the form of inter-correlation cut-off (<0.6) and R2 cut-
off (>0.5) makes it an “intelligent grid search” which shows only
the signicant models. The number of descriptors in the models
was selected based on the cross-validation QLOO

2 score, and aer
that, we have developed several individual models for each data
set, and the best models showing acceptable internal and
external validation statistics are reported. For the present work,
we have used the nal models with 8 descriptors for coumarins, 5
descriptors for diphenylamines, 6 descriptors for indolines and 8
descriptors for carbazoles.

Partial Least Squares (PLS) is a generalized form of the
multiple linear regression (MLR) that can be applied for
collinear, correlated and noisy data containing multiple X vari-
ables (or descriptors) and one or more Y variable(s) (or
endpoint(s)). The main idea behind PLS is to derive latent vari-
ables (LVs) T (or X-scores) and U (or Y-scores) from descriptors
and response variables, respectively. These X-scores are then
used to predict Y-scores which in turn are used to calculate the
response.36 Here, we have used PLS_SingleY_1.0_14May2020 tool
(available from https://dtclab.webs.com/soware-tools) for the
development of PLS models of selected descriptors. We have
also compared the derived PLS models with other machine-
learning models obtained using the same feature combinations.

For the purpose of interpretation and explanation of indi-
vidual descriptors, different PLS plots were generated using
SIMCA-P v10.0 soware (https://www.sartorius.com/). We have
generated the score plots (individual compounds are dened
in the LV space and show their distribution and similarity
among compounds), the loading plots (loading of all
descriptors among the plotted rst two LVs, and distance
from the origin denote the importance of these descriptors),
the Y-randomization plot (plot developed by plotting R2 and
Q2 value of random models (Y axis) vs. correlation coefficient
between observed PCE and permuted PCE), scatter plots (plots
of predicted PCE (Y axis) vs. observed PCE (X axis)) and the
variable importance plots (in the form of bubble plots).
Machine-learning (ML) models

Machine learning (ML) is a part of articial intelligence which
enables machines to learn from its past data and improve
performance based on past experiences for the future aspect.41

In ML, machines are trained with a large amount of data and
a suitable algorithm to accomplish a job. This trained algorithm
is then applied to a query data set for reliable and accurate
predictions. ML can be classied into 3 main groups: super-
vised (the labeled data is used to train the machine), unsuper-
vised (the training data is not labeled) and reinforcement
(feedback-based method, where the learning agents get
a reward or penalty based on its action).42,43 In the present study,
we have performed regression analysis using different super-
vised learning methods namely ridge regression (RR),44,45 linear
3416 | Sustainable Energy Fuels, 2023, 7, 3412–3431
support vector machine (LSVM),46 support vector machine
(SVM),47 random forest (RF),47 gradient boosting (GB),44 and
extreme gradient boost or XGBoost (XGB).48 Some details of
these methods are given in ESI SI-1.†

All the above-mentioned machine-learning models were
developed using Anaconda Navigator soware (version 2022.05)
in Jupyter Notebook IDE (version 6.4.8)49 with python 3.10.4 64-
bit. Different python-based modules were used such as numpy
(version 1.23.5), pandas (version 1.5.2), Scikit-learn (version
1.2.0), matplotlib (version 3.5.1) and xgboost (version 1.7.1) for
model development. For all the machine-learning models, we
have used the same inputs as used for the PLS model develop-
ment and optimized all the hyper-parameters by the cross-
validation method using GridSearchCV function of Scikit-
learn. For ML modeling, we standardized the descriptors and
endpoints values based on the training set mean and standard
deviation which were then used as the input.

In this work, we developed machine learning models using
moderate sized data sets and a sufficient number of compounds
for the validation of the models. Here, we optimized the hyper-
parameters using the GridSearchCV method which is basically
a cross-validation method in which the training set is divided
into ve-folds, and four folds are used to build the models each
time when the remaining fold is used to validate the model.
Aer building machine learning models, we calculated various
cross-validation metrics to check that the models are not over-
tted. The hyperparameter setting was chosen based on the best
cross-validation statistics from the ve-fold CV data. Again,
a small difference between Mean Absolute Error (MAE) values
for the training and test sets also indicates that the generated
models are not overtted.

Statistical quality and validation metrics

Validation of a model is important to justify the model quality
and to determine its further application.36 There are different
statistical metrics available to check the model quality,
goodness-of-t, robustness, reliability and predictivity. The
model quality is checked by the determination coefficient (R2)
and the explained variance (R2

(adj)). The model quality is
increased when its value become closer to 1. Model validation
metrics can be classied into two groups – the internal valida-
tion metrics and the external validation metrics. Internal vali-
dation is performed only on the training set to check the
goodness-of-t and robustness of the model while the pre-
dictivity of a model is checked by an external validation per-
formed on the test set. The robustness and goodness-of-t of
a model are checked by the internal validation metrics QLOO

2

(leave-one-out correlation coefficient) performed on the training
set. The original dataset is divided into a training set and a test
set; the test set is used to check the predictivity of a model by
calculating external validation metrics like QF1

2, QF2
2 and

MAEtest.36 The validation metrics which demonstrated the
quality of our PLS and ML models are shown in eqn (1)–(5).

R2 ¼ 1�
P�

YobsðtrainÞ � YcalðtrainÞ
�2

P�
YobsðtrainÞ � Y train

�2
(1)
This journal is © The Royal Society of Chemistry 2023
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QLOO
2 ¼ 1�

P�
YobsðtrainÞ � YpredðtrainÞ

�2
P�

YobsðtrainÞ � Y train

�2
(2)

QF1
2 ¼ 1�

P�
YobsðtestÞ � YcalðtestÞ

�2
P�

YobsðtestÞ � Y train

�2
(3)

QF2
2 ¼ 1�

P�
YobsðtestÞ � YcalðtestÞ

�2
P�

YobsðtestÞ � Y test

�2
(4)

MAEtest ¼
P��YobsðtestÞ � YcalðtestÞ

��
ntest

(5)

Here, Yobs(train) = observed response values of the training set,
Ycal(train) = calculated response values of the training set, �Y train

=mean observed response value of the training set, Ypred(train)=
LOO predicted response values of the training set, Yobs(test) =
observed response values of the test set, Ycal(test) = calculated
response values of the test set, �Y test = mean observed response
value of the test set, ntest = the number of observations in the
test set.

A model is considered to be well predictive if the values of
Q2
F1 and Q2

F2 cross the threshold limit of 0.5 and MAEtest attains
a minimum value.36
SHAP (SHapley additive exPlanation) analysis

The SHAP analysis is performed to identify the global and local
contributions of each feature or descriptor for the predictions.
By using SHAP, we can determine the feature's contribution in
case of complex machine-learning models. SHAP uses the
Shapley values to determine the feature contributions, the
concept coming from the fair distribution in a cooperative game
based on the player's importance.50 The Shapley values deter-
mine the contributions of different features (by the magnitude
of the Shapley values) and direction (sign). The positive sign
Fig. 2 Schematic representation of complete work for q-RASPR and ML

This journal is © The Royal Society of Chemistry 2023
indicates a positive contribution to the predictions and the
negative sign indicates a negative contribution to the predic-
tions. The Shapley value for each feature is calculated using the
following formula:

fi ¼
X

S4Fnfig

jSj!ðjF j � jSj � 1Þ!
jF j!

h
fSWfig

�
xSWfig

�� fSðxSÞ
i

(6)

where fi is the Shapley value for each feature, fSWfigðxSWfigÞ is
the model output for a subset of features including a particular
feature, fS(xS) is the model output for the subset of features
without that feature, F is the number of input features and S is
the number of features in a subset.50–52

The complete workow for the current work is shown in the
Fig. 2.
Result and discussion

We have initially developed PLS models for each of the
considered data sets and then compared the quality of these
models to ML-derived model predictions.
Partial least squares (PLS) models and interpretation of
modeled descriptors

Most signicant and statistically robust PLS models for
different categories of dyes along with their quality in terms of
different internal and external validation metrics are shown in
Table 2. These models were developed with 8, 8, 6 and 5
descriptors for coumarins, carbazoles, indolines and diphe-
nylamines, respectively, and all these models consist of both
RASPR and 2D structural descriptors. The models were devel-
oped using 7, 3, 3 and 3 latent variables (LVs), respectively based
on the leave-one-out Q2 values. All the developed models satisfy
the threshold limit required to become robust, reliable and
good predictivity.53

The performance of the q-RASPR models toward the training
set is in general inferior compared to the test set due to the
model development.
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Table 2 Developed q-RASPR PLS models for different type of organic dye used in DSSCsa

Types of organic dyes PLS models

Training set
metrics Test set metrics

R2 QLOO
2 QF1

2 QF2
2

MAEtest (95%)
(non-standardized)

Coumarins (LV = 7) PCE = −1.71195 + 0.60957 × SD
Activity(GK) + 0.94835 × MaxPos(GK) −
0.75671 × nRCN + 1.07215 ×

nThiophenes − 1.01363 × nR#C +
1.18272 × nR = Ct − 0.12347 × T(S/S) +
0.76919 × C − 040

0.75 0.63 0.72 0.70 0.75

Carbazoles (LV = 3) PCE = −0.23418 + 1.26064 ×

Avg.Sim(GK) − 1.51529 × F06[N–N] +
0.92434 × nR10 + 0.19841 × F04[C–N] +
2.12686 × B04[N–O] − 0.4133 × N% +
2.35133 × F06[N–O] + 1.42348 × B02[C–
S]

0.71 0.66 0.77 0.76 0.61

Indolines (LV = 3) PCE = 1.52408 + 0.88535 × RA
function(LK) − 0.89273 × CV sim(LK) −
0.92139 × Neg. Avg. Sim + 0.01956 × F04
[C–N] + 0.70912 × B09[O–S] − 0.05307 ×

nCconj

0.63 0.59 0.81 0.81 0.55

Diphenylamines (LV = 3) PCE = 1.28039 + 0.8856 × RA
function(LK) + 1.53133 × SD
similarity(LK) − 0.14367 × F01[C–N] −
0.15417 × StsC + 0.35804 × F04[N–S]

0.83 0.73 0.90 0.90 0.62

a LV = Latent variables.
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algorithm of the RASPR descriptor calculation (Tables 2 and 3).
For the calculation of RASPR descriptors for the training set, the
algorithm works based on the “Leave Same Out (LSO)
method”3,4 where identical compounds are not considered
during the nding of close source compounds to avoid over-
tting. In the case of any QSAR modeling study, chemical or
physicochemical descriptors of a training compound are
computed based on the structure or property of that particular
compound. However, RASPR descriptors of a particular training
compound are computed not from that particular compound,
but from its close congeners based on the similarity features.
Thus, the prediction aspect is in-built in the case of RASPR
descriptor computation. A QSAR model is tted based on the
training set descriptor data while a RASPR model is tted based
on the leave-same-out “predicted” training set descriptor data.
Again, during PLS model development, the number of compo-
nents (LVs) of a PLS model is selected based on the cross-
validation (Leave-One-Out (LOO) method). Due to the
combined effect of leave-same-out descriptor computation fol-
lowed by LOO cross-validation, q-RASPR models show inferior
performance on the training data than on the test set data.
Further details on this aspect are given while discussing other
machine learning models (vide infra).

The importance of the features toward the PCE is repre-
sented in the form of the bubble plot (Fig. S1 in ESI SI-1†), in
which variable importance scores and coefficient scores are
calculated by using SIMCA-P v10.0 soware (https://
www.sartorius.com/). The importance of these descriptors is
represented by the diameter of the bubbles and their relative
3418 | Sustainable Energy Fuels, 2023, 7, 3412–3431
position along the y-axis whereas color difference denotes
positive and negative contribution. The information related to
all the datasets are provided in the ESI SI-2.†

Modelling of PCE of coumarin dyes. The most signicant
descriptors in the form of a mathematical equation are shown
in Table 2 and the contribution of these descriptors towards
PCE in the form of a bubble plot in Fig. S1a in ESI SI-1.† The
mechanistic interpretation of these descriptors is discussed
below. It may be noted that the predictions made by the models
do not depend on a single descriptor; instead, they are the
resultant of many positively and negatively contributing
features. Here, we give suitable examples to show how a partic-
ular descriptor can inuence the performance of the model but
there may be some other examples where the descriptor
contribution is not so obvious, and some other important
descriptors might contribute to the response for those data
points.

MaxPos(GK) is a RASPR descriptor that represents the simi-
larity value to the nearest positive close source compound based
on training set mean, obtained by Gaussian kernel similarity-
based method.32 From the bubble plot, it was found that this
descriptor has the highest contribution to the PCE, as shown in
Fig. S1a.† MaxPos(GK) shows a positive contribution as re-
ected in following example: 19 (MaxPos(GK) = 1, PCE = 7.4),
20 (MaxPos(GK) = 1, PCE = 6.4) and vice versa for the dyes 56
(MaxPos(GK) = 0.014, PCE = 0.99), 22 (MaxPos(GK) = 0.004,
PCE = 0.33). Any QSPR-derived predictions are based on the
similarity assumptions; i.e., structurally similar compounds will
have similar property or activity values. Thus, it is obvious that
This journal is © The Royal Society of Chemistry 2023
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a data point showing structural similarity (MaxPos) to
compounds having high response values will also have high
response value and vice versa.

The functional group count descriptor nThiophene denoting
the number of thiophene rings in the coumarin dyes contrib-
utes positively to the PCE. Therefore, presence of such func-
tional group in the dye increases the performance of DSSCs as
represented by the following examples: 19 (nThiophene = 2,
PCE = 7.4), 32 (nThiophene = 2, PCE = 6.5). The PCE value may
reduce for the compounds where no such functional group is
present as shown in the following examples: 56 (nThiophene =

0, PCE = 0.99), 17 (nThiophene = 0, PCE = 0.9). Thiophene
groups are the part of the p-spacer which not only improves
light absorption and dipole moment but also decreases the
dihedral angle between donor/acceptor and p-spacer plane for
better orbital overlap which in turn improve electron injection
to TiO2.54

Two other functional group count descriptors nR = Ct
(number of an aliphatic tertiary carbon atom with the ‘sp2’
hybridization) and nR#C– (number of a non-terminal carbon
atom with the ‘sp’ hybridization) have positive and negative
contributions to the PCE, respectively. The presence of aliphatic
tertiary ‘sp2’ hybridized C atom and the absence of non-
terminal ‘sp’ hybridized C atom frequency of ‘s’ is responsible
for the enhancement of absorption.55 The contribution of the
descriptor nR = Ct is represented by the following examples: 35
(nR = Ct = 4, PCE = 6.2), 32 (nR = Ct = 3, PCE = 6.5), 17 (nR =

Ct = 0, PCE = 0.9), 22 (nR = Ct = 0, PCE = 0.33); and the
following examples represent the contribution of nR#C– 44
(nR#C– = 2, PCE= 1.35), 56 (nR#C–= 2, PCE= 0.99), 19 (nR#C–
= 0, PCE = 7.4), 32 (nR#C– = 0, PCE = 6.5).

nRCN is a functional group count descriptor denoting the
number of aliphatic nitriles in the dye which contributes
negatively to the PCE of coumarin dyes. Therefore, with the
increasing number of nitrile groups, the performance of DSSCs
is reduced as indicated by the following examples: 44 (nRCN =

1, PCE = 1.35), 56 (nRCN = 1, PCE = 0.99) and vice versa for the
dyes 10 (nRCN = 0, PCE = 3.7), 54 (nRCN = 0, PCE = 3.5) where
no nitrile group is present. Anchoring groups are a part of the
dye which involves adsorption on TiO2 surface that determines
electron injection ability and optoelectrical property of the dye.
Nitrile groups are generally a part of this anchoring group which
may increase adsorption stability when CN group itself is
involved in the binding. On the other hand, nitrile groups may
reduce the photovoltaic property when it is not involved in
binding.56

T(S/S) is a 2D atom pair descriptor that indicates the sum of
the topological distance between two sulfur atoms where they
are part of two thiophene rings. The negative contribution of
this descriptor signies that with the increasing distance
between sulfur atoms, the performance of the DSSCs may
decrease as represented by the following examples: 22 (T(S/S)
= 31, PCE = 0.33), 3 (T(S/S) = 28, PCE = 1.77), 44 (T(S/S) =
21, PCE = 1.35) and vice versa for the dyes 19 (T(S/S) = 3, PCE
= 7.4), 32 (T(S/S)= 3, PCE= 6.5), 29 (T(S/S)= 3, PCE= 6.07).
The possible reason for this may be due to the disruption of the
planar structure of the p-spacer and increase of dihedral angle
This journal is © The Royal Society of Chemistry 2023
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between adjacent donor/acceptor and p-spacer. Another reason
is that a hole is created in the p-spacer aer injection of an
electron to the TiO2; this hole is transferred to the donor part
and prevents charge recombination. Therefore, with the
increasing length of p-spacer, the possibility of this hole
transfer is reduced, and this may cause back transfer of electron
and reduce DSSC performances.54

C-040 is an atom-centered fragment descriptor that repre-
sents fragments like R–C(]X)–X/R–C#X/X]C]X (R: any group
linked through carbon; X: any electronegative atom like N, S, P,
O, halogen; #: triple bond) in the dye which contributes posi-
tively to the PCE. The positive contribution of this descriptor
signies that the presence of such fragments in the dye may
increase the performance of the dye as shown in the following
examples: 19 (C-040 = 3, PCE = 7.4), 20 (C-040 = 3, PCE = 6.4),
35 (C-040 = 3, PCE = 6.2) and vice versa for the dyes 24 (C-040 =

2, PCE = 1.04), 17 (C-040 = 2, PCE = 0.9). These fragments are
generally parts of the anchoring group containing carboxylic
acid or cyanoacrylic acid as a binder which increases the
stability of adsorption on TiO2 surface and helps in efficient
electron transfer.56

SD Activity(GK) is a RASPR descriptor that denotes the
weighted standard deviation of the response value of the
selected close source compound for each query compound. The
positive contribution of this descriptor32 is represented by the
following examples: 29 (SD Activity(GK) = 1.53777, PCE = 6.07),
36 (SD Activity(GK) = 1.40648, PCE = 5.5), 7 (SD Activity(GK) =
1.04559, PCE = 1.1), 17 (SD Activity(GK) = 0.9868, PCE = 0.9).

The mechanistic interpretation of the 2D structural
descriptor of the q-RASPR PLS model for the coumarin dyes is
schematically represented in Fig. 3.
Fig. 3 Mechanistic interpretation of 2D structural descriptors of q-RASP

This journal is © The Royal Society of Chemistry 2023
Modeling of PCE of carbazoles. The PLS q-RASPR model
related to the carbazole dyes consisting of 8 descriptors has
been shown in Table 2, and the contribution of the descriptors
in the form of a bubble plot has been shown in Fig. S1b of ESI
SI-1.† The mechanistic interpretation of these descriptors and
their inuence on PCE is discussed below:

The 2D atom pair descriptor B04[N–O] indicates the pres-
ence or absence of nitrogen and oxygen atoms at the topological
distance 4, and this descriptor contributes positively to the PCE.
This fragment is part of an anchoring group cyanoacrylic acid.
Cyanoacrylic acid is one of the most common anchoring groups
for metal oxide (TiO2) surfaces because of its dual character of
a strong adsorber and a good acceptor. Its strong binding with
TiO2 provides stability to the adsorbed dyes which in turn helps
in the efficient transfer of an electron to TiO2. This cyanoacrylic
acid also has a strong electron-withdrawing ability which helps
in intramolecular charge transfer from donor to metal oxide.55

Therefore, when such fragments are present in the dye, the
performance of DSSCs will increase as represented by the
following examples: 132 (B04[N–O] = 1, PCE = 12.5), 133 (B04
[N–O]= 1, PCE= 9.32), 101 (B04[N–O]= 1, PCE= 8.09) and vice
versa for the dyes 160 (B04[N–O] = 0, PCE= 0.34), 157 B04[N–O]
= 0, (PCE = 0.31), 159 (B04[N–O] = 0, PCE = 0.21).

B02[C–S] is a 2D atom pair descriptor that indicates the
presence or absence of carbon and sulfur at the topological
distance 2. The positive contribution of this descriptor indicates
that the presence of such fragment increases the performance
of DSSCs. This fragment is a part of the thiophene group that
acts as ap-spacer present between donor and acceptor moieties.
This electron rich p-spacer is responsible for the enhancement
absorption of photon which in turn increases PCE of carbazole
dye.52 The positive contribution of this descriptor is represented
R PLS model for the coumarin dataset.

Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3421
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by the following examples: 132 (B02[C–S] = 1, PCE = 12.5), 133
(B02[C–S] = 1, PCE = 9.32), 101 (B02[C–S] = 1, PCE = 8.09) and
vice versa for the dyes 160 (B02[C–S] = 0, PCE = 0.34), 157 (B02
[C–S] = 0, PCE = 0.31).

F06[N–O] is another 2D atom pair descriptor that indicates
the frequency of nitrogen and oxygen atoms at the topological
distance 6, and it contributes positively toward the PCE. This
fragment is present in the dye either as a part of the phenyl
moiety between acceptor (cyanoacrylic acid) and adsorber or as
a part of the linker between the donor and p-spacer (furan or
enedioxythiophene). A dye containing this fragment between
acceptor and adsorber will have an improved performance by its
diode like effect (which prevents the back transfer of electrons
from TiO2 to the dye).57 It helps in an efficient intramolecular
charge transfer for the dyes containing this fragment as a linker
between the donor moiety and p-spacer.58 The positive contri-
bution of this descriptor is represented by the following exam-
ples: 132 (F06[N–O] = 3, PCE = 12.5), 133 (F06[N–O] = 2, PCE =

9.32) and vice versa for the dyes where no such fragment is
present, 160 (F06[N–O] = 0, PCE = 0.34), 157 (F06[N–O] = 0,
PCE = 0.31).

F04[C–N] is a 2D atom pair descriptor that denotes the
frequency of carbon and nitrogen atoms at the topological
distance 4, and this descriptor contributes positively to the PCE.
This fragment is present mainly as a part of the main scaffold
(carbazole moiety) of the dye, and also in some dyes it is present
adjacent to the carbazole moiety as a part of p-spacer. This
fragment helps in the generation of electrons by a donor group
and helps in the efficient transfer of electrons toward the
acceptor part which in turn increases the performance of the
DSSCs.59–61 The PCE value increases in the presence of such
fragments in the dyes as indicated by the following examples: 50
(F04[C–N] = 22, PCE = 7.52), 101 (F04[C–N] = 17, PCE = 8.09),
130 (F04[C–N] = 15, PCE = 9.8) and vice versa for the dyes 97
(F04[C–N] = 0, PCE = 0.0538), 98 (F04[C–N] = 0, PCE = 0.0387)
where no such fragment is present.

nR10 is a ring descriptor that indicates the number of 10
membered rings in a dye which contributes positively to the
PCE. In this case, 6-membered or 5-membered aromatic rings
are fused with the main carbazole scaffold of the dye and form
a planar structure. These electron-rich centers help in the
generation of electrons and due to their planar structure, the
molar absorption coefficient and photon harvesting ability of
the dye is increased which improve the performance of
DSSCs.62,63 In some dyes, this fragment is also present as a part
of the p-spacer which helps in the efficient transfer of electrons
from a donor part to the acceptor part. Therefore, performances
of DSSCs should increase when such ring system is present in
the structures, which is indicated by the following examples:
130 (nR10 = 6, PCE = 9.8), 131 (nR10 = 6, PCE = 7.6) and vice
versa for the dyes 159 (nR10 = 0, PCE= 0.21), 91 (nR10 = 0, PCE
= 0.19), 154 (nR10 = 0, PCE = 0.07) where no 10 membered
rings are present.

The negative contribution of the constitutional descriptor
N% (percentage of the nitrogen atoms in the dye) and 2D atom
pair descriptor F06[N–N] (frequency of two nitrogen atoms at
the topological distance 6) indicates that the presence of such
3422 | Sustainable Energy Fuels, 2023, 7, 3412–3431
fragments hinders the performance of DSSCs. Higher numer-
ical values of these descriptors of a dye may decrease the PCE
value which is represented by the following examples: 91 (N%=

6.25, PCE = 0.19), 118 (N% = 5.6338, PCE = 0.89), 53 (N% =

4.83871, PCE = 0.99), 112 (N% = 4.83871, PCE = 0.96) for the
descriptor N%; 141 (F06[N–N]= 2, PCE= 2.58), 138 (F06[N–N]=
2, PCE= 2.17) for F06[N–N]. On the other hand, dyes with lower
numerical value of this descriptor may have higher PCE values
as shown in following examples: 99 (N%= 1.81818, PCE= 7.58),
103 (N%= 1.50376, PCE= 7.54), 130 (N%= 1.34529, PCE= 9.8)
for N%, 132 (F06[N–N]= 0, PCE= 12.5), 130 (F06[N–N]= 0, PCE
= 9.8), 133 (F06[N–N] = 0, PCE = 8.09) for the F06[N–N].

Avg. Sim(GK) is a RASPR descriptor that denotes the mean
similarity value of the selected close source compounds for each
query compound based on the Gaussian kernel similarity-based
method. The positive contribution of this descriptor indicates
a molecule having a higher Avg. Sim value may have a higher
PCE value as represented by the following examples: 94 (Avg.
Sim(GK) = 0.92848, PCE = 7.33), 56 (Avg. Sim(GK) = 0.89553,
PCE = 6.04), 99 (Avg. Sim(GK) = 0.75399, PCE = 7.58) and vice
versa for the dyes 156 (Avg. Sim(GK)= 0.24768, PCE= 0.06), 154
(Avg. Sim(GK) = 0.04227, PCE = 0.07).

The interpretation of 2D structural descriptors for the
carbazole dyes is represented schematically in Fig. 4.

Modeling of PCE of indolines. The PLS q-RASPR model of
indoline dyes consisting of 6 descriptors has been presented in
Table 2, and the contribution of the descriptors in the form of
a bubble plot is shown in Fig. S1c of the ESI SI-1.† The meaning
of these descriptors and their inuence on PCE are discussed
below:

RA function is a Read-Across-derived RASPR descriptor
which encodes information of all the selected structural and
physicochemical descriptors.33 It contributes positively to the
PCE as indicated by the following examples: 141 (RA function =

8.1741, PCE = 8.38), 8 (RA function = 7.9697, PCE = 7.12), 24
(RA function = 7.88, PCE = 9.2) and vice versa for the dye 129
(RA function = 1.8131, PCE = 1.48), 32 (RA function = 1.5372,
PCE = 0.63), 30 (RA function = 1.4248, PCE = 0.77).

Both RASPR descriptors Neg.Avg.Sim (denoting the mean of
the similarity values of the negative close source compounds for
a particular query compound) and CVsim(LK) (coefficient of
variation of the similarity values of the selected close source
compound for each query compound) contribute negatively to
the PCE. This is represented by the following examples: 93
(Neg.Avg.Similarity = 0.2883, PCE = 0.35), 108 (Neg.-
Avg.Similarity = 0.2883, PCE = 0.046) for Neg.Avg.Similarity; 93
(CVsim(LK) = 1.404, PCE = 0.35), 108 (CVsim(LK) = 1.404, PCE
= 0.046) for CVsim(LK); and vice versa for the dye 144 (Neg.-
Avg.Similarity = 0, PCE = 8.78), 24 (Neg.Avg.Similarity = 0, PCE
= 9.2), 135 (Neg.Avg.Similarity = 0, PCE = 8.61) for Neg.-
Avg.Similarity; 135 (CVsim(LK) = 0.4427, PCE = 8.61), 78
(CVsim(LK) = 0.3868, PCE = 7.99) for CVsim(LK).

The functional group count descriptor nCconj denotes the
number of non-aromatic conjugated sp2 hybridized carbon
atoms that contributes negatively to the PCE. The negative
contribution of this descriptor signies that the PCE value may
decrease when the number of non-aromatic conjugated sp2
This journal is © The Royal Society of Chemistry 2023
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Fig. 4 Mechanistic interpretation of the 2D structural descriptors of the q-RASPR PLS model for the carbazole dataset.
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carbon increases as represented by the following examples: 11
(nCconj = 11, PCE = 2.65), 10 (nCconj = 10, PCE = 2.7) and vice
versa for the dyes with a low numerical value of nCconj like 155
(nCconj = 1, PCE = 5.61) and 152 (nCconj = 1, PCE = 5.5).

F04[C–N] is a 2D atom pair descriptor that indicates the
frequency of carbon and nitrogen atoms at the topological
distance 4 in the dye, and this descriptor contributes posi-
tively to the PCE. It was found that if the donor group is
present with a non-planar orientation with other groups, it
may increase the PCE value. Although this fragment is present
as a part of the dye in a non-planar structure, it may increase
the performance of the DSSCs as indicated by its positive
contribution to the PCE.64,65 Therefore, the presence of such
fragment increases the performance of DSSCs as shown by the
following examples: 21 (F04[C–N] = 21, PCE = 8.43), 8
(F04[C–N] = 20, PCE = 7.12), 24 (F04[C–N] = 18, PCE = 9.2)
This journal is © The Royal Society of Chemistry 2023
and vice versa for the dyes 105 (F04[C–N] = 3, PCE = 2.53), 164
(F04[C–N] = 3, PCE = 2.08).

Another 2D atom pair descriptor B09[O–S] indicates the
presence or absence of oxygen and sulfur atoms at the topo-
logical distance 9, and this descriptor contributes positively to
the PCE. This is a part of the anchoring group for the dye which
contains this fragment. It helps to transfer electrons from the
dye to the TiO2 surface through p-bond conjugation. Oxygen
and sulfur atoms control electron density delocalization which
helps in p bond conjugation. As a result, the molar extinction
coefficient of the dye increases which may lead to shiing of the
absorption maxima.65 If the topological distance between O and
S is reduced or increased, the conformation of the dye will
change which may decrease the anchoring stability of the dye
and the performance of the DSSCs will be reduced.66,67 Dyes
containing this type of fragment may increase PCE values as
Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3423
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represented by the following examples: 78 (B09[O–S]= 1, PCE=

7.99), 21 (B09[O–S] = 1, PCE = 6.12), 131 (B09[O–S] = 1, PCE =

6.11) and vice versa for the dyes 30 (B09[O–S] = 0, PCE = 0.77),
32 (B09[O–S] = 0, PCE = 0.63), 93 (B09[O–S] = 0, PCE =

0.35).The mechanistic interpretation of the relevant descriptors
for the indoline dataset is schematically represented in Fig. 5.

Modelling of PCE of diphenylamines. The PLS q-RASPR
model consisting of 5 descriptors has been shown in Table 2,
and the contribution of the descriptors in the form of a bubble
plot is shown in Fig. S1d of ESI SI-1.† The mechanistic inter-
pretation of these descriptors is represented below:

F01[C–N] is a 2D atom pair descriptor that indicates the
frequency of carbon and nitrogen atoms at the topological
distance of 1, and this descriptor contributes negatively to the
PCE. In the presence of these fragments, the overall polarity of
the dye will change which may lead to an increased intermolec-
ular interaction in terms of different weak forces like hydrogen
bonding, aromatic ring stacking, van der Waals force, etc. These
weak forces may cause aggregation of dyes on the surface of the
TiO2, and the performance of the DSSCs is reduced.68 Therefore,
the presence of such fragment reduces the performance of the
DSSCs as represented by the following examples: 35 (F01[C–N] =
11, PCE= 0.4), 34 (F01[C–N]= 10, PCE= 1) and vice versa for the
dyes 3 (F01[C–N] = 4, PCE = 5.4), 22 (F01[C–N] = 4, PCE = 5.22),
where no such fragment is present.
Fig. 5 Mechanistic interpretation of the 2D structural descriptors of q-R

3424 | Sustainable Energy Fuels, 2023, 7, 3412–3431
Another 2D atom pair descriptor F04[N–S] denotes the
frequency of nitrogen and sulfur atoms at the topological
distance 4, and this descriptor contributes positively to the PCE.
This can be represented by the following examples: 27 (F04[N–S]
= 2, PCE = 8), 26 (F04[N–S] = 2, PCE = 7.1), 17 (F04[N–S] = 2,
PCE = 6.19) and vice versa for the dyes 34 (F04[N–S] = 0, PCE =

1), 33 (F04[N–S] = 0, PCE = 0.44), 35 (F04[N–S] = 0, PCE = 0.4)
where no such fragment is present.

SD_similarity is a RASPR descriptor that denotes the stan-
dard deviation of the similarity values of close source
compounds for each query compound. A high numerical value
of the descriptor may increase PCE value as shown in the
following examples: 7 (SD similarity = 0.33695, PCE = 7.05), 8
(SD similarity = 0.33274, PCE = 7.64) and vice versa for the dyes
35 (SD similarity = 0.177502, PCE = 0.4), 33 (SD similarity =

0.016381, PCE = 0.44).
StsC is an atom type E-state descriptor that indicates the sum

of tsC E-states (^C–), which contributes negatively to the PCE
property of the DSSCs, as observed for the dyes 10 (StsC =

8.292574, PCE = 1.99), 13 (StsC = 7.76829, PCE = 3.16) and vice
versa for the dyes 8 (StsC = 1.671126, PCE = 7.64), 7 (StsC =

1.644351, PCE = 7.05).
The mechanistic interpretation of the signicant 2D-

structural descriptors for the diphenylamine dataset is sche-
matically represented in Fig. 6.
ASPR PLS model for the indoline dataset.

This journal is © The Royal Society of Chemistry 2023
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Fig. 6 Mechanistic interpretation of the 2D structural descriptors of q-RASPR PLS model for the diphenylamine dataset.
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For all 4 datasets, different PLS plots like randomization
plots, loading plots, and score plots were developed which are
shown in the ESI SI-1.† For all the datasets, the PLS Scatter plots
(Fig. S2†) show that there is not so much difference between
observed and predicted PCE indicating the good quality of the
test set predictions. The Y-randomization plots (Fig. S3†) show
that all the models have R2 and Q2 intercept values within their
threshold limits (0.3 for R2 and 0.05 for Q2), indicating that our
models are not obtained by chance. The loading plots (Fig. S4†)
show that the descriptors MaxPos(GK) (for coumarins), BO4[N–
O] (for carbazoles) and RA function (for both indoline and
diphenylamines) have the highest contributions to the PCE
because they are present closest to the response variable (PCE).
The score plots (Fig. S5†) show that there are 2 coumarin (3, 54),
5 carbazole (132, 138, 139, 140, 141) and 1 indoline (18) mole-
cules which are present outside the applicability domain of the
corresponding models (located outside the ellipse drawn on
based on Hotelling t2 test).69
Machine-learning (ML) models

The qualities of the Machine-Learning (ML) models and the
different validation metrics for all 4 datasets are shown in Table
3 along with their different optimized hyperparameter settings.
To determine the models' quality and predictability, we calcu-
lated various quality and validation metrics on the training and
test sets. For the purpose of comparison, we have also included
PLS q-RASAR models for which the same method was used for
calculation of the internal, external and cross-validation
metrics. For all 4 datasets, ridge regression, XGBoost and PLS
models show almost similar QF1

2, MAEtest and R2 score (of
training set) values. There are two different aspects here
regarding the quality of predictions from the q-RASPR models
for the test sets. The rst is the enhancement of prediction
quality for the test set in case of a q-RASPR model in compar-
ison to the corresponding QSPR model (vide infra the compar-
ison section) while the second is the comparison of the
prediction quality of the q-RASPR models for the test set in
comparison to its tting quality in case of the corresponding
training set. The test set prediction quality may better be
compared with the training set tting ability by considering
MAETest for the test set and MAELOO for the training set. In our
This journal is © The Royal Society of Chemistry 2023
opinion, QF1
2 for the test set should not be directly compared

with R2 or Q2 values of the training set as these metrics depend
on the distribution of the observed response values of the
training and test set compounds around the training set mean,
and usually these patterns may be different in the training and
test sets.70 In our examples, MAETest values for the test sets in
different models are lower than the corresponding MAELOO
values for the training sets (Table 3). This also happened in the
case of machine learning models like the random forest,
Gradient Boost, and Extreme Gradient Boost for different data
sets in Table 3. Thus, in terms of MAE as a metric (MAELOO for
the training sets and MAETest for the test sets), the quality of the
test set predictions is comparatively better in these examples.

Now, as per the q-RASPR algorithm, the RASPR descriptors of
both the training and test sets are computed from the structural
congeners in the training set. It is natural that a data set may
contain a few activity cliffs, which are similar to other
compounds in structural features but have quite different
response values from their structural congeners. The tting
ability of such compounds in the training set and the prediction
ability of such compounds in the test set will naturally be poor,
especially when we use similarity-based descriptors like RASPR
descriptors. In our present examples, the training set size is
much bigger than the corresponding test set size in order to
maximize the learning ability of the models (as usual in
conventional QSPR studies). Thus, the probability of the
occurrence of such activity cliffs in the training sets is more
than that in the corresponding test sets, which may explain (at
least partially) the lower MAETest values in comparison to the
corresponding MAELOO values of the training sets. The activity
cliff aspect in q-RASPRmodeling has been extensively discussed
in our recent work.71

We have checked the number of activity cliffs in the training
and test sets of the four different data sets based on novel
Banerjee–Roy similarity coefficients as per ref. 71. A compound
is considered an activity cliff when both of the two similarity
coefficients do not show values as per the expected category
(positive/negative, considering the training set response mean
as the threshold). From Table 4, it is evident that in the case of
each data set, the number of activity cliffs in a training set is
much higher than the number of activity cliffs in the corre-
sponding test sets. In the case of QSAR analysis, descriptors are
Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3425

https://doi.org/10.1039/d3se00457k


Table 4 Number of activity cliffs in the training and test sets based on the analysis of similarity coefficients

Dataset
Number of training
set compounds

Number of test set
compounds

Number of activity
cliffs in the training seta

activity cliff
in the training set (%)

Number of activity
cliffs in the test seta

activity cliff
in the test set (%)

Carbazoles 124 54 37 29.84 14 25.93
Coumarins 42 14 7 16.66 2 14.29
Diphenylamines 25 10 6 24 1 10
Indolines 121 38 20 16.53 7 18.42

a Computed based on similarity coefficients described in ref. 71.
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computed directly from the structures of the compounds in
question; however, RASAR descriptors are computed from close
congeners of the compounds under consideration. In the case
of activity cliffs, the similarity principle is not obeyed and thus
the similarity descriptors computed from the close congeners
cannot capture the structure–response relationship properly. In
the case of QSAR analysis, themodel tting is done based on the
whole training set in which activity cliffs may penalize a model
but not to the extent to a RASAR model as in the latter case the
similarity descriptors of the activity cliffs (not obeying the
similarity principle) heavily penalize the model. This is more
evident in the case of regression-based predictions, as precise
quantitative predictions are considered here as also seen in ref.
38. Due to the lower number of activity cliffs in the test sets, the
quality of predictions is less impacted. Such observations are
not common in case of QSAR analysis including MLmethods as
Fig. 7 Cross-validation statistics based on 20 times 5-fold repetitive C
dataset.

3426 | Sustainable Energy Fuels, 2023, 7, 3412–3431
in the latter case descriptors are not computed from close
congeners of the compounds under consideration, rather
computed from the same compounds. In fact, one of the
objectives of RASAR modeling is to enhance the quality of
predictions for the test set which may be at the expense of
lowering the prediction quality for the training set. Further, the
novel similarity coefficients71 may be used to identify activity
cliffs and enhance the modelability of a data set.

To further evaluate the quality of developed models, we have
also performed 20 times 5-fold repetitive cross-validation, and
1000 times shuffle-split cross-validation with 30% data holding
in the validation set. The result of cross-validation for the
coumarin dataset is shown in the Fig. 7 and that for the
carbazole, indoline and diphenylamine datasets are shown in
Fig. S6–S8 in ESI SI-1.† For the coumarin dataset, the mean R2

value for both the repetitive CV and Shuffle-split CV indicates
V and 1000 shuffle split CV method (mean ± SEM) for the coumarin

This journal is © The Royal Society of Chemistry 2023
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that the Ridge regression method is the best model among all
models while the PLS and XGBoost models show comparable
results. For the carbazole and indoline datasets, the ridge
regression, PLS and XGBoost models show comparable results,
as shown in Fig. S6 and S7.† For the diphenylamine dataset, the
random forest model shows the highest mean R2 value in both
repetitive cross-validation and shuffle-split cross-validation
method but ridge regression, XGBoost and PLS models show
comparable results, as shown in Fig. S8.†

To evaluate the importance of descriptors in the machine-
learning models, we have performed SHAP analysis on the
training set data. We have represented the importance of
descriptors in the form of heatmap plots of SHAP as shown in
Fig. 8. The PLS, ridge regression and XGBoost models are
considered here, and the plots of the remaining models are
shown in the Fig. S9–S12 of ESI SI-1.† On the Y-axis of the
heatmap plot, the features are arranged based on their mean
absolute SHAP values, which in turn denotes their importance
to the predictions. From the heatmap plot, we can also obtain
how the model's prediction changes over every instance which
is denoted by the wavy line above the plot. The colour difference
in the plot indicates how the SHAP value of the features changes
over every instance and how it affects the model's output.

A partial dependence plot shows the marginal effect of
a feature (or two features) on the predicted outcome of
a machine learning model. This plot can suggest the depen-
dence interaction between two features. In case of an interac-
tion with the other feature, a distinct vertical pattern of coloring
Fig. 8 Heatmap plots for the PLS, Ridge regression and XGBoost mode

This journal is © The Royal Society of Chemistry 2023
will be seen. The partial dependence plots of selected ML
models are shown in ESI SI-3.†
Design of new dyes with improved PCEs

We can design new dyes with improved power conversion effi-
ciency (PCE) by incorporating structural fragments that have
positive contributions to the PCE of solar cells or by removing
fragments that contribute negatively to the PCE of solar cells.
The favorable fragments improve PCE either by increasing
intramolecular charge transfer or by increasing the anchoring
stability of the dye on the TiO2 semiconductor oxide surface.
The descriptors which encode the structural information help
to identify the necessary modications that must be made to
improve the PCE. In this work, we use the PLS variable impor-
tance plot to identify the relative importance of the positive and
negatively contributing descriptors. Based on this, we have
designed new dyes with improved predicted PCE values as
shown in ESI SI-3.† We have also checked the synthetic acces-
sibility of the designed dyes.72

For carbazole dyes, the incorporation of a cyano acrylic acid
group increases the value of B04[N–O] (presence or absence of
nitrogen and oxygen atoms at the topological distance 4) while
a para-aminobenzoic acid group increases the value of F06[N–O]
(count of nitrogen and oxygen at the topological distance 6). For
example, the F06[N–O] value increases when one incorporates
4-(2-cyanoprop-2-enamido)benzoic acid (as shown in NCA1,
NCA2 and NCA3) and 2-cyano-N-[4-(trimethoxysilyl)phenyl]
ls for all datasets, indicating relative importance of descriptors.

Sustainable Energy Fuels, 2023, 7, 3412–3431 | 3427
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prop-2-enamide (as shown in NCA4 and NCA5) moieties in the
carbazole structure. These fragments are generally a part of the
anchoring group which increases the stability of the binding of
the dye with the TiO2 surface. We can increase the value of B02
[C–S] (presence or absence of carbon and sulfur atoms at the
topological distance of 2) by incorporating a thiophene group,
increase the value of F04[C–N] (frequency of carbon and
nitrogen atoms at the topological distance of 4) by attaching
a long aliphatic chain to the nitrogen atoms and increase the
value of nR10 (the number of 10-member rings) by incorpo-
rating 10 membered rings in the structure. All these fragments
are responsible for the generation of electrons which are
transferred to the TiO2 surface.

For coumarin dyes, one can increase the value of positively
contributing descriptors like nThiophene (number of thio-
phene group), nR = Ct (number of aliphatic tertiary C atom
with sp2 hybridization) and C-040 (R–C(]X)–X/R–C#X/X]C]
X). These descriptors are generally responsible for electron
generation and intramolecular charge transfer. One can also
try removing the negatively contributing descriptor nRCN
(number of aliphatic nitrile groups). The nitrile group is a part
of the anchoring group cyanoacrylic acid; therefore, one can
try using other anchoring groups like carboxylic acid, pyri-
dine, etc.

For diphenylamine dyes, one can increase the value of
positively contributing descriptor F04[N–S] (frequency of
nitrogen and sulfur atoms at the topological distance 4) by
incorporating groups like a pyrimidine ring adjacent to
a thiophene ring (as shown below in NDI1),
2,1,3-benzothiadiazole and 1,2,3-benzodithiazole groups
Fig. 9 Comparison between the previous PLS QSPR models and the ne

3428 | Sustainable Energy Fuels, 2023, 7, 3412–3431
adjacent to the thiophene and pyrimidine rings respectively
(as shown below in NDI5 and NDI3). These fragments are
generally a part of the linker between the donor part and the
acceptor part which helps to improve performance by
increasing intramolecular charge transfer.

For indoline dyes, one can increase the value of positively
contributing descriptors like F04[C–N] (frequency of carbon
and nitrogen atoms at the topological distance of 4) by
attaching different aliphatic and aromatic groups to the
nitrogen atoms, and B09[O–S] (presence of oxygen and sulfur
atoms at the topological distance 9) by increasing the length of
the p-spacer (for example, compound NIN1 is formed by
incorporating a butylene group between the thiophene ring
and the cyanoacrylic acid). These fragments help in the
generation of electrons and improve intramolecular charge
transfer.

Comparison with the previous work

In 2020, Krishna et al. worked on the prediction of PCE value of
metal free organic DSSCs by PLS regression using 2D structural
descriptors.26 The models reported by them were statistically
sound with good quality validation metrics. However, our q-
RASPR PLS models outperformed them with better prediction
quality with the same level of chemical information used, also
explaining the importance of RASPR descriptor. The advantage
of RASPR descriptors is that they are simple, easy to calculate
and transferable. In comparison to the previous models, the
present models have higher QF1

2 scores and lower MAEtest

values. The comparison between the previous PLS QSPRmodels
wly developed q-RASPR PLS models.

This journal is © The Royal Society of Chemistry 2023
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and the present q-RASPR PLS models is shown in the form of
column plots in Fig. 9. The previous study developed ve indi-
vidual models and consensus models of datasets, but here we
have considered only the best individual models for compar-
ison. It is clear from the column plots that our newly developed
models are much more predictive. This study shows that the
inclusion of RASPR descriptors along with structural and
physicochemical descriptors enhances the predictivity of the
models.

Conclusion

Solar energy is one of most important forms of renewable energy
that meets the increasing demand of electrical energy. Various in
silico approaches have been used to predict the power conversion
efficiency (PCE) of DSSCs using structural and physicochemical
features of dyes. In the present study, we have used RASPR
descriptors along with 2D structural descriptors for the develop-
ment of Partial Least Squares (PLS) and machine learning models
of coumarin, carbazole, indoline and diphenylamine dyes. The
developed q-RASPR models are statistically robust, and all the
models show acceptable results for the internal validation and
enhanced values of external validation metrics which indicate the
importance of RASPR descriptors. The analysis of internal and
external validation metrics of the developed q-RASPR models
shows a surprising trend of better quality of predictions (in terms
of MAE) for the test sets in comparison to the corresponding
training sets which is contrary to the usual observations of better
training set statistics than the corresponding test set statistics in
case of QSAR models. This may happen due to a strange distri-
bution of activity cliffs that for some reason affects the training set
predictions more than the test set ones. This is indeed one of
those strange (and rare) cases where the performances on the test
set are better than on the training set. We have performed
different cross-validation statistics to determine the quality of the
developed model. We have also performed SHAP analysis on the
training sets for all four datasets to determine the feature
importance toward the endpoints. Using the developed and vali-
dated models, the PCE of a newly designed molecule can be
determined before its synthesis, and it can save a lot of time,
money, and resources. The soware tools used for our work are
easy to operate andmost of them are freely accessible whichmake
the modeling exercise simple and inexpensive. Hence, our devel-
oped models can give a direction for scientists and researchers
present in different research areas or industrial organizations to
design and synthesize new dyes. In this way, time, resources, and
cost involved in the synthesis and experimentation can be
reduced which may help to develop more efficient molecules.

Data availability

The DTC Lab soware tools are available from http://
teqip.jdvu.ac.in/QSAR_Tools/(MLR BestSubsetSelection and
MLR plus Validation), https://sites.google.com/
jadavpuruniversity.in/dtc-lab-soware/home (Quantitative
Read-Across v4.1 and RASAR Descriptor Calculator v2.0), and
https://sites.google.com/jadavpuruniversity.in/dtc-lab-soware/
This journal is © The Royal Society of Chemistry 2023
home/machine-learning-model-development-guis (Machine
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