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Torsion-induced stick-slip phenomena in the
delamination of soft adhesives†

Tara K. Venkatadri,ab Thomas Henzelc and Tal Cohen *cd

Soft adhesive contacts are ubiquitous in nature and are increasingly used in synthetic systems, such as

flexible electronics and soft robots, due to their advantages over traditional joining techniques. While

methods to study the failure of adhesives typically apply tensile loads to the adhesive joint, less is known

about the performance of soft adhesives under shear and torsion, which may become important in

engineering applications. A major challenge that has hindered the characterization of shear/torsion-

induced delamination is imposed by the fact that, even after delamination, contact with the substrate is

maintained, thus allowing for frictional sliding and re-adhesion. In this work, we address this gap by

studying the controlled delamination of soft cylinders under combined compression and torsion. Our

experimental observations expose the nucleation of delamination at an imperfection and its propagation

along the circumference of the cylinder. The observed sequence of ‘stick-slip’ events and the sensitivity

of the delamination process to material parameters are explained by a theoretical model that captures

axisymmetric delamination patterns, along with the subsequent frictional sliding and re-adhesion. By

opening up an avenue for improved characterization of adhesive failure, our experimental approach and

theoretical framework can guide the design of adhesives in future applications.

The advantages of adhesives, in comparison with traditional joining
techniques, have fueled their development in various industries,
with emerging applications in automotives,1 aerospace,2–4 structural
engineering5–9 medical practice,10 and robotics.11 In contrast to
mechanical fastening and welding, adhesives allow for the joining
of dissimilar materials, have improved fatigue performance, and
can reduce stress concentrations.12–14 Such improvements are
traditionally estimated via testing in specific plane-strain geometric
settings, such as ‘lap-joint’ tests12–14 and peeling tests,12,15–17 or in
axially symmetric settings, such as ‘probe tack tests’ using either flat
or spherical punches.18 However, these results cannot be directly
translated to explain and predict the performance of adhesive joints
in more complex loading conditions.

We can classify the failure of adhesives into two broad cate-
gories:19 (i) failure in the bulk of the adhesive, and (ii) failure at the
interface between the adhesive layer and the materials that
it is bonding, also known as peeling or delamination. While

several studies have been devoted to enhancing the durability of
adhesives and preventing delamination by tuning the material
composition,12,20–22 the loading state and geometry of the system
can also affect the strength and failure mode of the adhesive
joint.23 For example, peeling tests are commonly conducted by
pulling the adhesive off the substrate at an angle, and the force at
which delamination occurs has been shown to depend on the
loading angle.16 Additionally, recent work on longitudinally-loaded
rectangular adhesive pads15,17 discovered a tradeoff between two
failure modes (cavitation and curling) that depends on the dimen-
sions of the adhesive and its ability to re-establish the bond upon
contact with the substrate after initial peeling.

One phenomenon that has garnered particular interest
is the delamination of adhesive joints subjected to torsional
loading. Several researchers have conducted torsion-
delamination tests with rigid spherical indenters in contact
with a planar adhesive sample,24,25 while others have studied
tubular joints where the adhesive layer is sandwiched between
two coaxial cylindrical shells.19,26,27 However, rather than exam-
ining the progression of delamination in detail, these analyses
are geared towards quantifying the interfacial toughness and
thus focus on a limited set of observations (i.e. the initiation of
delamination). Accordingly, such experiments are configured to
minimize the influence of transient interfacial phenomena.
Spherical adhesive joints are used to produce localized defor-
mations at a small point of contact between the indenter and
the substrate. Similarly, tubular joints (in which adhesives
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bond the lateral surfaces of two coaxial cylinders) minimize the
thickness of the adhesive zone and often are not conducive to
visual observation, especially for joints with adherends made of
an opaque material like steel.26 Hence, alternative methods are
needed to obtain measurements that may explain and predict
delamination in realistic settings, where the adhesive bond
does not ‘fail’ instantaneously, but rather undergoes a complex
delamination process that is highly dependent on the inter-
facial geometry and the presence of imperfections.

Our study relies on a different geometry: a cylindrical
adhesive sample with one circular face in contact with a glass
substrate. We apply axial compression to adhere the sample to
the glass, then we apply torsion and observe the initiation and
progression of delamination. Consistent with prior work, we
have chosen to use the naturally-adhesive elastomer polydi-
methylsiloxane (PDMS) as our laboratory model of an adhesive
material, and we have used glass as the substrate.24,28 This
configuration has multiple advantages over the ones men-
tioned above. It provides a better model of the real-world
applications of adhesives compared to the spherical indenter
tests, since adhesives under torsion (e.g. composite laminates)
are more likely to have adhesive contact in a planar setting than
on a sphere. In addition, the use of a transparent adhesive and
substrate in contact on the cylinder’s circular surface (instead
of the lateral surface) allows for visual tracking of the delami-
nation process in a way that the tubular joint tests do not. This
setup therefore enables us to observe behaviors beyond the
initiation of delamination and to capture the effect of nonlinear
deformations, which have recently been shown to play a
significant role in determining the interfacial toughness of soft
adhesives.29,30

Some preliminary research has already been conducted on
the cylinder/flat-plate geometry we propose. The linear elastic
model created by Pérez-Ràfols and Nicola31 considers the
initiation of delamination, but did not capture the reattach-
ment and stick-slip behavior. Chaudhury and Chung28 studied
the same configuration through an experimental lens; they
placed a glass disk in torsional contact with a thin PDMS film
and observed the formation of delamination cavities and stick-
slip behavior consistent with prior observations of Schallamach
waves on adhesive joints.32,33 To minimize effects of bulk
deformation, Chaudhury and Chung28 focused on thin films.
However, in some adhesive applications (such as robotic grip-
pers), the adhesive’s thickness may be on the same order of
magnitude as its radius, so it is necessary to observe the
deformation of thick adhesive layers under torsion as well.
Our work aims to address the limitations of these prior studies,
in order to develop a comprehensive understanding of the
initiation and progression of delamination in cylindrical adhe-
sive joints. Our experimental configuration also enables the
investigation of stick-slip cycles and the propagation of Schal-
lamach waves,33 where the adhesive-substrate interface rup-
tures and then re-establishes the bond.17

This manuscript is organized as follows: In the next section,
we detail our experimental procedure and discuss the experi-
mental findings. These observations agree with the key results

of a minimal theory, presented in Section 2, which captures both
the delamination, frictional sliding, and stick-slip cycles of cylind-
rical adhesives under combined compression and torsion. We
show results of the model in Section 3 and conclude in Section 4.

1 Experimental observations

To examine the delamination patterns that emerge under a
combination of compressive and torsional loading, we devel-
oped a cylindrical experimental model (Fig. 1). We fabricated
cylindrical samples of PDMS34,35 (Sylgard 184) with diameter
2.4 cm, height 1 cm, and a base:cross-linker ratio of 40 : 1 to
yield an elastic modulus E B 21 kPa, as measured from the
torsion data in the linear range. We chose to limit our analysis
to these small samples due to the high sensitivity of wider
samples to imperfections in the tilt of the experimental setup
(as discussed in the ESI†). We placed one circular surface of
each sample in weakly-bonded adhesive contact with a glass
plate (see ESI† for fabrication procedure). The other cylindrical
surface was rigidly bonded to an acrylic disk using cyanoacry-
late glue. Each acrylic disk was given a 3-digit Serial Number
(SN) to aid in data processing.

We attached the acrylic disk to the load cell of a dynamic
Instron ElectroPuls E3000 universal testing machine and per-
formed a combined compression-torsion test on the samples
(details are given in ESI†). To characterize the effect of com-
pressive normal force on the torsional delamination process,
we initially applied one of three compressive force values
F = (0,0.5,1) N, then rotated the load cell at a quasi-static rate
of _a = 0.2 deg s�1, up to the final rotation angle a = 150 degrees,
while holding the load cell’s vertical position constant. During
the rotation, we measured the variation in torque (T) and
normal force (F).

Fig. 1 Schematic illustration of the experimental configuration. The top
surface of the PDMS sample is rigidly attached to an acrylic plate that can
be rotated in the plane or vertically translated, as controlled by an Instron
universal testing machine. The normal force and the torque are measured
by the load cell. The bottom surface of the sample is marked with radial
lines (which allow for tracking of the delamination process) and put in
weak adhesive contact with a glass plate. The sample is viewed both from
the side and from below.
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We tracked the displacement of the sample at the interface
with the glass plate by marking 4 straight lines at equal angular
spacing across the diameter of the PDMS surface (Fig. 1).
During each test, we took photographs of the the bottom
surface (Fig. 2) and the lateral surface. From the images, we
obtained a surface-averaged estimate of the radial fraction that
had delaminated as a function of rotation angle (also shown in
Fig. 2). Note that only the initial delamination of a given part of
a radial line was considered – segments of the lines that had
previously delaminated and re-adhered were still denoted as
having delaminated. Corresponding measurements of the tor-
que and normal force are shown in Fig. 3 (where compressive
normal force values are positive). We used the images of the
lateral surface to identify wrinkling instabilities and fracture
initiation throughout the rotation, and after each test, we
further examined the samples to determine the degree to which
fractures had formed (see ESI†). We identified and eliminated
clear outlier tests based on these results (more detail in ESI†).

Three sequential delamination phenomena emerge from our
observations: (i) first, peeling initiates at a site of imperfect adhe-
sion between the sample and glass; (ii) next, the delamination
forms a front that propagates along the circumference and radially
inward in a stick-slip manner; (iii) finally, the radial progression of
delamination is arrested when fractures begin to form on the
lateral surface, leaving an adhered region in the center of the
interface. These trends are found to be consistent in samples that
are subjected to normal force; in absence of a normal force,
delamination occurs more abruptly over the entire surface. These
behaviors are discussed below in more detail:

(i) Initiation

Across all the tests, peeling begins along the outer edge of the
circular adhered surface at a site of imperfect adhesion
between the sample and the glass plate, evident from the
symmetry breaking in Fig. 2. This pattern is in accordance with
analytical models of the delamination of tubular adhesive
joints,27 in which imperfections on the outer edge of the joint lead

to higher stresses and increased likelihood of shear failure. Inter-
estingly, our experiments show that the level of defect sensitivity in
the initiation and propagation of delamination can be tuned by
applying a normal force, as seen by the increasing repeatability
among tests with increasing normal force in Fig. 3.

(ii) Propagation

Once delamination initiates, it propagates circumferentially, as
seen by the shrinkage of the red-shaded regions in Fig. 2 with
increasing rotation angle. The propagation occurs in a stick-slip
manner, such that regions that have previously delaminated
re-adhere and later delaminate again. For samples with no
applied normal force, delamination propagates through the
sample’s entire radius from the onset of peeling (Fig. 2a). For samples
with an applied normal force, the stick-slip cycles start at the edge
and spiral inward as they move around the circumference (Fig. 2b
and c). The propagation of delamination that we observe is in line
with results from prior torsion studies: the inward-radial progression
matches the findings of Chateauminois et al.,24 and the circumfer-
ential stick-slip cycles are broadly consistent with the work of
Chaudhury and Chung.28 This stick-slip process is visible as alter-
nating jumps and plateaus in the delaminated radius percentage in
Fig. 2 and corresponds to fluctuations in the otherwise-monotonic
normal force and torque graphs (Fig. 3; also see ESI† for more detail).

(iii) Arrest

In all samples, we eventually observe the termination of dela-
mination. The reason for the termination depends on the
applied normal force. For samples with non-zero applied force,
the delamination stops at some radial distance from the center,
giving way to fracturing. For samples without applied compres-
sion, the entire sample delaminates by the end of the test and
does not fracture. This behavior may be seen by contrasting the
observations in Fig. 2: in the absence of normal force, the
sample fully delaminates by 92 degrees of rotation, while the
plots for samples with an initial normal force reach a plateau
prior to delaminating through the whole surface.

Fig. 2 Typical progression of delamination. On the left, the sequence of images shows delamination at different rotation angles for one representative
sample in each of the three categories of applied normal force. The red-shaded region indicates the area that has not yet delaminated. The radial and
circumferential progression of delamination is apparent, as is the change in the final delaminated state with increasing applied compression. On the right,
the corresponding evolution of the surface-averaged delaminated radius is shown. The boxes around the sets of images (on the left) correspond to the
colors of the curves (on the right). Time-lapse slideshows of the delamination process for these three tests can be found in the ESI.†
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Aside from the three observations detailed above, we identi-
fied experimental evidence of several other phenomena. In
Fig. 3, the normal compression is shown to increase as the
rotation angle increases. This finding is consistent with the
well-documented ‘Poynting effect’,36 which predicts that tor-
sion elongates cylinders, so compression must be applied to
preserve their height.37,38 At the very beginning of rotation, the
normal force sometimes decreases before it begins to increase –
one possible explanation is that any initial misalignment can
cause the cylinder to reconfigure at onset of loading. This effect
induces an offset of the normal force throughout the loading,
which becomes more pronounced for larger samples, as shown
in the ESI.† In addition, we observed the emergence of wrinkles
on the lateral surface of the cylinders once the sample was
rotated beyond a critical angle, in accordance with the theory
proposed by Ciarletta and Destrade.39 While the fractures on
the lateral surface have been discussed briefly above, more
investigation is required to understand the particular fractur-
ing patterns that emerge in these compression/torsion tests.
More detail on the wrinkling and fracturing patterns we
observed is provided in the ESI.†

Based on the experimental data, delamination of a circular
surface under combined axial compression and torsion is a
process in which an initial imperfection in the adhesion
between the PDMS sample and the glass plate creates a

delamination front that propagates circumferentially and
radially inward. The sample often re-adheres to the substrate
after delamination, creating successive stick-slip waves. Fluc-
tuations in the trends of normal force and torque as a function
of the rotation angle correspond to snap-through events where
delamination progresses rapidly. The delamination process is
highly sensitive to imperfections, though application of a
normal force is shown to reduce the level of imperfection
sensitivity and make the process considerably more repeatable.
Moreover, by resisting delamination, applied compression lim-
its the radial range of delamination and eventually drives the
sample to fracture rather than delaminate the innermost part
of the surface. However, if no normal force is initially applied,
the sample delaminates across the whole interface and does
not fracture. The physical mechanisms behind these key obser-
vations are discussed through a theoretical lens below.

2. Theoretical framework

In this section, we derive a theoretical model that can explain
the experimental phenomena described in the previous section.
A key assumption that we make, to simplify the kinematic
description, is axial symmetry. Although our experimental
observations exhibit delamination patterns that start locally

Fig. 3 Torque (top) and normal force (bottom), shown as a function of the rotation angle for the three initial values of normal force (columns). The
variability between samples is caused by the imperfection sensitivity of the delamination process, and is most significant for samples with no initially-
applied normal force. Correspondence between jumps in torque and jumps in normal force is also observed, and is associated with rapid delamination
events (see ESI†). The outlier tests (SN117, SN121, and SN126) are not shown on the graphs (see ESI†). Black curves are results of the theoretical model
using material parameters m = 7 kPa, k = 0.5, and G = 53 J m�2, which corresponds to g = 0.625.
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at imperfections, and are thus not initially axially symmetric,
we find that, with applied normal force, the delamination
propagates circumferentially and stabilizes once it completes
a whole circle. Hence, axial symmetry becomes a good approxi-
mation to capture the quasistatic process, allowing us to obtain
insights on the observed phenomena.

Problem setting and kinematic assumptions

To describe the experimental system illustrated in Fig. 1, we
consider an elastic cylinder made of a hyperelastic, isotropic,
homogeneous, and incompressible material. Its undeformed
axial length is denoted by H, and it has an undeformed radius
of R0. Material points are labeled using the cylindrical coordi-
nate system, as X = X(R, Y, Z) in the undeformed state,
such that

0 r R r R0, 0 r Y o 2p, �H/2 r Z r H/2, (1)

as illustrated in Fig. 4. Upon deformation, a mapping function
x = v(X) assigns the material points to their location in the
deformed cylindrical coordinates x = x(r, y, z).

The cylinder is initially pushed against a rigid substrate
(at Z = �H/2), by application of a normal stress at the top
surface (Z = H/2), which is then rotated quasistatically to
increase the prescribed rotation angle a. Delamination is
permitted only at the bottom surface and, with the assumption
of axial symmetry, is restricted to the annular region Rd r R r
R0, where the innermost radius of the delaminated region,
Rd = Rd(a), can vary throughout the loading. Understanding
the propagation of this delamination front and its dependence
on model parameters is the central goal of this formulation.

To simplify the mathematical derivation, a set of kinematic
assumptions are made. First, we assume that horizontal planes
remain horizontal throughout the deformation. Second, we

impose axial symmetry such that the deformation field is
independent of Y. As a result of these two assumptions,
the vertical displacement uz of any point on a horizontal plane
is independent of the radial and angular coordinates (i.e.
uz = uz(Z)). We restrict our attention to small initial vertical
deformations imposed by the applied normal force, which
results in a uniform vertical stretch (lz = qz/qZ) that is held
constant throughout the torsion process. Lastly, we assume
that the cylinder preserves its cylindrical shape throughout the
deformation process, namely that radial displacements are
independent of the vertical coordinate, i.e. the radial displace-
ment function becomes ur = ur(R). This assumption neglects
any barreling effects that may occur in the initial compression,
essentially implying that the initial compression permits slid-
ing along the substrate. Additionally, wrinkling of the free
surface of the cylinder is neglected. In our experiments, such
wrinkling may emerge at large rotations, as described in the
previous section, but capturing the wrinkling process is beyond
the scope of this theory. With these kinematic assumptions, we
are left with displacement fields of the form

r = R + ur(R), y = Y + uy(R, Z), z = Z + uz(Z), (2)

where the displacement functions are defined as the difference
between the deformed (lowercase) and undeformed (uppercase)
coordinates. The deformation gradient F = qv/qX can thus be
written as

F ¼

@r

@R
0 0

@y
@R

r

R
r
@y
@Z

0 0 lz

2
6666664

3
7777775: (3)

and incompressibility implies

detF ¼ 1 ! r

R

@r

@R

� �
¼ 1

lz
: (4)

Integrating the above formula, and eliminating radial transla-
tion of the cylinder (i.e. imposing ur(0) = 0), yields the relations

@r

@R
¼ r

R
¼ 1ffiffiffiffiffi

lz
p : (5)

Substituting the above result into (3), we obtain the final form
of the deformation gradient as

F ¼ 1ffiffiffiffiffi
lz
p

1 0 0

R
@uy
@R

� �
1 R

@uy
@Z

� �
0 0 l3=2z

2
664

3
775; (6)

where the only remaining unknown field variable is the angular
displacement function uy.

Governing equations and boundary conditions

The problem at hand is concerned with a non-conservative
process, whereby torsional deformation induces delamination
and frictional sliding. All of these energetic contributions must
be considered to determine the propagation of delaminationFig. 4 Illustration of the boundary value problem.
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Rd(a). Nonetheless, if Rd and a are separately prescribed, the
deformation of the elastic body, uy(R, Z; Rd, a) and the corres-
ponding stored elastic energy Ee = Ee(Rd, a), can be derived for a
known set of boundary conditions (note the notation used in
defining uy: the variables before the semicolon are spatial
coordinates, while those after the semicolon are prescribed
system parameters). After obtaining Ee = Ee(Rd, a), we will also
consider the surface energy Ed = Ed(Rd), i.e. the energy invested
in delamination, and we will show in the next subsection that
the work done by friction can be represented as an effective
potential Ef = Ef(Rd). By combining all of these energetic
contributions, we will determine the location of the delamina-
tion front as the one that minimizes the total energy in the
system.

First, we employ the neo-Hookean model to describe the
elastic strain energy density of the material as

C ¼ m
2
ðtrðFFTÞ � 3Þ; (7)

where m is the shear modulus. Substituting (6) in (7) gives

C ¼ m
2

2

lz
þ R2

lz

@uy
@R

� �2

þ @uy
@Z

� �2
" #

þ lz2 � 3

( )
: (8)

The total elastic energy of the system, Ee, is thus given by
integration of the strain energy density over the entire volume
of the cylinder:

Ee ¼ pm
ðH=2
�H=2

ðR0

0

2

lz
þR2

lz

@uy
@R

� �2

þ @uy
@Z

� �2
" #

þ lz2� 3

( )
RdRdZ:

(9)

Next, the virtual work W done by the traction force on the top
and bottom surfaces, can be written as

Z ¼ �H
2

: W ¼ �2p
ðR0

0

tyzðuy � u0yÞR2dR; (10)

where tyz
is the generalized shear traction corresponding to

displacement uy, but is defined positive in the opposite direc-
tion. Here, without loss of generality, we assume an arbitrary
externally applied shear traction and account for pre-
deformation of the adhered surface, u0

y = u0
y(R). Though initially

u0
y = 0; if a ‘stick-slip’ event occurs, bonding of the interface can

be re-established imposing a nonzero u0
y(R). This will be

explained later in more detail in describing the boundary
conditions and solution procedure.

An additional energy contribution Ed comes from the crea-
tion of new surface area as the bottom surface of the cylinder
delaminates – this contribution can be written as

Ed = pG(R0
2 � Rd

2), (11)

where G is the interface toughness per unit area.
An equilibrium solution minimizes the potential energy U in

the system,

U = Ee + Ed � W. (12)

For a prescribed rotation angle a, the potential energy is a
functional of uy and Rd, i.e. U = U(uy, Rd; a).

Using the tools of calculus of variations, we consider
perturbations of the stationary function uy(R,Z) in the form
ũy = uy + eduy, where duy(R, Z) is an arbitrary function that must
vanish on the boundaries of the body that are subjected to a
displacement constraint, and e is a small constant. Next, we
substitute ũy into the potential energy and require that

@ ~U

@e

����
e!0

¼ 0; and
dU

dRd
¼ 0; (13)

where we have used the notation Ũ = U(ũy, Rd; a). Additionally, a
full derivative in the second equation accounts for the depen-
dence of the displacement field on the location of the delami-
nation front, which may emerge from the boundary condition
at Z = �H/2, such that uy = uy(R, Z; Rd).

By substituting (9) and (10) and performing integration by
parts, the first of the above two equations can be recast in the
following formðH=2

�H=2

ðR0

0

3
@uy
@R
þ R

@2uy
@R2

þ @
2uy

@Z2

� �� �
duyR2dRdZ

�
ðH=2
�H=2

@uy
@R

R3

� �
duy

�����
R¼R0

dZ

�
ðR0

0

@uy
@Z

R� lz
m
tyz

� �
duy

�����
Z¼�H

2

R2dR ¼ 0;

(14)

which does not depend on the interfacial energy contribution
(Ed). For the above equality to hold for an arbitrary variation
duy, each term must vanish separately. The first term gives rise
to the governing equation

@uy
@R
þ R

3

@2uy
@R2

þ @
2uy

@Z2

� �
¼ 0 for R 2 ½0;R0�; Z 2 �H

2
;
H

2

� �
:

(15)

The second integral implies that on the free boundary of the
cylinder, we have

@uy
@R
¼ 0 for R ¼ R0; Z 2 �H

2
;
H

2

� �
: (16)

The last integral corresponds to the top and bottom surfaces of
the cylinder. At Z = H/2, to enforce uniform rotation about the
axis of symmetry, the displacement is prescribed as

uy ¼ a for R 2 ½0;R0�; Z ¼ H

2
: (17)

Hence, the variation must vanish (duy = 0), and thus the
corresponding integral term vanishes. At Z = �H/2, we split
the integral to distinguish the different regions of the surface.
In the adhered region, the displacement is prescribed:

uy ¼ u0yðRÞ for R 2 ½0;Rd�; Z ¼ �H
2
; (18)

and thus the corresponding integral term vanishes.
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In the delaminated region, sliding is permitted and can be
balanced by a shear traction. The variation need not vanish in
this region and thus, to ensure that the integral term vanishes,
we enforce

tyz ¼ m
R

lz

@uy
@Z

� �
for R 2 ½Rd;R0�; Z ¼ �H

2
: (19)

The shear traction that emerges from the frictional sliding
between the substrate and the cylinder acts as an external force
on the system and needs to be prescribed to complete the
boundary value problem.

Eshelby-like force as a driver of delamination

Inspired by the work of Bigoni et al.,40,41 we now perform the
differentiation in (13)2, to obtain the configurational force
associated with propagation of delamination. Such forces are
often named after Eshelby.42,43

It is instructive to note that the derivative in (13)2 is directly
related to the ‘‘energy release rate’’, which is commonly con-
sidered in fracture mechanics. The resulting integral that
we write next is thus a specialized version of the J-integral,
for the present problem. An illuminating discussion on the
analogies between these different formulations for a 1D dela-
mination problem is found in ref. 44. Here, the derivation is
complicated by the fact that we are considering a 2D field with
combined traction and displacement boundary conditions, as
detailed next.

First, it is instructive to examine the differentiability of the
displacement function, uy(R, Z; Rd). In the bulk of the homo-
geneous cylinder, we can assume the displacement field is
smooth, namely that uy A C2. However, the transition from a
displacement boundary condition (18) to a traction boundary
condition (19) permits discontinuity in the slope of uy at (R, Z) =
(Rd, �H/2), while continuity of uy must be preserved, namely

Z ¼ �H
2

: uy½ �½ � ¼ uyðRþd Þ � uyðR�d Þ ¼ 0: (20)

Here, we have introduced the bracket notation, which will be
used in this work as a short-hand to denote the jump of a
function exclusively at (R, Z) = (Rd, �H/2).

Accordingly, we perform the differentiation in (13)2 while
using the Leibniz integral rule to account for the discontinuity
at (R, Z) = (Rd, �H/2), to write‡

ðH=2
�H=2

ðR0

0

dC
dRd

RdRdZ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

þ
ðR0

0

tyz
@uy
@Rd

� ������
Z¼�H

2

R2dR

¼ tyzðuy � u0yÞ
	 
	 


Rd
2 þ GRd:

(21)

Here, to simplify the derivation, we consider an arbitrary sur-
face traction, tyz

, at Z = �H/2 and permit a jump in its value at
(R,Z) = (Rd, �H/2). The notation (*) is introduced to denote the
first integral term that we evaluate next.

By substituting (8) in (*), performing integration by parts,
and making use of the governing eqn (15), we have

ð�Þ ¼ m
lz

ðH=2
�H=2

ðR0

0

@

@R

@uy
@R

@uy
@Rd

R3

� �
þ @

@Z

@uy
@Z

@uy
@Rd

� �
R3

� �
dRdZ:

(22)

By direct integration of the above terms, and making use of the
boundary condition (16) and the relation for the boundary
traction (19), we find that the first integral cancels and the
remaining term reads

ð�Þ ¼
ðR0

0

tyz
@uy
@Rd

����
Z¼H

2

� tyz
@uy
@Rd

����
Z¼�H

2

 !
3R2dR : (23)

Now, by substituting (23) in (21) and noticing that according to
(17), quy/qRd = 0 at Z = H/2, the derivative in (13)2 can be recast
in the form

dU

dRd
¼ 2pRd



tyzðuy � u0yÞ
	 
	 


Rd þ G
�
¼ 0: (24)

To determine the Eshelby-like force that emerges from this
analysis, we use the principle of virtual work to write a modified
potential energy in the form

Û = U � 2pRdE, (25)

where E is an Eshelby-like force, and the second term on the
right-hand-side represents the virtual work done by this con-
figurational force in propagating the delamination front along
the negative R direction. In equilibrium we require

dÛ

dRd
¼ 0 ! E ¼ 1

2p
dU

dRd
; (26)

and thus from (24) we have

E ¼ tyzðuy � u0yÞ
	 
	 


Rd
2 þ GRd ¼ 0: (27)

As seen from the above result, the Eshelby-like force is
determined from the singularity at the delamination front.42

Namely, since uy � u0
y - 0 as R - Rd the shear traction must

become unbounded (i.e. tyz
- N). From a numerical point of

view this becomes intractable and is thus avoided in this work
by directly performing the differentiation in (13)2, in analogy to
the use of the J-integral.45

Work of friction as an effective potential

The above derivation considered an arbitrary applied shear
traction, tyz

, on the top and bottom boundaries of the cylinder
(Z = �H/2). Here we specialize the formulation to the specific
boundary conditions. As a first step, we notice that the virtual
work on the displacement controlled boundaries can be
neglected. On the remaining boundary, at the limit of quasi-
static motion, we can simplify the representation of the kinetic
friction by assuming that it is constant throughout the sliding,
and proportional to the initially applied normal force N through
the constant k, such that tyz

= kN. Accordingly, (19) simplifies to
a boundary condition on the slope of the displacement field, in‡ Note that this formula has been divided by 2p for compactness.
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the form

@uy
@Z
¼ kN

mR
lz for R 2 ½Rd;R0�; Z ¼ �H

2
; (28)

and the virtual work done by friction equals the true work (10)
which can be alternatively written as

Z ¼ �H
2

: W ¼ �Ef ¼ �2pkN
ðR0

Rd

ðuy � u0yÞR2dR: (29)

Since this result is path-independent§ Ef = �W behaves as an
effective potential, in analogy to the Rayleigh dissipation
potential. We can now rewrite the potential energy in the
simplified form

U = Ee + Ed + Ef. (30)

We will use this form of the potential energy in our subsequent
derivations.

We would like to emphasize that although the present
model is limited to quasistatic motion, kinetic friction must
be accounted for here if unstable delamination ensues, and will
allow us to capture the newly established equilibrium state that
follows. This will be explained in more detail in describing the
solution procedure.

Torque and normal force

The above formulation is derived assuming a prescribed rota-
tion angle – a, and deformed height – h = lzH. Hence, the
corresponding generalized forces, i.e. the torque – T, and the
normal force – N (defined positive in compression as shown in
Fig. 1, where the compressive force F is equivalent to the
quantity N discussed in this section), do not naturally emerge
from the formulation. Nonetheless, a direct method to obtain
them at a given state (i.e. with given Rd), is by considering
perturbations of the elastic energy with respect to the corres-
ponding generalized coordinate, which translates to the partial
derivatives

T ¼ @Ee

@a
; N ¼ �@Ee

@h
¼ � 1

H

@Ee

@lz
: (31)

Though these derivatives can only be calculated a posteriori,
they will be useful for comparison with the experimental
observations.

Energy minimization

The above formulation consists of a single second order, partial
differential eqn (15) for uy = uy(R,Z), complemented by condi-
tions on the different regions of the boundary (16)–(18) and
(28). This completes our boundary value problem, but for a
prescribed location of the delamination front Rd and for a given
a. To determine Rd(a), the location of the delamination front as
rotation progresses, we must invoke the second requirement in
(13). This requirement implies that the system should choose
the location of the delamination front to minimize the total

potential energy of the system. Though the dependence on Rd is
not explicit in U and thus the differentiation cannot be done
analytically, identifying the location of the front can be
achieved numerically by considering all different candidate
values of Rd and finding the one that corresponds to the
minimal potential energy. This can alternatively be written in
the form

Rd ¼ arg min
R̂d

UðR̂dÞ: (32)

Solution procedure and snap-through events

The delamination process is not gradual. The build-up of
elastic energy in the cylinder is necessary to trigger delamina-
tion, which is then abrupt, leading to finite sliding at the
interface, before arriving at a new equilibrium state for which
kinetic friction is balanced by the elastic forces. Then, once at
rest, the adhesive bond is re-established, akin to a static
friction, and loading can proceed without immediately indu-
cing additional delamination. It is instructive to notice that this
sequence of events is analogous to a one-dimensional stick-slip
system, with the applied displacement in the one-dimensional
system representing the prescribed angular rotation of the top
surface; the deformation of the spring in the one-dimensional
system representing the torsional deformation of the cylinder;
and the resulting uniaxial motion in the one-dimensional
system representing the motion of material particles distribu-
ted throughout the surface, along circular trajectories.

In each of the steps of the deformation and delamination
process described above (i.e. as a increases), the boundary
conditions need to be adjusted accordingly in the solution
procedure:

Step I – Initial deformation: In this initial stage of the
process, no delamination has occurred. Accordingly, the
boundary value problem is solved with Rd = R0 and uy

0 = 0.
Nonetheless, at every increment of applied rotation a, solutions
with Rd r R0 are examined, employing the shear traction
boundary condition (28). Then, the minimum energy require-
ment (32) is used to determine the location of the propagation
front. If Rd = R0, the solution procedure remains in Step I;
otherwise, it transitions to Step II.

Step II – Snap-through: Once Rd = R0 no longer provides an
energetically favorable solution, a delamination front will pro-
pagate, also leading to a drop in the applied torque. Consider-
ing a quasistatic process, our model captures the new
equilibrium state that the system will choose, which results
from the minimum energy requirement (32), as calculated in
the previous step. Once the propagation stops, the adhesive
bond is re-established and the displacement at the bottom
surface is constrained to a new location, namely uy

0 is re-
assigned to uy

0(R) = uy(R, �H/2).
Step III – Secondary deformation: In this step torsional

deformation proceeds with no additional delamination. Hence,
the boundary value problem is solved with Rd = R0 and uy

0(R)
from Step II. Similar to Step I, in this stage of the process, no

§ Note that here we restrict our attention to loading, without considering
unloading.
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additional delamination occurs. Nonetheless, at every incre-
ment of applied rotation a we examine solutions with Rd r R0

and employ the shear traction boundary condition (28). The
minimum energy requirement (32) is again used to determine
the location of the propagation front. If Rd = R0 then the
solution procedure remains in Step III, otherwise it transitions
back to Step II.

All of the numerical derivations are conducted in Matlab.
The governing equation in (15) is integrated using a finite
difference scheme.

3. Results and sensitivity analysis

To study the delamination process, we employ the solution
procedure described in the previous section. Theoretical results
are found both in Fig. 3 (black curves) to compare with
experiments, and in dimensionless form in Fig. 5 and 6. In
all cases, both the torque and the normal force initially increase
monotonically with rotation a. The linear torque response is
explained by the linearity of the neo-Hookean model under
shear deformation, and the increase in the normal force is
consistent with the Poynting effect in large torsional deforma-
tions of soft solids.37,38 The sharp drops observed in the curves
indicate delamination events, which in the present framework
manifest as first-order transitions and thus exhibit a finite drop
in the applied load until a new equilibrium state is achieved by
the resistance of the frictional force.

Though we do not attempt to fit the experiments and the
model, which is limited to cylindrically-symmetric deforma-
tions and thus cannot capture the transient propagation of
delamination along the circumference, we find that a good
qualitative agreement is achieved for k = 0.5 and g = 0.625
(Fig. 3). These values compare well with reported values in the
literature. Reported friction coefficients for similar materials
are in the range46 k = 0.5–1.5. For the surface toughness, this
implies G B 53 J m�2, which agrees with recently reported
measurements.30 Note that directly measuring the surface
properties (i.e. k and G) in such soft material interfaces is
complicated by the fact that the material itself undergoes
nonlinear deformations prior to sliding or delamination.29 This

explains the spread of reported values in the literature and the
ongoing effort to develop new characterization methods.30

Within this context, the indirect estimates obtained in this
work offer an alternative approach.

Further comparing the theoretical and experimental curves
in Fig. 3, we find that the theory results in a higher normal force
compared to the experiments, which exhibit an artificial
decrease in normal force due to initial misalignment (as
explained earlier). Note that we do not attempt to compare
the theory with experiments for the case with no normal force
(i.e. N = 0 [N]) in Fig. 3, since adhesion is not well established in
this limit. Nonetheless, among the two considered values
(i.e. N = 0.5, 1 [N]), we observe minimal influence of the initial
normal force on the torque, consistent with the experiments.

Next, the constitutive sensitivities are investigated by varying
the dimensionless interface toughness g = G/mR0 and the
friction coefficient k in Fig. 5 and 6, while holding the dimen-
sions of our sample constant with R0/H = 1, and restricting our
attention to a normal compression value of N = 0.5 [N]. Snap-
through events are observed in all the curves except for g = 10.
For lower values of g and for the range of considered friction
coefficients, k, we observe that weaker interfaces (analogous to
the cases with low normal force in the experiments) exhibit a
larger number of stick-slip events.

The influence of material parameters in determining the
occurrence of snap-through events is further examined using
the phase portrait in Fig. 7. Each point on the phase portrait,
associated with a pair (k,g), corresponds to a theoretical predic-
tion for a system that has reached a = 180 degrees. The number
of delamination events within this range is then recorded using
the corresponding color. A clear trend emerges, where the
number of delamination events increases for weaker interfaces
(i.e. smaller g and k) until a high number of consecutive stick-
slip cycles take place, thus arriving at a limit where frictional
sliding and stick-slip become indistinguishable.

4. Conclusion

Soft adhesive solids are becoming ubiquitous due to their
advantages over traditional joining techniques. This renders

Fig. 5 The evolution of dimensionless torque (left) and corresponding normal force (right) with respect to rotation angle, for various values of g. Here we
use k = 0.5, R0/H = 1, and the initially applied dimensionless normal force is set to 0.5.
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the understanding of their mechanical behavior and failure
under various settings vital. Here, relevant physical phenomena
to their mechanical behavior, failure and self-healing under
combined compression-torsion loading are experimentally
investigated and reported. A minimal theoretical framework
is provided as an attempt to have a basic understanding of the
observed phenomena, and it is shown to be in qualitative
agreement with the experimental observations. There is a
breadth of opportunities to extend the theoretical model to
include fracture in the bulk, examine the response for different
constitutive models that incorporate strain stiffening, viscoe-
lasticity, and compressibility, to investigate the change in
adhesive strength from one delamination to the next, and to
expand the framework to capture the role of inertia or non-rigid
substrates. In addition, the experiments could be broadened to
test a greater range of radius-to-height aspect ratios and
different PDMS base:cross-linker ratios, to determine how
changes in the geometric and material parameters may affect

the properties of the adhesive bond and the delamination
phenomena discussed above.
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