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Ring expansion of spirocyclopropanes with
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A novel method was devised for regioselective ring expansion of
Meldrum’s acid-derived spirocyclopropanes to spirocyclobutanes
with stabilized sulfonium ylides, affording 1,2-trans-disubstituted
6,8-dioxaspiro[3.5]lnonane-5,9-diones in up to 87% yields without
the formation of any isomers. The aforementioned reaction was
also applied to the barbituric acid-derived spirocyclopropane,
resulting in the formation of the corresponding cyclobutanes.

Sulfonium ylides stabilized by electron-withdrawing groups
(EWG) have been used as a versatile methylene synthon in
the synthesis of a variety of carbo- and heterocyclic
compounds.’? As a pioneering work, Payne reported that the
reaction of o,B-unsaturated diethylmalonate with EWG-
stabilized sulfonium ylide 1 (EWG = CO,Et) afforded cyclopro-
pane in 90% yield (Scheme 1A).? In this reaction, the Michael
addition of 1 followed by Sy2-type cyclization of the carbanion
(C-cyclization) proceeded with the concomitant release of the
sulfide. In contrast, the reaction of the corresponding 1,3-
diketone with stabilized sulfonium ylide 1 unexpectedly pro-
duced dihydrofuran in 83% yield through enolate cyclization
(O-cyclization, Scheme 1A).* The regioselectivity of these reac-
tions may be attributed to the inherent difference between
esters and ketones. Recently, we reported the ring-opening
cyclization of spirocyclopropanes* with EWG-stabilized sulfo-
nium ylides 1 to afford hexahydrobenzopyranone as a single
isomer via the regioselective ring-opening of cyclopropane with
sulfonium ylide 1 and subsequent Sy2-type O-cyclization
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(Scheme 1B, eqn (1)).* Considering the similar reactivity of
cyclopropane and carbon-carbon double bonds, we expected
that the reaction of ester-derived spirocyclopropane 2 with
stabilized sulfonium ylide 1 would provide spirocyclobutane 3
through C-cyclization (Scheme 1C). Because cyclobutane is a
useful scaffold found in several biologically active natural
products and pharmaceutically active compounds,’ the devel-
opment of a synthetic method for cyclobutane is currently the
subject of intense research.® Although several instances of

A. Background: Regioselectivity in reactions of a,B-unsaturated carbonyl compounds
with stabilized sulfonium ylide 1
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B. Previous work: Ring-opening cyclization of cyclohexane-1,3-dione-2-
spirocyclopropanes with stabilized sulfonium ylides 1
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Scheme 1 Reactions of various carbonyl compounds with stabilized
sulfonium ylides 1 as nucleophiles.
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cyclopropane to cyclobutane ring expansion have been docu-
mented thus far,”® to the best of our knowledge, there have
been no examples of sulfonium ylide-mediated ring expansion
(C-cyclization).” Herein, we describe the ring expansion of
Meldrum’s acid-derived spirocyclopropanes 2 to spirocyclobu-
tanes 3 using EWG-stabilized sulfonium ylides 1 (Scheme 1C).

Initially, we examined the reaction of 6,6-dimethyl-1-phenyl-
5,7-dioxaspiro[2.5]octane-4,8-dione (2a)'® with dimethylsulfo-
nium benzoylmethylide (1a) as an EWG-stabilized sulfonium
ylide (Table 1). The ring expansion of 1a proceeded under the
reaction conditions previously reported by our group (1.5 equiv.
of 1a in refluxing CH,Cl,)," affording 1-benzoyl-7,7-dimethyl-2-
phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3a) after 24 h in
75% yield (entry 1). Notably, no isomer formation was observed
during this process. The structure of 3a including its stereo-
chemistry was confirmed by a single-crystal X-ray diffraction
analysis. This analysis revealed that the structure corresponds
to that of cyclobutane with a 1,2-trans configuration (see ESIT
for details). Screening of the solvents at reflux revealed that
benzene and halogenated solvents, such as dichloromethane
and 1,2-dichloroethane, were suitable for this reaction (entry 1
vs. entries 2-5). Finally, we found that chlorobenzene at 80 °C
was the most effective and afforded 3a in 86% yield after 6 h
(entry 6).

After determining the optimal conditions, we investigated
the reaction of spirocyclopropane 2a using a range of sulfo-
nium ylides 1 that are stabilized by carbonyl functional groups
(Table 2). The reaction with 1.5 equiv. of p-methoxybenzoyl
sulfonium ylide 1b in chlorobenzene at 80 °C afforded the
corresponding spirocyclobutane 3b as the sole product after 6 h
in 74% yield (entry 2). The use of m- and o-methoxybenzoyl
sulfonium ylides 1¢'' and 1d'?* provided the corresponding
products 3c and 3d in 86% and 87% yields, respectively (entries
3 and 4). The reaction with sulfonium ylide 1e bearing a p-nitro
group as a strong EWG decreased the product yield, and a
significantly longer reaction time was required to achieve full
conversion (61% yield, 24 h, entry 5 vs. entry 1). In contrast, the
reaction with p-chlorobenzoyl sulfonium ylide 1f under the
optimized conditions proceeded smoothly to completion
within 5 h, furnishing 3f in 83% yield (entry 6). We also

Table 1 Ring expansion of spirocyclopropane 2a with sulfonium ylide 1a

)f\ )K/s conditions #\)thﬂ/}?h

(6] [¢]

1.5 equw) 3a
single isomer

Entry Solvent Temp. Time (h) Yield” (%)
1 CH,Cl, Reflux 24 75
2 EtOAc Reflux 4.5 60
3 Benzene Reflux 5 74
4 CH;CN Reflux 24 59
5 CICH,CH,CI Reflux 7 75
6 CeHsCl 80 °C 6 86

“ Isolated yield.
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Table 2 Ring expansion of spirocyclopropane 2a with sulfonium ylides

la-h
(0]
CeHsCl

RS
75% e N

1.5 equw) 3
single isomer

Sulfonium ylide Product

Entry R' R® Time (h) Yield” (%)
1 1a  CeHs Me 6 3a 86
2 1b  p-MeOCH, Me 6 3b 74
3 1lc m-MeOCesH; Me 6 3c 86
4 1d  0-MeOCeH, Me 6 3d 87
5 le pNO,CH, Me 24 3e 61
6 1f  p-CICeH, Me 5 3f 83
7 1g  Me ~(CH,),— 24 3g 36
8 1h EtO Me 23 3h 53

“ Isolated yield.

investigated the suitability of an acetyl sulfonium ylide for this
reaction. To this end, we used tetrahydrothiophenium acetyl-
methylide (1g) because of the difficulty in preparing dimethyl-
sulfonium acetylmethylide. The reaction of 2a with 1g afforded
the desired product 3g as a single isomer, albeit with a
prolonged reaction time and lower yield (24 h, 36% yield, entry
7 vs. entry 1). Moreover, ethoxycarbonyl group-substituted
sulfonium ylide 1h was used in the present protocol, and the
corresponding cyclobutane 3h was obtained in 53% yield after
23 h (entry 8).

Next, we examined the scope of the reaction with the
spirocyclopropane substrates 2 using benzoyl-substituted sul-
fonium ylide 1a (Table 3). Treatment of spirocyclopropanes 2b,
2¢ and 2d, which possess p-acetoxy-, p-methyl-, and p-
bromophenyl groups on the cyclopropane, respectively, with
1a under the optimized conditions (chlorobenzene at 80 °C),
afforded the corresponding products 3i, 3j, and 3k in 64%-80%
yields with perfect diastereoselectivities (entries 1-3). The

Table 3 Ring expansion of spirocyclopropanes 2b—h with sulfonium

ylides 1a
o R
|
(@)
R + Ph)K/ »., _Ph
CgHsCl #\ W
80°C 0" o |l
(1.5 equw) 3
single isomer
Spirocyclopropane Product
Entry R Time (h) Yield® (%)
1 2b P-AcOCgH, 3 3i 64
2 2¢ p-MeCgH, 6 3j 74
3 2d p-BrCgH, 6 3k 80
4 2e m-MeOCgH, 12 31 69
5 2f 2-naphthyl 48 3m 80
6 2g Vinyl 24 3n 68
7 2h H 24 30 26

“ Isolated yield.
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reaction of m-methoxyphenyl-substituted spirocyclopropane 2e
for 12 h provided cyclobutane 31 in 69% yield (entry 4).
Although spirocyclopropane 2f, which possesses a 2-naphthyl
group, required a relatively long reaction time (48 h), 3m was
obtained in a good yield (80%, entry 5). There was a concern
that the use of vinyl-substituted spirocyclopropane 2g would
compete with the conjugate addition, but the reaction of 2g
proceeded uneventfully and afforded the desired product 3n in
68% yield (entry 6). Finally, the reaction of the simple spirocy-
clopropane 2h (R = H)' was investigated (entry 7). A 2/,3'-
nonsubstituted spirocyclopropane was found to be less reactive
than an aryl-substituted one,** which resulted in a lower yield
of product 30 (26% yield).

A plausible mechanism for the ring expansion of spirocy-
clopropane 2 with sulfonium ylide 1, stabilized by an acyl
group, is shown in Scheme 2. The ring opening of spirocyclo-
propane 2 would proceed through the nucleophilic attack of
the carbanion in 1 on the electrophilic cyclopropane carbon
possessing an R' substituent in A. This reaction would lead
to the formation of betaine intermediates B and C. Sy2-type C-
cyclization of the carbanion in B would occur smoothly to
afford trans-product 3 with the concomitant release of dimethyl
sulfide. In contrast, the C-cyclization of C would hardly proceed
owing to the severe steric repulsion between the acyl group
(R’CO) and substituent R in C. Consequently, intermediate C
could be converted into cyclization precursor B through rever-
sible intramolecular proton transfer via the stabilized sulfo-
nium ylide D,"*" finally providing trans-isomer 3.

To demonstrate the utility of the present protocol, we
examined the conversion of spirocyclobutane 3a into highly
substituted non-spiro cyclobutane 4 (Scheme 3). The treatment
of 3a with sulfuric acid in methanol/diethyl ether (1:1) at 50 °C
led to a transesterification process, resulting in the formation
of dimethyl ester. The reaction yielded the corresponding
cyclobutane 4 in 82% yield. Since the reaction of dimethyl
2-phenylcyclopropane-1,1-dicarboxylate (5) with sulfonium
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Scheme 2 Plausible reaction mechanism.
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Scheme 3 Conversion of spirocyclobutane 3a into cyclobutane 4.

ylide 1a did not proceed,¥1® spiro form 3a was required for

the synthesis of diester 4. This ring-expansion reaction of
spirocyclopropanes could be a useful method for the prepara-
tion of substituted cyclobutanes.

Having achieved ring expansion of ester-derived spirocyclo-
propanes, we further investigated the reaction of an amide-
derived spirocyclopropane with an EWG-stabilized sulfonium
ylide. The reaction of spirocyclopropane 6, derived from
barbituric acid, with sulfonium ylides 1a and 1h in chloroben-
zene proceeded smoothly at 50 °C to provide the corresponding
spirocyclobutanes 7a and 7b in 64% and 83% yields, respec-
tively (Scheme 4). Interestingly, unexpected products 8a and 8b,
which indicated that Syx2-type O-cyclization of the enolate ion
instead of the carbanion would occur, were also obtained in 8%
and 9% yields, respectively. Although the results are still
preliminary, the reaction of barbituric acid-derived spirocyclo-
propane with sulfonium ylide exhibits promise as a synthetic
method of spirobarbiturate cyclobutane analogs. These com-
pounds have potential as pharmaceutical agents."®

In conclusion, we devised a novel method for regioselective
ring expansion of cyclopropanes to cyclobutanes using stabilized
sulfonium ylides. Meldrum’s acid-derived spirocyclobutanes
with EWG-stabilized sulfonium ylides afforded the corres-
ponding spirocyclobutanes as single diastereomers in yields of
up to 87%. The present reaction provides an efficient route to
highly substituted cyclobutanes. To the best of our knowledge,
this is the first example of a ring expansion of cyclopropanes
with sulfonium ylides. This reaction may be envisaged as a

.
st o Ph 0
Ph/U\_/ > - Ph
1a (1.5 equiv) N s Ph + N ‘
/" CgHsCl )\ W )\ ., _Ph
Q 50°C,4h © T 6 © T o
~ o
N 7a, 64% 8a, 8%
)\ Ph single isomer

o N o} o ‘
\ + o) o)
6 EtoJ\/ SN - Ph - Ph
1h (1.5 equiv) j\ , OEt + j\ ‘
CeHsCl - .., _OEt
50°C,2h © T 0 L( o T o g/

7b, 83%
single isomer

8b, 9%

Scheme 4 Ring expansion of barbituric acid-derived spirocyclopropane
6 with sulfonium ylides 1a and 1h.
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formal [3+1] cycloaddition, facilitating the construction of the
four-membered ring system.'® The expansion reaction could be
applied to the transformation of barbituric acid-derived spiro-
cyclopropane into the corresponding spirocyclobutane. Ongoing
efforts are being made to apply the present method to the
synthesis of a variety of cyclobutane derivatives.
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