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Guided principal component analysis (GPCA):
a simple method for improving detection of a
known analyte†

Benjamin Gardner, a Jennifer Haskell, a Pavel Matousek *b and
Nicholas Stone *a

There is increasing interest in the application of Raman spectroscopy in a medical setting, ranging from

supporting real-time clinical decisions e.g. surgical margins to assisting pathologists with disease classifi-

cation. However, there remain a number of barriers for adoption in the medical setting due to the

increased complexity of probing highly heterogeneous, dynamic biological materials. This inherent chal-

lenge can also limit the deployment of higher level analytical approaches such as Artificial Intelligence (AI)

including convolutional neural networks (CNN), as there is a lack of a ground truth required for training

purposes i.e. in complex clinical samples. Principal component analysis (PCA) is an unsupervised data

reduction approach (orthogonal linear transformation) that has been used extensively in spectroscopy for

30+ years, due to its capability to simplify analysis of complex spectroscopic data. However, due to PCA

being unsupervised features will inherently appear mixed and their rank may vary between experiments.

Here we propose Guided PCA (GPCA), a simple approach that allows PCA to be guided with spectral data

to ensure a consistent rank of a key target moiety by the inclusion of a reference (guiding) spectrum to

the data set. This simplifies analysis, increases robustness of PCA analysis and improves quantification and

the limits of detection and decreases RMSE.

Introduction

The Deep Raman Spectroscopy (DRS) methods such as
Spatially Offset Raman Spectroscopy (SORS) and Transmission
Raman Spectroscopy (TRS), provide simple approaches to
deeply probe the chemistry of scattering samples, which is
inherently non-invasive and non-destructive.1–4 Through a sep-
aration of illumination and collection zones on a sample, one
can control the relative distributions of collected signal, from
one that would ordinarily be surface dominated, to a distri-
bution between surface and the signal at depth which is con-
trolled by the separation distance used,5 or in the extreme with
TRS, a whole volume between the collection and illumination
zones can be probed. Due to the inherent biocompatibility of
DRS i.e. non-ionising radiation, and complementarity of the
information recovered, it can potentially complement existing
approaches, such as mammography or ultrasound. When

“contrast agents” such as gold surface enhanced Raman nano-
particles are used, they may also be potentially imaged using
conventional whole body imaging such as CT/MRI.6,7 DRS is
rapidly being developed for a number of potential in vivo appli-
cations.8 However, for true clinical translation a number of
barriers remain, including how the data is processed and ana-
lysed to optimally extract the disease specific signals and maxi-
mise sensitivity to disease, thus permitting disease diagnosis
or monitoring.

Deep Raman approaches result in inherently more complex
signals being retrieved than a linear combination of the com-
ponent spectra, such as those found in reference databases9,10

of pure spectra or from a 2D surface limited maps. A number
of factors make absolute quantification remarkably challen-
ging at depth with Raman spectroscopy. For example, analyte
intensity of signal and crucially also its spectral profile can
strongly vary due to several reasons, analyte location (depth or
boundary proximity), distribution pattern, total sample size
and shape as well as analyte concentration, sample heterogen-
eity, differential optical properties and fluorescence amongst
others. Due to these complications the dominating variance
observed relates to the optical properties of the matrix sur-
rounding an analyte11 and can often mean the signal of the
analyte is complex to recover and quantify in a robust auto-
mated fashion.
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Recent years has seen rapid expansion of algorithms avail-
able to analyse, quantify and classify spectral data (i.e. Raman
and infrared spectra) under the expansive umbrella of AI and
machine learning. These range from simple unsupervised
approaches such as dimensionality reduction tools such as
Principal Component analysis (PCA),12,13 or clustering tech-
niques i.e. K-means.14–17 Supervised techniques routinely used
include support vector machine (SVM), Random forest,18

K-nearest neighbour (K-NN).19 While more recently the cutting
edge is represented by using Artificial neural networks
(ANN),9,19 such as deep convolutional neural networks, which
have shown to produce a modest improvement of classification
compared to other listed supervised approaches.9

Moreover, in deep Raman especially in real world appli-
cations, there is often a lack of spectra that could be used for
training purposes e.g. analyte free control measurements.
Often the spectrum is simultaneously dominated by the matrix
chemistry and more significantly here the influence of its
optical properties, which can limit the application of simple
linear algorithms. A number of papers have demonstrated
“relative” quantification is achievable at depth with Raman
spectroscopy,20–26 however, these works usually carefully
control a number of parameters. As an example, in PCA, as the
concentration of an analyte decreases it will appear gradually
in lower rank eigenvectors as the variance it contributes to
decreases. This means a single consistent principal com-
ponent (PC) could not be used directly for analysis purposes,
and it could be easy to over fit data, by including several PCs
to resolve this effect. Here we demonstrate a novel approach,
whereby in the unsupervised approach of PCA, a known pure

spectrum of the analyte of interest is introduced to the analysis
with the rest of the data guided PCA (GPCA). This enables a
dramatic simplification of the analysis and sensitivity of
analyte detection.

Materials & methods

All Transmission Raman measurements were carried out on
an instrument similar to that described previously20,27 and
schematically represented in Fig. 1A. In summary, an 808 nm
solid state laser (Innovative Photonic Solutions, Monmouth
Junction, NJ, USA) was coupled to illumination optics via an
optical fibre. A single 808 nm laser clean up filter (LL01-808-
25, Semrock, Rochester, New York, USA) filtered the laser
output prior to the beam being defocused to a ∼10–12 mm
diameter beam on the sample surface. The sample stage plat-
form consisted of a fused quartz window (2 mm thickness),
which was held on a motorized stage (8MTF, Standa), provid-
ing full XY positioning control with a range of 102 mm in both
directions. The Raman signal detected in transmission geome-
try was filtered by a single 808 nm edge (long pass) filter
(BLP01-808R Semrock, Rochester, New York, US) placed prior
to the collection lens (to reduce silica auto fluorescence from
the optics). The collected light was coupled to a fibre bundle
using a 50 mm diameter, 60 mm focal length lens. The bundle
(Ceramoptec) had a circular array of fibres at the collection
end and a linear array of fibres coupled into a Holospec 1.8i
(Kaiser Optical Systems, Ann Arbor, Michigan, USA). The
spectrometer contained a custom high dispersion grating

Fig. 1 (A) Schematic diagram of Transmission Raman optical beam path through ∼25–30 mm of tissue. (B) Images of porcine tissue (i–iv), covered
sample and approximate raster pattern displayed (i) while uncovered samples and HAP deposits visible (ii–iv). (C) Average Raman spectra, red line
with standard deviation (± shading), of 11 TRS maps containing 0 mg to 50 mg HAP, blue spectrum of HAP and dashed line indicates main Raman
band (ν1 PO4) at 960 cm−1.
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(Kaiser Optical Systems) providing a spectral range of
∼600–1200 cm−1 and a 1 mm slit with an effective spectral
resolution of ∼15 cm−1. The spectrometer was coupled to a
deep depletion CCD detector (Andor BR-DD iDus 420) cooled
to −70 °C to record the Raman spectra.

Porcine tissue was obtained from a local supermarket
(bacon slices) and cut into approximate squares ∼7 × 7 cm2,
and stacked to a range of total thicknesses of 22–30 mm. This
tissue was first measured in the absence of any target analyte
(inclusion). Calcium hydroxyapatite (HAP) (Sigma Aldrich) was
then added directly in the approximate centre of the porcine
tissue (in all dimensions, (x,y,z)) in increments of ∼5 mg over
a range of 0–50 mg total (Fig. 1B) yielding 11 concentration
points. Further, gelatin based breast tissue phantoms were
also produced, which consisted of 5% gelatin (Sigma Aldrich)
and 0.4% intralipid (Sigma Aldrich). Gelatin was added to dis-
tilled water and mixed under constant stirring and heating
∼50 °C for 10 minutes. Once dissolved the solution was cooled
to approximately room temperature before intralipid was
added and carefully mixed in. The solution was then left to set
in a breast shaped mould with maximum dimensions (x,y,z) of
140 × 80 × 60 mm at 4 °C for ∼2 hours.

For Raman measurements of porcine samples, a laser
power of 2 W was used, delivering a power density at the
sample surface of ∼17 mW mm−2. Porcine TRS mapping

experiments were gathered from multiple spatial points across
the sample, under the following conditions. Each experiment
consisted of 11 Raman maps (Fig. 1C), where for each map the
samples were rastered through the laser beam/collection path
in a snake pattern with step size 2–3 mm. At each spatial
location a TRS spectrum was acquired for 3 s (0.1 s × 30
accumulations). The entire experiment was carried out in
triplicate i.e. 33 Raman maps in total.

Gelatin-intralipid breast phantoms were measured in a
similar way; with a laser power of 4.5 W, delivering ∼39 mW
mm−2 and a step size of 3 mm was used, and total acquisition
time was 3 s (0.5 s × 6).

Each Raman map was processed independently in Matlab
2017a following pre-processing outlined as follows. Firstly, a
median filter was applied to the data to remove the presence
of cosmic rays, the accumulated spectra collected at each
spatial location were then averaged to leave one mean spec-
trum per spatial location. A linear baseline was then sub-
tracted from the data prior to standard normal variate (SNV)
normalisation, and rescaling to 0–1.

Initially standard PCA approaches were used to explore the
variance in the datasets acquired to elucidate the impact of the
matrix on the analyte signals. This was followed by the novel
approach of GPCA, whereby the known target spectrum was
additionally included in the input data matrix.

Fig. 2 Conventional PCA. (A) PCA loadings plots of the first 4 components showing 11 results in each plot, covering each map collected from the
samples containing 0 to 50 mg of HAP in increments of 5 mg. (B) Score plot of PC2 from the map with 50 mg HAP inclusion, HAP signal circled Red,
distortion artefact circled white, intensity of the score value indicated by colour bar. (C) PC2 score values plotted for each of the 11 maps against
each arbitrary spatial location (map data point), displayed as list in one dimension, with 0 mg HAP (blue), 50 mg HAP (red), all other HAP values
(grey).
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All principal component analysis (PCA) was undertaken in
Matlab using built in functions utilising singular value
decomposition with mean centring. For data where the GPCA
process was used, the target spectrum of HAP was averaged,
baseline corrected using a linear baseline and rescaled to
[0–1], to match the data range of original input data. Data
from each map was treated independently during analysis. It
was only combined for illustrative purposes. All PCA data pre-
sented throughout is used from independent maps and not
combinations of. For enhanced 2D visualisation of PC score
maps (Fig. 2B & 3C), interpolation of data points with a spline
function was carried out to 0.1 mm step.

Results and discussion

As is demonstrated in Fig. 1C, when only a small fraction of
spectra contain a weak chemical feature of interest, this infor-
mation can be lost in the averaging of the mixing of the inelas-
tically scattered photons, making up the spectra from the full
sample volume, thus making it challenging to detect and fur-
thermore to accurately quantify an analyte. This can be even
more challenging, when a ground truth is lacking i.e. zero

control, a common likelihood in numerous real world
applications.

Typically, PCA is used to simplify complex data sets where
spectra are transformed into scores and loadings of decreasing
importance. However, PCA is typically an unsupervised or
unguided process, therefore as the analyte concentration or
signal changes, so does its importance and ranking in
Eigenvector space as is shown in Fig. 2A and S1.† Fig. 2A and
S1† show overlaid loadings calculated independently using
conventional PCA for 11 experiments, where the concentration
of the analyte incrementally increases from 0 to 50 mg in
∼5 mg intervals. The presence of major features change in
amplitude, sign (i.e. ±) as well as emergence point, i.e. low con-
centrations appear later in lower rank PCs while high concen-
trations appear sooner in higher rank PCs, with increasing
inclusion concentration. Moreover, signals of interest, such as
the ν1 PO4 mode of HAP at 960 cm−1, are mixed with other
interfering spectral features originating from the surrounding
matrix that are of no interest; or worse are due to complexities
such as differential self-absorption by the matrix distorting
Raman spectral profiles.11 The mixing of features can also lead
to uncertainty of analyte location (Fig. 2B), even at the highest
concentration of HAP (50 mg), while signal attributed to HAP

Fig. 3 GPCA. (A) An example of TRS Raman data (grey) with the addition of the guided spectrum of an inclusion of pure HAP signal (red) on the
same intensity scale. (B) Guided PC1 loadings plot of 11 TRS Raman maps with HAP ranging from 0 mg to 50 mg when data guided by the inclusion
of scaled pure spectrum of HAP. (C) GPC1 scores organised in a 2D array to demonstrate special location of HAP for 50 mg inclusion, data interp-
olated to improve image for visualisation. Note that the PC1 loadings and scores are inverted when compared with PC2 plotted in unguided PCA
data (Fig. 2). (D) GPCA scores plotted vs. location number for all 11 experiments, demonstrating increasing magnitude of scores for increasing HAP
concentration.
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is clearly visible (circled red) there are still distortion artefacts
outside of this region circled white, which could be mistaken
for HAP. The scores data of PC2 is also presented for 11 maps
of increasing HAP concentration against arbitrary location
(Fig. 2C), to better demonstrate expected changes with concen-
tration and unconnected co-localised variance.

The concept of GPCA centres around introducing a known,
pure analyte spectrum (guiding spectrum) numerically to the
matrix data set, i.e. in this case transmission Raman mapping
data (target matrix) (Fig. 3A) prior to PCA transformation.
Following the introduction of the target spectrum (GPCA) the
loading of PC1 is now clearly dominated by the target analyte
(Fig. 3A), that provides a consistent relationship between HAP
concentration and non-specific matrix variance. Moreover, a
clearer scores 2D visualisation (Fig. 3C) is achieved and the
scores visualisation no longer contains co-localised data that is
not related to HAP, as was seen in the non-guided results
(Fig. 2B).

The final advantage of this approach is seen in Fig. 3D,
while previously the HAP concentration relationship was
spread over multiple PCs (Fig. 2A and S1†), now a clear
relationship is observed at relevant spatial locations in PC1
from 0 mg HAP to 50 mg (blue and red respectively). Further,
to test whether any unrelated analyte could be introduced, we
used a control demonstration, by including a guiding target

spectrum of PTFE, that is not contained in the matrix or
analyte that was used, see Fig. S2A & S2B.† While the loadings
of the guided spectra dominate (S2A) as would be expected,
the scores share no relationship with true chemical target, and
becomes comparable to PC1 of unguided, conventional PCA.

A simple way to objectively evaluate the score data of each
map with increasing concentration is through the dynamic
range of the score value (Fig. 4A & C). This shows a correlation
with increasing concentration and an R2 ranging from 0.5–0.93
with conventional PCA, while GPCA shows a significantly more
consistent performance 0.9–0.99. This is further reflected in
its better prediction model performance (linear regression),
while the limit of detection is 14.8 mg, this is reduced to
6.8 mg when GPCA is used, and an approximate halving of the
RMSE from 4.2 to 2.02.

Finally, to demonstrate the versatility of the GPCA, a
different type of phantom was used. This new phantom is of
approximate breast size and shape that was constructed from
gelatin and intralipid and contained three distinct deposits of
HAP (Fig. 5A). The phantom is viewed from anterior to medial
with respect to transmission geometry. While this is not a geo-
metry whole breasts would be scanned in vivo (superior to
inferior), it serves an illustration of the sampling capabilities
of the technique. Previously, in porcine samples the z geome-
try i.e. thickness was approximately uniform and consistent

Fig. 4 (A) Conventional PC2 score range versus HAP concentration (mg) for three experiments (red circles, purple squares, pink diamonds). (B)
Average HAP amount (mg) versus predicted HAP amount red circles (conventional PCR), pink line indicates limit of detection. (C) GPC1 score range
versus HAP concentration (mg) for the same three experimental data sets used in (A) red circles, purple squares, pink diamonds. (D) Average HAP
amount (mg) versus predicted HAP (guided PCA) amount red circles, pink line indicates overall limit of detection.

Analyst Paper

This journal is © The Royal Society of Chemistry 2024 Analyst, 2024, 149, 205–211 | 209

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
/2

02
5 

6:
41

:5
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3an00820g


Fig. 5 (A) (i) image of the whole gelatin/IL breast phantom, (ii) cross section of phantom showing three HAP inclusion positions. 2D scores plots
from conventional PCA of PC1 (B), and PC3 (C) and PC1 using GPCA (D).
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between experiments, while this phantom has clear changes in
thickness over any given mapped area. This has been demon-
strated previously,11 can introduce artefacts and complexity
into the resulting signals due to differential self-attenuation of
the Raman signal. Conventional PCA scores plots of the trans-
mission Raman map (Fig. 5B & C) (PC1 and PC3) respectively,
struggle to clearly separate HAP from other spectral features,
as was observed in porcine samples i.e. Fig. 2B. However,
GPCA (Fig. 5D) clearly enhances identification of the regions
of interest that contain HAP. Demonstrating, that this
approach is not confined to specific samples/signals and
complexities.

Conclusions

GPCA provides a simple, yet effective method, where provided
a reference spectrum of the target analyte is known, its fea-
tures can be promoted to a consistently higher-ranking princi-
pal component, described as a pure target analyte loading,
enabling increased robustness with higher accuracy of quanti-
fication and improved LOD in complex matrixes. The method
also avoids overfitting of data. This has the strong potential to
impact on early disease diagnosis such as Raman detection of
deep sited cancer lesions, thus improving the outcomes.
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