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Nanozymes, a distinctive class of nanomaterials endowed with enzyme-like activity and kinetics akin to

enzyme-catalysed reactions, present several advantages over natural enzymes, including cost-effective-

ness, heightened stability, and adjustable activity. However, the conventional trial-and-error methodology

for developing novel nanozymes encounters growing challenges as research progresses. The advent of

artificial intelligence (AI), particularly machine learning (ML), has ushered in innovative design approaches

for researchers in this domain. This review delves into the burgeoning role of ML in nanozyme research,

elucidating the advancements achieved through ML applications. The review explores successful

instances of ML in nanozyme design and implementation, providing a comprehensive overview of the

evolving landscape. A roadmap for ML-assisted nanozyme research is outlined, offering a universal guide-

line for research in this field. In the end, the review concludes with an analysis of challenges encountered

and anticipates future directions for ML in nanozyme research. The synthesis of knowledge in this review

aims to foster a cross-disciplinary study, propelling the revolutionary field forward.

1. Introduction

Nanozymes are a class of nanomaterials that exhibit enzyme-
like activity and conform to the enzymatic reaction kinetics.1

Unlike natural enzymes, nanozymes possess unique physico-
chemical properties inherent to nanomaterials due to their
distinctive nanoscale structures and have the ability to catalyze
substrate reactions similar to those of enzymes in nature. The
catalytic activity of nanozymes can be optimized by tuning
their composition and structure.2 In addition, the unique mul-
tienzyme-like activity of nanozymes provides the possibility of
designing inexpensive, stable, and a wide variety of new cata-
lytic cascade reactions.3 This convergence has yielded nano-
zymes with exceptional stability, cost-effectiveness, and adjus-
table catalytic activity, positioning them as promising substi-
tutes for natural enzymes.4 Since the seminal discovery in
2007 by Yan’s group, showcasing the peroxidase (POD)-like
activity of ferromagnetic Fe3O4 nanoparticles,5 the scientific
community has been captivated by the potential of nano-
zymes. To date, over 70 countries and 400 research institutions
have dedicated their efforts to the development and appli-
cation of nanozymes.6 The versatile applications of nanozymes
span a multitude of fields, including biomedicine,7–9 analysis
and sensing,10–12 and environmental management.13–15

The diversity in the materials used for nanozymes, ranging
from metal oxide nanoparticles16 and metal nanoparticles17 to
intricate single-atom X–N–C mimetic architectures18 and bio-
molecular assemblies,19,20 underscores the rapid expansion in
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both the quantity and variety of enzyme-like species.
Nanozymes, mimicking oxidoreductases,21 hydrolases,22

lyases,23 and isomerases,24 exhibit a remarkable diversity that
transcends traditional enzyme functionalities. This diversity has
paved the way for the realization of artificial enzymes that
surpass their natural counterparts.25–27 However, as nanozyme
research advances, the conventional trial-and-error approach to
discovering novel high-performance nanozymes is becoming
increasingly challenging. The intricate design of high-perform-
ance nanozymes necessitates consideration not only of the
physicochemical properties of the materials themselves, but
also of the intricate interplay between these materials and their
environments. Nanozymes operating in complex environments
face the presence of various chemicals that may compete for
binding to the active sites, potentially diminishing the catalytic
efficiency. To grapple with the escalating complexity in the
design and application of nanozymes, researchers are turning
their attention to innovative research methodologies, moving
beyond traditional approaches to explore new paradigms.

Machine learning (ML), as a powerful tool for statistical
data analysis, utilizes algorithms to analyse and learn from
data in order to discover patterns and regularities within the
data.28 Through these processes, ML algorithms can continu-
ously optimize and improve as new data are introduced,
enabling computers to learn from experience and make
decisions or predictions based on the learned content.29 In the
realm of materials science, ML has proven highly effective,
playing a pivotal role in guiding materials synthesis,30 facilitat-
ing materials characterization,31 predicting materials pro-
perties,32 and elucidating intricate structure–activity relation-
ships.33 Notably, ML, as a potent tool for statistical data ana-
lysis, has recently found its stride in the field of nanozyme
research. This has opened up new avenues for tackling chal-
lenges related to nanozyme design, performance analysis, and
the promotion of applications.34,35

This review is dedicated to an in-depth examination of the
multifaceted roles that ML plays in the design and application of
nanozymes, offering insights into recent findings in related
domains (Fig. 1). Initially, the review delves into the ways in
which ML contributes to the rational design of nanozymes.
Subsequently, it encapsulates diverse application areas where ML
is applied to nanozyme design and delineates a structured
roadmap for leveraging ML in the design of high-performance
nanozymes. The concluding sections of the review address
current challenges and illuminate future trends in the appli-
cation of ML to nanozymes. This comprehensive review not only
consolidates the current research landscape in the ML–nanozyme
intersection, but also introduces statistical analysis methods uti-
lizing ML. The aim is to catalyse interdisciplinary collaborations,
fostering further advancements in this revolutionary field.

2. ML-assisted design of nanozymes

To date, the evolution of nanozyme research has traversed four
paradigmatic stages: scientific experimentation, theoretical

science, computational science, and the current era of big data
science.36 The scope of nanozyme research has expanded sig-
nificantly, marked by the increasing scale of material systems.
Notably, the exploration of unknown nanozyme activities in
existing materials, surface modification and doping of estab-
lished nanozymes,37 and the construction of composite-based
nanozymes have long constituted the primary focus of nano-
zyme design.38 However, efficiently designing nanozymes has
emerged as a crucial and formidable challenge amidst the esca-
lating complexity of nanozyme applications.39 The diminishing
cost of computational resources, the enhancement of material
databases, and the rapid strides in artificial intelligence (AI)
offer a ray of hope for streamlining the design of nanozymes.
This section will unfold on four dimensions of ML-guided
nanozyme research, encompassing guiding the synthesis of
nanozymes, predicting nanozyme activity, deciphering the struc-
ture–activity relationships of nanozymes, and navigating the
search for optimal nanozyme catalytic reaction pathways.

2.1 ML-guided synthesis of nanozymes

In the course of nanozyme synthesis, adjustments to synthesis
conditions can profoundly influence the nanozyme structure,
consequently impacting its performance. Harnessing the
power of ML, optimal experimental conditions can be dis-
cerned through the analysis of performance data collected
from nanozymes synthesized under varying conditions. For
example, Ge et al. constructed highly stable violet phosphorene
decorated with phosphorus-doped hierarchically porous

Fig. 1 Research achievements of the combination of ML and nano-
zymes in recent years. Reprinted with permission from ref. 40. Copyright
2023 Elsevier. Reprinted with permission from ref. 42. Copyright 2022
Wiley-VCH GmbH. Reprinted with permission from ref. 46. Copyright
2023 Wiley-VCH GmbH. Reprinted with permission from ref. 44.
Copyright 2022 American Chemical Society. Reprinted with permission
from ref. 51. Copyright 2021 American Chemical Society.
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carbon microspheres (VP-PCMs) based on ML-guided experi-
mental data.40 The current values generated by VP-PCMs
under different concentrations of violet phosphorene (VP) and
porous carbon microspheres (PCMs) were collected for meco-
nium phenolic acid (MPA) detection. Employing this data, a
random forest (RF) model was developed to predict the
optimal concentration of VP and PCM during VP-PCM syn-
thesis. The model utilized the concentrations of VP and PCM
as inputs and current values as outputs, yielding optimal con-
centrations of 0.2 mg mL−1 for VP and 1.4 mg mL−1 for PCM.
This optimized VP-PCM nanozyme design demonstrated
superior affinity for MPA, achieving Michaelis constant (Km) =
12.4 μM. This ML-driven methodology, utilizing synthesis con-
ditions as input and assay excellence as output, can be
extended to diverse synthesis procedures with different
material systems. Such an approach holds immense potential
for the precise and efficient synthesis of nanozymes, thereby
offering valuable guidance in the field.

2.2 Prediction of nanozyme activity

The prediction of nanozyme activity stands as a pivotal and
foremost research focus in the application of ML to nanozyme
design. The establishment of an accurate prediction model
holds the key to foreseeing potential enzyme-like activities in
designed nanozymes, allowing for informed predictions based
on the model.

2.2.1 Prediction of kinetic parameters of the Michaelis–
Menten equation. The Michaelis–Menten equation, a kinetic
equation depicting the initial rate of enzymatic reactions in
natural enzymes concerning substrate concentration, is a fun-
damental tool in enzyme kinetics (Fig. 2A). Remarkably, akin
to natural enzymes, the catalytic kinetic curves of nanozymes
align with the principles of the Michaelis–Menten equation.
Leveraging ML, predictive models can be employed to estimate
the kinetic parameters integral to the Michaelis–Menten
equation. These parameters include the maximum reaction
rate (Vmax), the Michaelis constant (Km), and the turnover
number (Kcat), all of which serve as crucial indicators of the
catalytic activity of nanozymes.

Razlivina et al. conducted an extensive data collection effort
from over 100 published papers, culminating in the establish-
ment of a nanozyme database (Dizyme).41 This database com-
prehensively incorporates various parameters, including com-
ponent properties (e.g., electronegativity, electron affinity, oxi-
dation state, and ionic radius), material characterization (e.g.,
surface charge, stability, surface adsorption, and surface area),
and reaction conditions (e.g., pH, temperature, substrate type,
nanozyme concentration, substrate concentration). Employing
the random forest regression (RFR) model, they achieved
highly accurate predictions of nanozyme kinetic activity. For
lg Kcat and lg Km, the coefficients (R2) of determination reached
0.52 and 0.80, respectively. Wei et al. gathered activity data
from over 300 papers and identified eight endogenous factors
and three exogenous factors influencing nanozyme activity.42

Utilizing these factors as variables, they constructed fully con-
nected deep neural network (DNN) models to predict various

nanozyme types (POD-, OXD-, CAT-, SOD-like activities) and
nanozyme activities (Km, Vmax, Kcat, Kcat/Km, and IC50) (Fig. 2B–
D). For predicting the activity levels of POD- and OXD-like
nanozymes, the R2 values reached 0.66 and 0.80, demonstrat-
ing robust performance. Furthermore, Vinogradov et al.
expanded the data in Dizyme to 1210 samples, incorporating
additional descriptors such as molecular weight, topological
and electronic coating descriptors, synthesis details, and assay
conditions.43 Employing a stacked integrated learning
approach, which combines multiple ML models, they ulti-
mately selected a linear regression model as the meta-model to
predict POD-, OXD-, and CAT-like activities of nanozymes
(Fig. 2E).

It is noteworthy that while predicting the kinetic para-
meters in the Michaelis–Menten equation can enhance the
accuracy of determining nanozyme activity, the experimental
determination of these kinetic parameters remains a prerequi-
site. Predicting the activity of numerous yet undiscovered
materials with enzyme-like characteristics is challenging given

Fig. 2 Prediction of kinetic parameters in the Michaelis–Menten
equations. (A) Michaelis–Menten equations. (B) The workflow for
classification and quantitative prediction of enzyme-like activity of
nanomaterials using ML. (C) Schematic diagram of fully connected
DNN-based models. (D) Heatmap images of prediction accuracies for 13
DNN-based quantitative model based on R2. Each box represents one
model built from a certain dataset, estimated by R2. Reprinted with per-
mission from ref. 42. Copyright 2022 Wiley-VCH GmbH. (E) Stacking
ensemble algorithm scheme for triple-catalytic (POD-, OXD-, and CAT-
like) activity prediction. Reprinted with permission from ref. 43.
Copyright 2023 Research Square.
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this experimental dependency. Consequently, the method of
characterizing nanozyme activity by predicting the kinetic
parameters of the Michaelis–Menten equation, which sub-
sequently informs nanozyme design, is significantly con-
strained by the size of the available nanozyme databases.

2.2.2 Prediction of energy changes during the catalytic
process. Various energy changes, including reaction Gibbs free
energy, activation energy, and adsorption energy, manifest
during the catalytic process of nanozymes. These energy
changes serve as descriptors for nanozyme activity, offering
insights into the pace of chemical reactions. To address the
challenge of numerous nanomaterials with undiscovered
enzyme-like activities, researchers can employ first-principles
calculations, such as density-functional theory (DFT), and
leverage the high computing power of computers to efficiently
obtain the energy changes of nanozyme catalytic reactions in
high-throughput. By integrating this data with ML techniques
and material databases, the prediction of energy changes
during the catalytic process for unknown enzyme-like active
materials in a broader chemical space becomes feasible and
thus facilitates the screening of highly active nanozymes.

Zhang et al. identified transition metal thiophosphates
(MxPySz; x = 1–7, y = 1–4, z = 1–29), characterized by mixed
valence states formed by different bonding states, as potential
candidates for SOD-like nanozymes.44 Employing DFT calcu-
lations, they obtained the Gibbs free energies of the first three
steps of the catalytic reaction for these materials. Utilizing
seven parameters (e.g., electronegativity, dopant atom radius,
dopant atom position, dopant atom concentration, and band
gap) as input data, and ΔG of the first three steps of the SOD-
like catalytic reaction as output data, they predicted the
changes in the Gibbs free energy for the SOD-like catalytic
reaction using an RF model. This approach led to the identifi-
cation of a new highly active SOD-like nanozyme, MnPS3
(Fig. 3A). Yu et al. explored 14 different nonmetallic atoms
doped into graphdiyne (GDY) as potential materials, calculat-
ing the Gibbs free energy of the catalytic reaction for different
materials using DFT.45 With input data including electro-
negativity, dopant atom radius, dopant atom position, dopant
atom concentration, and band gap, and output data represent-
ing the maximum energy-consuming step and maximum
energy barrier of the POD-like catalysed reaction, they
employed the extreme gradient boosting (XGB) algorithm to
screen highly active POD-like nanozymes. This led to the
identification of boron-doped GDY (B-GDY) and nitrogen-
doped GDY (N-GDY) as highly active POD-like nanozymes
(Fig. 3B). Gao et al. utilized the extreme gradient boosting
regression (XGBR) algorithm with 11 basic atomic features,
including electronegativity and electron affinity energy, as
input data for predicting Eads,OH and Eads,H.

46 They screened
60 nanozymes with high POD- and CAT-like activities from the
computational 2D materials database (C2DB). The predictions
were found to be consistent with DFT calculations (Fig. 3C).
These studies highlight that ML algorithms for predicting and
screening nanozymes can significantly reduce the time
required compared to exclusive DFT calculations.

The prediction of energy changes during nanozyme cata-
lysed reactions relies on first-principles calculations. By calcu-
lating the energy changes during nanozyme catalysed reactions
for a large number of nanomaterials with similar or identical
structures and integrating the results obtained from these cal-
culations with ML models, it becomes feasible to predict the
enzyme-like activity of a specific material. Experimental deter-
mination of the kinetic parameters of the Michaelis–Menten
equation is susceptible to errors due to various factors, such as
the lack of standardized procedures. In contrast, compu-
tational predications of energy changes during nanozyme cata-
lysis typically utilize uniform theoretical models and compu-
tational programs, reducing the variability associated with
experimental procedures and enhancing the reproducibility
and comparability of the calculated data. However, the accu-
racy of computational models strongly relies on the realism of
the assumptions and parameter settings of the models, which
may not fully capture all the complex interactions and environ-
mental conditions under different experimental settings.
Therefore, experimental data provide measured data of the
actual reaction process, while computational data offer theore-

Fig. 3 Screening high activity nanozymes by predicting energy change.
(A) The workflow of ML-assisted screening and prediction of nano-
zymes. Reprinted with permission from ref. 44. Copyright 2022
American Chemical Society. (B) Prediction of the reaction maximum
energy barrier and the energy consuming step using ML models.
Reprinted with permission from ref. 45. Copyright 2022 American
Chemical Society. (C) Computational screening of POD- and CAT-like
nanozymes with the corresponding adsorption energy criteria and the
more stringent criteria. Reprinted with permission from ref. 46.
Copyright 2023 Wiley-VCH GmbH.
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tical predictions and support for analysis. More and more
scientists combine both approaches to gain a more compre-
hensive understanding of the kinetic behaviour of nanozymes.
Therefore, predicting energy changes during nanozyme cata-
lysed reactions holds greater promise for accurately designing
new highly active nanozymes.

2.3 Understanding the structure–activity relationships of
nanozymes

ML excels in uncovering implicit relationships between the
structure and activity of materials within a multidimensional
space, providing insights into the structure–activity relation-
ships of materials. An indispensable element of interpretable
ML models is the feature importance analysis, which allows
for the measurement of the specific contribution of each input
feature to the predicted results of the models, facilitating an
understanding and explanation of the ML model.

Wei et al. employed SHapley Additive exPlanations (SHAP)
to assess the importance of features in the collected data
(Fig. 4A) during the development of their ML model for pre-
dicting the type and activity of nanozymes.42 By examining the
magnitude of SHAP values, the influence of each feature on
the type of nanozyme activity was gauged. Notably, metal type,

metal proportion, and metal valence emerged as the top three
internal factors influencing the type of nanozyme activity
(Fig. 4B). These findings underscore the pivotal role of adjust-
ing the metal composition in nanozymes for their rational
design. Furthermore, through SHAP analysis, the study
revealed that altering the type of metallic elements holds
greater significance than changing the type of nonmetallic
elements in modulating the type of nanozyme activity.

In the development of ML models for predicting 2D
materials’ Eads,OH and Eads,H, Gao et al. gathered 66 features
for 1019 materials, resulting in two 1019 × 66 feature matrices
(Fig. 4C).46 They utilized the XGBoost regression (XGBR) algor-
ithm for feature selection, optimizing the number of features.
Subsequently, SHAP was employed for feature importance ana-
lysis, revealing the underlying physical laws within the ML
model (Fig. 4D). Notably, average electronegativity (χM,avg)
proved to be the most significant for Eads,OH, while the average
electron affinity of non-metallic elements (Ea,NM,avg) had the
greatest impact on Eads,H (Fig. 4E and F). The study also
unveiled the substantial influence of the electronegativity or
first ionization energy of metallic elements on electron trans-
fer capacity, influencing the OH adsorption energy. The non-
concentrated distribution of SHAP values indicates a lack of a

Fig. 4 Understanding the structure–activity relationship of nanozymes through model interpretability. (A) SHAP analysis of the sensitivity of
different factors in the classification model. (B) SHAP sensitive analysis of the independent variables in the POD- and OXD-like quantitative models.
Reprinted with permission from ref. 42. Copyright 2022 Wiley-VCH GmbH. (C) Feature engineering to select the most important features of adsorp-
tion energies. (D) SHAP sensitive analysis of the independent features in the ML models. (E and F) Selected features for hydroxyl (Eads,OH) and hydro-
gen (Eads,H) adsorption energies with corresponding importance scores. Reprinted with permission from ref. 46. Copyright 2023 Wiley-VCH GmbH.
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simple linear relationship between characteristics and adsorp-
tion energy. This comprehensive analysis not only enhances
the understanding of the relationship between composition
and nanozyme activity, but also holds crucial guiding signifi-
cance for the rational design of nanozymes.

Examining the interplay between atomic and electronic
structures and the catalytic properties of nanozymes at the
microscopic level is a crucial step in designing high-perform-
ance nanozymes. However, elucidating the structure–activity
relationships of nanozymes through empirical means poses
significant challenges. Interpretable ML modeling not only
aids in comprehending the structure–activity relationships of
nanozymes but is also anticipated to provide more effective
guidance for the design of nanozymes.

2.4 Searching for optimal catalytic reaction paths of
nanozymes

The challenge of uncertainty in reaction paths complicates the
study of the catalytic mechanism of nanozymes. Algorithmic
determination of potential energy surfaces by calculating ener-
gies of possible intermediates with corresponding transition
states can address this issue. ML plays a role in searching for
potential energy surfaces, with neural network fitting of the
potential function being a particularly noteworthy approach.
Xu et al. employed the random surface walk method combined
with a neural network (SSW-NN) to simulate the reaction
system of nanozymes.47 They obtained a series of adsorption
configurations after the decomposition of H2O2 stabilized on a
2D MoS2 surface. Utilizing the double end-surface walk
(DESW) method for localizing transition states and finding
reaction pathways, they identified a critical rate-determining
step in the decomposition of H2O2 on the material surface,
specifically the homogenization of H2O2 on the material
surface. To enhance the POD-like activity of 2D MoS2, they con-
ducted Cu single-atom loading, sulfur vacancy engineering,
and pH environment modulation based on the reaction
mechanism. These interventions successfully reduced the reac-
tion energy barrier of the critical step, resulting in an improved
performance of the nanozymes.

Compared to nanozymes with a single class of enzyme-like
activity, the catalytic mechanism of multienzyme-like nano-
zymes is more intricate, involving different reaction paths and
interactions between various enzyme-like activities in cascade,
promotion, and antagonism. This complexity poses challenges
for theoretically guided design. However, by combining the
methods of ML and molecular simulation calculations to
explore optimal nanozyme catalytic reaction pathways, the
rational design of multienzyme-like nanozymes becomes feas-
ible. Recently, Jiang et al. established a comprehensive nano-
zyme dataset by collating information from 4159 papers,
encompassing element types, element ratios, chemical com-
pounds, shapes, and pH values.48 Based on this dataset, they
reorganized the material features of different nanozymes using
clustering correlation coefficients of nanozyme features to
derive the constituent factors of multienzyme-like nanozymes.
Subsequently, they developed a methodology that integrates

quantum mechanics/molecular mechanics (QM/MM) and ML
to analyse surface adsorption and desorption energies, as well
as binding energies of substrates, transition states, and pro-
ducts in the multienzyme-like reaction pathway. This approach
enabled the determination of optimal reaction pathways,
leading to the design of a genetically evolved class of multien-
zyme-like nanozymes (Fig. 5). The outcome was a multien-
zyme-like nanozyme, CuMnCo7O12, exhibiting high POD-, CAT-,
OXD-, SOD-like activities. Noticeably, the authors used mole-
cular dynamics simulations of MM along with QM calcu-
lations, an approach that incorporates environmental factors
and allows for a more comprehensive simulation of the effects
of environmental factors on the catalytic reactions of
nanozymes.

In sum, ML is a reliable method for optimizing the catalytic
reaction pathways of nanozymes, offering the potential for the
rational design of more high-performance nanozymes in the
future.

Fig. 5 Computational and experimental results of data-driven evol-
utionary design research on multienzyme-like nanozymes. (A)
Illustration of the catalytic reaction paths catalyzed by multienzyme-like
nanozymes. (B) Reaction path and adsorption and desorption changes
of each generation of nanozyme compared to the previous generations.
(C) Comparative assessment of the multienzyme-like activities of the
second- and third-generation nanozymes in contrast to the first-gene-
ration nanozyme. (D) Comparison of the CAT-, OXD-, POD-, and SOD-
like activities of the evolutionarily designed multienzyme-like nano-
zymes. Reprinted with permission from ref. 48. Copyright 2024
American Chemical Society.
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2.5 Summary

Moving from the prediction of kinetic performance by ML to
the prediction of energy changes during the reaction process,
it reflects the research trend of nanozymes evolving from per-
formance analysis to mechanism understanding. As the study
of nanozymes becomes more profound and complex data
become prevalent, ML, as a potent tool for statistical data ana-
lysis, is expected to find even broader applications. ML-
assisted optimization of catalytic reaction pathways of nano-
zymes is essential for handling the statistical analysis of
complex data. However, challenges arising from ML in the
design studies of nanozymes persist and require further
exploration and resolution.

2.5.1 Dataset issues. The current datasets related to nano-
zymes are predominantly derived from published papers, pre-
senting several challenges:

(1) Small datasets. Nanozyme research is relatively new,
resulting in datasets that are often small with insufficient
sample sizes to train complex ML models. This limitation
hinders the generalization ability of the model, impacting its
capacity to predict unknown data.

(2) Data imbalance. Certain types of nanozymes may be
studied more frequently than others in practice, leading to a
dataset with a much larger number of samples for one type
compared to others. This imbalance can bias ML model pre-
dictions in favour of the more numerous types, affecting per-
formance on sparser types.

(3) Data quality and consistency issues. Data from published
papers often depend on specific experimental conditions and
methods. The environments in which the data are acquired
may be inconsistent, resulting in uneven data quality that can
affect the training of ML models.

(4) Missing data. Published papers tend to focus on the suc-
cessful applications of nanozymes, with unsuccessful data
often deliberately omitted. In ML, understanding both success-
ful and unsuccessful outcomes is crucial for effective learning.
The omission of failed data can impact the training effective-
ness of ML models, resulting in overfitting to positive (success-
ful) data points and lacking generalization ability. When train-
ing ML models, it is important to fully utilize these failed data
points and appropriately handle them during the model con-
struction process. Whether to weight them or exclude them
will depend on the characteristics of the dataset and the
specific goals of the model. Addressing these challenges is
essential for enhancing the reliability and applicability of ML
models in nanozyme research.

2.5.2 Problems with ML algorithms. As ML algorithms
become more sophisticated, the interpretability of ML models
is diminishing. Neural network models are often characterized
by their opaque and challenging-to-understand “black-box”
nature. This opacity hinders the understanding of the
decision-making process within the models. In the realm of
nanozyme design and development, it is not only crucial to
predict results accurately but also imperative to comprehend
the catalytic mechanisms of nanozymes. This understanding

is essential for the development of effective design strategies.
Addressing the interpretability challenge in ML models,
especially in the context of complex systems like nanozymes,
remains an important area for improvement.

2.5.3 The problem of activity descriptors. Activity descrip-
tors play a crucial role in simplifying the material intrinsic
factors influencing complex catalytic reactions and can swiftly
determine the catalytic performance of nanozymes.
Incorporating catalytic reaction activity with physical quan-
tities to derive meaningful activity descriptors has been a pro-
minent focus in nanozyme research. Presently, nanozyme
activity descriptors fall into three main categories:

(1) Energy descriptors. Typically, the catalytic activity of
nanozymes is associated with the adsorption energy of reac-
tion intermediates. For instance, Gao et al. demonstrated that
descriptors like Eads,OH and Eads,H can be utilized for POD- and
CAT-like activities of 2D nanozymes.46 Zheng et al. recently
extended the use of Eads,OH to describe the POD-like activity of
metal-based nanozymes.49

(2) Electronic structure descriptors. Wang et al. proposed and
demonstrated that eg occupancy can serve as a descriptor for
the POD-like activity of oxide-based chalcogenides and spinel
oxides.50,51

(3) Geometrical structure descriptors. Wang et al. constructed
a series of heterogeneous molybdenum nanozymes (MoSA–Nx–

C), establishing a correlation between conformation and POD-
like activity.52 They found that the coordination number of Mo
atoms can be a factor in the POD-like activity, serving as a
descriptor for POD-like activity. However, the study of activity
descriptors for nanozymes faces two key challenges: (1) The
reported descriptors are predominantly focused on POD-like
activity, with limited exploration of other activities; (2) The
reported descriptors are often specific to particular material
systems, with weak generalization ability. These limitations
underscore the need for broader and more diverse investi-
gations into activity descriptors for various nanozyme activities
and material systems.

2.5.4 Issues in ML simulation of catalytic environments. In
order to more comprehensively simulate the effects under
actual reaction conditions and improve the model’s generaliz-
ation ability and prediction accuracy, ML typically treats cata-
lytic environmental condition parameters as input data to
predict the catalytic activity of nanozymes under different cata-
lytic environmental conditions. The dataset should include
feature variables related to the catalytic environment, such as
temperature, pressure, pH, reactant, product concentrations,
etc. Through this method, the key factors influencing the cata-
lytic activity of nanozymes can be understood, leading to pre-
dictions of unknown reaction outcomes and the design of
more efficient nanozymes. However, ML models rely heavily on
a large amount of data for prediction. If there are insufficient
descriptors and diverse data to describe the impact of the cata-
lytic environment, the predictive capabilities of the model may
be limited. Additionally, most of these data are obtained
through experiments, which may result in human or instru-
mental data errors, instability, and interference.
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3. ML in nanozyme applications

Nanozymes find most of their applications in analysis and
sensing, constituting 52% of all nanozyme research. ML ana-
lyses various signals generated during the catalytic reaction of
nanozymes, which enables efficient output of information,
such as the type and concentration of target detectors. This
section will focus on optical, electrochemical, and multimodal
sensors for nanozymes based on the type of output signals.
The application of ML in these types of sensors will be intro-
duced respectively.

3.1 ML in nanozyme-based optical sensing

The application of ML in nanozyme-based optical sensors
focuses on analysing changes in optical signals induced by
nanozyme catalysed reactions with specific substrates. These
changes manifest as alterations in peak absorption, peak posi-
tion, absorbance, fluorescence emission, fluorescence absorp-
tion, etc. ML, in comparison with simple optical instruments,
can swiftly and accurately identify these optical signal
changes. It achieves this by analysing the absorbance detected
by the instrument or extracting information such as red,
green, blue (RGB) or hue, saturation, value (HSV) in the ana-
lysed images. Additionally, optical detection technology can
involve sensor arrays generating multi-signal input and output
data, making ML analysis crucial for interpreting complex
optical signals.

3.1.1 Analysing substrate concentration based on absor-
bance. Nanozymes serve as the foundation for constructing
optical sensors by catalysing specific substrates to initiate a
chromogenic reaction. The concentration of the target sub-
stance can be analysed based on the absorbance of the specific
wavelength measured. ML plays a crucial role in processing
high-dimensional data when multiple signals are detected.
This enables the swift and accurate extraction of detection
results, thereby enhancing the reliability and sensitivity of the
sensor.

Zhu et al. utilized benzenedicarboxylic acid-modified gra-
phene quantum dots (TPA@GQDs) in combination with three
transition metal ions (Fe2+, Cu2+, and Zn2+) as three sensing
units to build a nanozyme sensing array.53 Using 3,3′,5,5′-tetra-
methylbenzidine (TMB) as the chromogenic substrate, each
sensing unit generated different colorimetric signals for six
thiol analytes in the presence of H2O2. Employing the linear
discriminant analysis (LDA) model, the absorbance of the
samples could be analysed. This classification model utilized
the absorbance of TMB at 650 nm as the characteristic peak
and thiol class or concentration as the classification label.
Through LDA, thiols of the same type or concentration were
clustered together, while those of different types or concen-
trations could be completely separated. This allowed for accu-
rate differentiation between various types of thiol analytes as
well as their concentrations (Fig. 6A). Liu et al. selected three
oligonucleotides specific for tumor exosomal proteins, each

Fig. 6 Analysing nanozyme optical sensors through ML. (A) Schematics of colorimetric sensor array based on metal ion integrated TPA@GQD nano-
zyme for thiol discrimination. Reprinted with permission from ref. 54. Copyright 2022 Elsevier. (B) Nanozyme sensor array plus solvent-mediated
signal amplification strategy for ultrasensitive detection of exosomal proteins and cancer identification. Reprinted with permission from ref. 55.
Copyright 2021 American Chemical Society. (C) Schematic diagram of material catalysis, colorimetric sensing principle, and portable smart sensor.
Reprinted with permission from ref. 56. Copyright 2023 American Chemical Society.

Review Biomaterials Science

2236 | Biomater. Sci., 2024, 12, 2229–2243 This journal is © The Royal Society of Chemistry 2024

Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
26

/2
02

4 
8:

24
:2

7 
PM

. 
View Article Online

https://doi.org/10.1039/d4bm00169a


modified with C3N4 nanosheets, to form a sensing array.54

Aptamer adsorption enhanced the selectivity of POD-like
activity of o-phenylenediamine (oPD) oxidation by C3N4

nanosheets. In the presence of tumor exosomes, binding
occurred between tumor exosomes and oligonucleotides,
leading to the separation of oligonucleotides from the C3N4

nanosheets and a reduction in the catalytic activity of the
nanozymes. This reduction in catalytic products resulted in a
weakened fluorescence signal. Calculating the fluorescence
intensity ratios as feature values and using exosomal proteins
of the five tumors as classification labels, the LDA classifi-
cation model categorized the five tumor exosomes into five
clusters based on the two most significant differentiation
factors. This facilitated the detection of tumor exosomes and
the identification of different types of cancers (Fig. 6B).

All the aforementioned efforts leverage sensor arrays to
enhance sensor reliability. A sensor array has the capability to
generate diverse cross-reaction signals (i.e., fingerprint signals)
for each analyte, facilitating multiplexed detection and identi-
fication of multiple detectors. The nanozyme sensor array
incorporates multiple sensing units, each comprising different
nanozymes undergoing similar catalytic reactions and produ-
cing multiple signals. Therefore, the application of ML algor-
ithms allows for rapid processing of these high-dimensional
data through techniques such as feature selection and dimen-
sionality reduction. Data analysis capabilities of ML enable
quick prediction and classification, outputting the concen-
tration or class of the target in a shorter timeframe.

3.1.2 Image colour-based analysis of substrate concen-
tration. ML not only facilitates the extraction of relevant infor-
mation from colour development reactions by measuring
absorbance, but also enables the direct input of images. By
segmenting the images and extracting optical information
such as RGB or HSV, ML can infer the concentration of the
target detector.

Sun et al. utilized the POD-like activity of CuO/Fe2O3 for
detecting glutathione pesticides and chlortetracycline hydro-
chloride (CTC).55 Upon the addition of glufosinate, it adsorbed
to the surface of CuO/Fe2O3, inhibiting the active center. The
subsequent addition of CTC restored the nanozyme activity
due to the interaction between glufosinate and CTC. Changes
in nanozyme activity resulted in varying colour development
reactions of the TMB colour developer. They established a
multifunctional intelligent nanozyme sensor platform capable
of automatically recognizing input images and building statisti-
cal models through deep learning (Fig. 6C). The fundamental
principle involved segmenting the image, extracting mean
RGB or HSV values, and fitting the relationship between RGB
or HSV and the concentration of the target molecule using a
linear support vector machine (SVM), enabling intelligent
online detection of glufosinate ammonium and CTC
concentration.

Dang et al. designed a Ni/CoMoO4 nanozyme sensor with
bienzyme-like activity for detecting glufosinate ammonium
and CTC concentrations.56 The nanozyme exhibited bienzyme-
like activity sensitive to organophosphorus (OP) and zirco-

nium. In terms of OXD-like activity, the sulfhydryl molecules
produced by acetylcholinesterase (AChE) are easily coordinated
with metal atoms, blocking the catalytic site of the nanozyme.
OP enhances the catalytic activity by deactivating AChE. For
POD-like activity, zirconium complexes with Co, blocking the
active site and reducing the POD-like activity. Using deep
learning, the nanozyme sensor detected concentrations of
AChE, OP, and zirconium. Deep learning models recognized
input images, and colour pattern analysis applications ana-
lysed the colours of “useful” output photos. Employing the
Yolo V3 algorithm, images were segmented, and average RGB
or HSV values were extracted. SVM was then used to fit the
relationship between RGB or HSV and the concentration of the
target molecule, allowing separate detection of multiple target
detector concentrations based on the multienzyme-like
activities.

Compared to analysing absorbance data, the analysis of
input images demands more sophisticated analytical capabili-
ties from ML, making it more suitable for online intelligent
detection. This enables real-time detection and intelligent ana-
lysis of the data.

3.2 ML in nanozyme-based electrochemical sensing

Electrochemical sensors utilize electrochemical principles to
detect the presence and concentration of chemicals. These
sensors work based on redox reactions on the electrode sur-
faces and typically consist of a working electrode, a counter
electrode, and a reference electrode. Nanozymes can enhance
these sensors by acting as catalysts to oxidize specific sub-
strates on the surface of the working electrode, leveraging their
enzyme-like activity. Incorporation of nanozymes improves the
sensitivity and specificity of the sensors. By adding nano-
zymes, electrochemical sensors can better detect low concen-
trations of target analytes, finding applications in agriculture,
biomedicine, environmental monitoring, and other fields.
However, as detection limits decrease, errors of the same mag-
nitude become more noticeable and influential. To mitigate
relative errors, it becomes crucial to employ ML algorithms for
the analysis of electrical signals generated during the catalytic
process of nanozymes. ML algorithms can learn any continu-
ous function and are well-suited for constructing nonlinear
models.

Zhu et al. integrated a nanozyme-based electrochemical
sensor with ML for measuring electrical signals produced
during the OXD-like catalytic reaction of carbazene (CBZ)
residues by MoS2 nanohybrid nanozymes.57 Using the artificial
neural network (ANN) algorithm, they constructed a neural
network model correlating current and various concentrations
of CBZ. The electrical signals served as outputs, facilitating the
detection of CBZ residue concentrations. This hybrid
approach, combining the nanozyme activity with ML analytics,
resulted in a sensor with a lower detection limit and heigh-
tened sensitivity. The incorporation of ML allowed the electro-
chemical sensor to handle multiple signal inputs and outputs
while maintaining low error, enabling simultaneous detection
of concentrations for multiple targets with the nanozyme-
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based electrochemical sensor. Likewise, Zhu et al. analysed
and processed electrical signals generated during the OXD-like
catalytic reaction of two substrates, xanthine (XT) and hypo-
xanthine (HX), by 3D porous graphene nanozymes.58 Using an
ANN algorithm, they determined concentrations for both sub-
strates, demonstrating the capability of the sensor to detect
multiple target concentrations. Additionally, Zhu et al.
employed the OXD-like activity of single-walled carbon nano-
horns (SWCNHs) to catalyse 5-hydroxytryptamine (5-HT), pro-
ducing an electrical signal.59 Leveraging the derivative tech-
nique for signal preprocessing, they improved the signal
resolution and sensitivity. The ANN algorithm then effectively
modeled the current and various concentrations of 5-HT,
enhancing the accuracy of substrate concentration predictions.

Integrating ML with nanozyme-based sensors opens up new
possibilities. Given that the intensity of the electrical signal
correlates positively with nanozyme activity, ML can enhance
the preparation methods for nanozyme-based sensors by ana-
lysing electrical signals to identify conditions yielding the
highest activity. Xu et al. employed an orthogonal experimental
design in combination with the BP artificial neural network-
genetic algorithm (BP–ANN–GA) to assess the impact of four
factors (volume ratio of graphene oxide (GO) and multi-walled
carbon nanotubes (MWCNTs), silver nitrate concentration, CV
deposition cycle, and pH of phosphate buffer) on the peak
current value (I) of benzyl (BN).60 This approach aimed to opti-
mize the preparation technique for the nanozyme-based
sensor and determine the optimal experimental conditions.
Under these conditions, the nanozymes catalysed a BN reac-
tion on the working electrode, generating an electrical signal.
Subsequently, the support vector machine (SVM) algorithm
and least squares support vector machine (LS-SVM) algorithm
were employed to achieve intelligent sensing of BN.

Through ML-assisted electroanalysis of chemical reaction
signals, nanozyme-based sensors have demonstrated enhanced
sensitivity and improved detection capabilities. Furthermore,
ML plays a crucial role in refining the preparation and optimiz-
ing the performance of nanozyme-based sensors.

3.3 ML in multimodal sensing detection of nanozymes

Multimodal sensors for nanozymes involve the use of multiple
types of sensors to gather diverse data during the catalytic
process of nanozymes, leveraging the various properties of
nanozymes to provide more comprehensive information.
While arrays of nanozyme-based sensors with multiple signals
have been developed for chemical assays, they typically consist
of a combination of the same type of sensing units, and data
processing is relatively straightforward. In the context of pro-
cessing multimodal sensing signal data from nanozymes, the
challenge lies in establishing multiple regression equations to
deduce the concentration of the actual sample. This complex-
ity calls for the computational power and accuracy provided by
ML algorithms to effectively address the challenges associated
with nanozyme-based multimodal detection.

Yu et al. developed a multimodal nanozyme-based sensor
where liposomes containing hollow Prussian blue nano-

particles (h-PB) were confined in test cells.61 The released
hollow ferrocyanine blue nanoparticles were then transferred
to a TMB-H2O2 system to generate a colorimetric signal
through the classical sandwich immunochromatographic ana-
lysis. Simultaneously, the temperature signal was detected via
the photothermal effect under 808 nm near-infrared laser exci-
tation. Both signals were subjected to analysis using an ANN
model, resulting in multimodal biosensing for precise targeted
protein detection (Fig. 7). This multimodal nanozyme-based
sensor demonstrated an ultra-wide dynamic range of 0.02 to
20 ng mL−1 and a detection limit of 10.8 pg mL−1, showcasing
improved sensitivity. This study serves as a noteworthy
example of a multimodal nanozyme-based sensor, highlight-
ing the considerable potential of multimodal sensors in bio-
sensing applications.

3.4 Summary

The ML-based analysis method significantly enhances the
analytical capabilities of nanozyme-based sensors, enabling
them to achieve real-time detection goals with improved accu-
racy and reduced errors. As ML algorithms continue to develop
and improve, it is anticipated that nanozyme-based sensors
will demonstrate even greater potential and value in the fields
of medicine and environmental monitoring in the future.

4. ML roadmap for nanozymes

Despite the availability of various open-source ML frameworks
like scikit-learn, TensorFlow, PyTorch, etc., selecting and
implementing the ML process can be challenging for non-
experts. This review presents a generalized workflow for ML in
nanozyme research, consisting of four main steps (Fig. 8): (1)
Construction of the original dataset; (2) Data preprocessing
and feature engineering; (3) Selection, training, and validation
of the ML model; and (4) Application of the ML model.

4.1 Construction of nanozyme datasets

A high-quality dataset for nanozyme research should encom-
pass clean and comprehensive data, capturing intrinsic
material properties (e.g., composition, size, shape, surface
modification, etc.), external characteristics (e.g., temperature,
pH, etc.), and corresponding enzyme-like activity descriptors.
Researchers typically employ three methods to construct their
datasets. The first method involves collecting data from pub-
lished literature. Razlivina et al. curated research data on
various nanozymes from published papers, utilizing descrip-
tors from libraries like pubchempy and rdkit to enhance the
Dizyme database.41 They significantly expanded the number of
nanozymes and features, offering a valuable resource for the
development of high-performance nanozymes. The second
method involves extracting material structure and related data
from existing material databases, followed by screening
material features to construct the dataset. Open access data-
bases such as the Crystallographic database and Materials
Project (MP) database provide application programming inter-
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faces (APIs) and web interfaces for researchers to access
material information. Zhang et al. constructed a dataset for
SOD-like nanozymes using data from the MP database, cover-
ing numerous transition metal thiophosphates.44 Gao et al.
utilized screening criteria from the C2DB to identify 1019
stable 2D materials, performing DFT calculations to establish
an adsorption energy dataset.46 The third approach entails
conducting high-throughput calculations. Yu et al. created 168

different GDY-based computational models, calculating Gibbs
free energy changes for complete POD-like reaction paths. This
resulted in a dataset containing GDY doping strategies and
their corresponding POD-like activity magnitudes, using ΔG1,
ΔG2, and ΔG3 as descriptors for POD-like activity.45 These
methods showcase diverse strategies for dataset construction,
incorporating data from the literature, existing databases, and
high-throughput calculations to ensure a comprehensive and
reliable foundation for ML-based nanozyme research.

For ML applications in nanozyme detection, researchers
must design experiments to gather a substantial amount of
data aligned with the specific detection task. The experimental
design encompasses selecting the nanozyme type, determining
the sensor type, and optimizing detection conditions (e.g.,
reaction time, temperature, pH, etc.). Under these optimal con-
ditions, the collected detection signals serve to construct a
dataset, enabling the establishment of a quantitative relation-
ship between detector concentration and the generated
signals.

In summary, the quality of raw data significantly influences
the performance and reliability of ML models. The approaches
to data collection are not limited to the aforementioned
methods, and the overarching objective for researchers is to
construct a comprehensive database encompassing all nano-
zymes and their properties.

4.2 Data preprocessing and feature engineering

Data preprocessing, which involves data cleaning, integration,
and sampling, along with feature engineering—comprising
feature encoding, selection, dimensionality reduction, and
normalization—are crucial steps before ML model training.

Fig. 7 Nanozyme-based multimodal sensors. (A) Schematic diagram of the constructed portable photothermal colorimetric dual-modality bio-
sensor. (B) Schematic diagram of artificial neural network for multimodal data processing. (C) Schematic representation of the immune strategy for
target cTnI-triggered bimodal biosensing, where the obtained colorimetric and photothermal data were passed into the ANN model for further pro-
cessing. (mAb1: monoclonal anti-cTnI capture antibody; mAb2: monoclonal anti-cTnI detection antibody; h-PB NPs: hollow Prussian blue nano-
particles; ox-TMB: oxidation-TMB). Reprinted with permission from ref. 62. Copyright 2022 Elsevier.

Fig. 8 The universal flowchart for ML in the field of nanozymes.
Reprinted with permission from ref. 46. Copyright 2023 Wiley-VCH
GmbH. Reprinted with permission from ref. 41. Copyright 2022 Wiley-
VCH GmbH. Reprinted with permission from ref. 6. Copyright 2023
American Chemical Society.
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These processes aim to refine the original dataset, improving
the quality of data fed into the ML model. For instance, elimi-
nating redundant features from raw data can enhance the pre-
dictive accuracy of ML models. In the context of nanozyme
research, data preprocessing and feature engineering are
pivotal components due to the intricate and varied nature of
the data.

In nanozyme design, researchers often collect data from
published publications. However, the quantity and quality of
data from different works may vary, leading to datasets with
missing values. Effective data preprocessing is crucial, where
three methods are commonly used, including deletion, interp-
olation, and omission. For instance, Razlivina et al. encoun-
tered a dataset with missing values from over 100 papers on
nanozymes.41 They utilized the K-Nearest Neighbor (K-NN)
algorithm to impute missing values, setting a maximum data
sparsity threshold of 80%. In cases where features have a high
number of missing values, they can be directly deleted.
Additionally, Wei et al. excluded data with a significant
number of missing values, particularly at the ζ-potential and
the catalytic interface of nanoparticles, as these were not
chosen as inputs for the ML model.62

In the analytical sensing of nanozymes, experimental data
may be affected by noise, outliers, or corrupted data points
due to various factors, such as environmental conditions, oper-
ational errors, or equipment failures. Data cleaning is a crucial
step that involves identifying and removing these inconsisten-
cies. Thresholds can be established to filter out readings that
fall outside reasonable ranges, or statistical methods can be
applied to identify and correct problematic points. The goal of
data cleansing is to enhance the quality of the dataset, ensur-
ing the accuracy and reliability of subsequent analyses. This
process enables researchers to analyse data effectively and
make accurate predictions.

4.3 Selection, training, and validation of ML Models

Researchers can initially screen the type of model needed
based on the study purpose: classification, regression, cluster-
ing, or dimensionality reduction models. When it comes to
designing nanozymes, the choice between interpretable
models for rational design and black-box models for higher
accuracy should be considered. The selection of a specific
model depends on the dataset size and content. For analytical
sensing of nanozymes, different ML models can be used
depending on the sensor type and signals. For instance, when
analysing absorbance for a small dataset and specific detector
species, a classification model is typically chosen. During
model training, the k-fold cross-validation method is com-
monly used, where the dataset is divided into k parts for train-
ing and testing. For model validation, a portion of the data is
reserved as a validation set, and the model’s performance is
assessed by comparing its output with the original labels.
Classification models are evaluated using metrics like accu-
racy, precision, recall, F1 score, while regression models use
metrics such as mean square error (MSE), root mean square
error (RMSE), mean absolute error (MAE), and R2. Neural

network models are known for their superior prediction accu-
racy, making them a suitable choice for many studies, includ-
ing nanozyme detection applications. However, their drawback
lies in poor interpretability and the inability to explore confor-
mational relationships in nanozymes. In this context, tree-
based ML models, such as RF and XGB, are well-suited for
nanozyme research.

To summarize, researchers can initially screen models
based on their study purpose (classification or regression). For
selecting the specific model, researchers should consider their
experience and refer to the dataset’s size and characteristics.
Using multiple models for learning and subsequently selecting
the best-performing model through evaluation is a common
practice.

5. Challenges and perspectives

An increasing number of researchers are embracing ML
methods to expedite the design of high-performance nano-
zymes or facilitate various applications. Nonetheless, the con-
tinuous integration of ML into nanozyme research has
brought about certain challenges. In the following section,
this review will highlight the prominent issues in utilizing ML
for nanozyme research and propose insightful perspectives for
addressing these challenges.

5.1 Expansion of nanozyme databases

In the design of nanozymes, it is necessary to understand the
effects of component properties, material characteristics, and
reaction conditions on enzyme-like activity, which directly
relate to the catalytic efficiency and affinity of nanozymes. By
thoroughly understanding and controlling these variables, it is
possible to design and optimize nanozymes, improving their
application effectiveness. Therefore, considering cost savings
and nanozyme design, it is essential to establish the databases
for ML. The activity descriptors in the database mainly include
experimental descriptors obtained through experiments, as
well as theoretical descriptors obtained through theoretical
calculations, both of which need to be enriched to provide
more possibilities for ML prediction.

Currently, there are two publicly accessible nanozyme data-
bases at https://dizyme.net/ and https://nanozymes.net/. The
former database is divided into three tiers, including a basic
version (chemical formula), an progressive version (crystal
system, particle size, shape, surfactant), and an advanced
version (pH, temperature, hydrogen peroxide concentration,
substrate concentration, catalyst concentration, etc.). These
tiers are designed to predict kinetic parameters such as Vmax,
Km, and Kcat in the Michaelis–Menten equation. Users have the
option to contribute to the content of database, which cur-
rently contains information on over 300 nanozymes. The latter
database is an aggregation of more than 1000 publications,
encompassing thousands of materials with details about their
kinetic parameters, applications, and references. It is impor-
tant to note that the former database provides a prediction
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function for nanozyme activity, whereas the latter database
focuses on collecting and organizing information about
materials and the applications of nanozymes.

However, the lack of uniform research and testing con-
ditions and methods has resulted in many nanozyme perform-
ance data lacking comparability, hindering the effective expan-
sion of nanozyme databases. Therefore, developing a set of
standardized operating procedures (SOPs), including reaction
conditions (such as temperature, pH, substrate concentration,
etc.), dosages, detection methods, etc., is an effective approach
to ensure the comparability of data generated in different lab-
oratories. Additionally, establishing nanozyme characterization
standards, including catalytic efficiency, stability, toxicity, bio-
compatibility, etc., is crucial. These evaluation standards help
define which performance data are considered important and
necessary. Standardizing data and research through the
implementation of protocols contributes to the further expan-
sion of databases, enabling the design of more efficient and
specific nanozymes.

5.2 Improving interpretability of ML models for nanozyme
research

The poor interpretability of ML models, including tree model-
based ML, remains a significant challenge for nanozyme
researchers. Enhancing the interpretability of ML models in
the context of nanozyme research is a critical objective. There
are two main categories of interpretable ML methods: those
with self-interpretable models and those with external co-
interpretation methods.63 For self-interpretable models,
achieving interpretability can involve the direct adoption of
interpretable ML models. Examples of such models include
decision trees and linear regression, which inherently provide
insights into the decision-making process. Another approach
is to externally co-interpret ML models. This involves using
methods and tools designed to provide additional insights
into the model’s decision rationale. Some examples include
SHAP, knowledge graphs, and feature visualization with cluster
analysis.

The current understanding of the catalytic mechanism of
nanozymes relies heavily on molecule simulations and empiri-
cal judgments by researchers. However, the catalytic mecha-
nisms may vary across different material systems. The develop-
ment of interpretable ML models holds the potential to unveil
unified descriptors of nanozyme activity, leading to the discov-
ery of activity laws governing nanozymes. While the Michaelis–
Menten equation has been utilized in nanozyme research, the
differences between nanozymes and natural enzymes may
necessitate the development of more tailored kinetic
equations. Gao et al. proposed a microkinetic equation for
POD-like activity on the material surface, which outperformed
the Michaelis–Menten equation.46 Interpretable ML models
could aid in deriving microkinetic equations for various nano-
zyme activities, offering a more accurate representation of cata-
lytic mechanisms. Interpretable ML models have the potential
to provide microkinetic equations specific to different nano-
zyme activities, potentially replacing or updating the tra-

ditional Michaelis–Menten equation. This shift could result in
a more nuanced and accurate representation of the catalytic
mechanisms of nanozymes.

5.3 ML for complex nanozyme systems

The exploration of nanozymes has introduced increasing com-
plexity into research systems. This complexity arises from both
the intricate material systems of nanozymes and their diverse
application environments. On the one hand, complex material
systems like heterojunctions and high-entropy alloys may
feature numerous defects and intricate electronic structures.
They may even harbour a multitude of multiple catalytic active
sites, giving rise to phenomena such as active site migration
during catalytic reactions. On the other hand, nanozymes find
applications in varied environments, ranging from extreme pH
conditions to the complex biological milieu within the human
body. Environmental factors and substance interferences can
impact the catalytic reactions of nanozymes. This interference
includes substrate adsorption competition and alterations to
the reaction pathway, leading to changes in the catalytic
activity of nanozymes.

Fortunately, the integration of ML potentials and ML force
fields stands out as a promising avenue for overcoming the
challenges posed by the intricate material systems and
complex application environments of nanozymes. The utiliz-
ation of ML potentials facilitates the swift calculation of intri-
cate material systems. ML-driven potentials enhance the simu-
lation of complex electronic structures and multi-catalytic
active sites, offering a more efficient approach to understand-
ing nanozyme behaviour. The incorporation of ML force fields
contributes to maintaining calculation accuracy while signifi-
cantly expediting large-scale MD studies. ML-driven force
fields reduce computational costs, enabling a more compre-
hensive exploration of the nanozyme reaction mechanisms.

5.4 ML helps to expand the enzyme types of nanozymes

To date, the utilization of ML has predominantly centered
around the investigation of oxidoreductase-like nanozymes.
However, there is a notable absence of reports concerning ML
applications in the exploration of other types of nanozymes.
Among these, hydrolase-like nanozymes represent a well-
studied category distinct from the oxidoreductase-like counter-
parts. Although there has been a data-driven discovery of novel
hydrolase-like nanozymes,64 the limited dataset available for
this class has impeded the application of ML for predicting
material activities. In the future, we believe that with datasets
expand and research efforts intensify, ML is likely to be
applied in the field of hydrolase-like nanozymes to undertake
some tasks of predicting enzyme-like activities.

5.5 Large language model aided design of nanozymes

Large language models, such as the transformer-based GPT-4,
have emerged as powerful tools in materials science, demon-
strating capabilities in understanding and generating human
language. Boiko et al. recently employed an AI system driven
by GPT-4 to autonomously reproduce an optimized palladium-
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catalysed cross-coupling reaction.65 This AI program exhibited
the ability to independently search for relevant papers, collect
data from the internet, and formulate experimental protocols,
effectively assisting researchers in their work. The incorpor-
ation of AI has the potential to broaden the horizons of nano-
zymes research. Non-ML experts could leverage AI to design
novel nanozymes based on extensive data, obtaining synthesis
methods by interacting with the AI.

6. Conclusions

In summary, the integration of ML into the design and appli-
cation of nanozymes is in its early stages, and the full potential
of ML, especially its capacity to handle extensive datasets, is
yet to be fully harnessed. The research potential of ML in the
nanozyme field is considerable, and as theoretical advance-
ments in nanozyme research align with the evolution of ML
algorithms, there exists the possibility that ML could even-
tually supplant traditional research methodologies entirely.
The ongoing development in both nanozymes and ML is
anticipated to pave the way for transformative advancements,
shaping the future of research in this interdisciplinary
domain.
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