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12 Abstract

13 Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally 

14 complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, 

15 significantly expanding the potential applications of this promising technique towards sustainable 

16 synthesis. The metallaelectro-catalyzed CH activation/annulation stands out as a highly efficient 

17 approach that leverages electricity, combining the benefits of electrosynthesis with the power of 

18 transition-metal catalyzed C–H activation. Particularly attractive is the pairing of the electro-

19 oxidative C–H activation with the valuable hydrogen evolution reaction (HER), thereby addressing 

20 the growing demand for green energy solutions. Herein, we provide an overview of the evolution 

21 of electrochemical C–H annulations with alkynes for the construction of heterocycles, with a 

22 topical focus on the underlying mechanism manifolds.

23 Keywords: Electrosynthesis; Alkynes; Annulations; Heterocycles; Transition-metal catalysis; 

24 Hydrogen
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26 1 Introduction 

27 Alkynes are key substrates in molecular synthesis. Due to their versatile reactivity, they enable a 

28 wide array of transformations, including cycloadditions, coupling reactions, and 

29 hydrofunctionalizations, among others.[1] Hence, access to compounds is provided that are 

30 essential for a broad spectrum of applications, ranging from material sciences to drug development 

31 and crop protection. In this context, the transition-metal catalyzed alkyne annulation is a powerful 

32 tool for the assembly of diverse heterocyclic compounds as it allows for the expedient construction 

33 of intricate molecular frameworks.[2] However, especially Larock-type heteroannulations face 

34 limitations, including the need for pre-functionalized substrates, expensive catalysts, and harsh 

35 reaction conditions. While alkyne annulations via C–H activation offer improvements in terms of 

36 step economy, significant obstacles remain, as the use of toxic heavy metal salts as oxidant is often 

37 involved. Consequently, these drawbacks have led to a strong demand for more sustainable 

38 strategies (Figure 1a). As a consequence, aerobic transition metal-catalyzed C–H activation was 

39 introduced for the construction of heterocycles, exhibiting improved atom economy with water as 

40 the sole byproduct (Figure 1b). Thus, in 2015, Ackermann described the aerobic ruthenium-

41 catalyzed C–H annulation for the assembly of isocoumarins.[3] Despite of major advances, such 

42 oxidase catalysis had thus far been limited to toxic and expensive precious transition metals. In 

43 sharp contrast, in 2016, Ackermann reported on aerobic cobalt-catalyzed C–H alkyne annulations 

44 to access versatile isoquinolones.[4] While representing key progress, aerobic transition metal-

45 catalysis was characterized by major drawbacks, including a) fixed redox potential with limited 

46 tunability,[5] b) safety hazards associated with the use of molecular oxygen with flammable 

47 solvents.[6] Thus, for industrial processes the limiting oxygen concentration (LOC), which defines 

48 the minimum partial pressure of oxygen that supports a combustible mixture, prohibits the broad 

49 implementation.[6] In contrast, the advent of metallaelectro-catalyzed C–H activation, which 

50 combines transition-metal catalyzed C–H activation and electrochemistry, offers an inherently safe 

51 and sustainable approach to construct valuable organic molecules (Figure 1c).[7] Importantly, this 

52 synergistic strategy offers a scalable approach to harness renewable forms of energy for a green 

53 hydrogen economy through the cathodic hydrogen evolution reaction (HER).[8] Whereas, in 

54 metallaelectro-catalyzed C–H activation electricity – protons and electrons – is employed as a 

55 “traceless-oxidant”, obviating the formation of stoichiometric waste generated from chemical 

Page 2 of 60ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
2/

20
24

 1
0:

24
:5

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4CC03871A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc03871a


3

56 oxidants.[9] Herein, we thus summarize the rapid recent evolution of metalla-electrocatalysis for 

57 alkyne annulations until August 2024.

58     

E
H

H

+ + H2TM

E

Metallaelectro-catalyzed C–H activation/alkyne annulation

E
HX

E
H

H

X = Br, I, ...

Larock-type
heteroannulation

C–H activation
with chemical

oxidant

Chemical
Oxidant

+

+

+Limitations:
- Prefunctionalized substrates
- Low step-economy

Limitations:
- Undesired stoichiometric
oxidants

- Low atom-economy

a)

c)

Hydrogen Evolution Scalability Resource Economy Full Selectivity Control

E

b) Aerobic C–H activation/alkyne annulation

E
H

H

+ + 1/2 O2
E + H2O

Limitations:
- Limited tunability
- Safety hazards

cat. [TM]

Flammable
atmosphere

59 Figure 1: a) Common strategies for the assembly of heterocycles via alkyne annulation. b) 

60 Improved atom economy by aerobic C–H activation/annulation. c) Metallaelectro-catalyzed C–H 

61 activation/annulation as resource-economic approach. E = heteroatom. TM = transition metal.

62
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63 2 4d and 5d Metallaelectro-Catalyzed Alkyne Annulations

64 2.1 Rhodaelectro-Catalyzed C–H Activation

65 Rhodium catalysis represents a powerful and versatile approach to chemical synthesis, offering 

66 high efficiency and selectivity across a wide range of transformations.[10] Pioneering work in the 

67 field of rhodaelectro-catalyzed C–H activation was accomplished by Ackermann in 2018 (Scheme 

68 1).[11] Here, the electro-oxidative C–H activation of weakly coordinating benzoic acids 1 for the 

69 assembly of versatile isobenzofuranones 3 was described.

70

KOAc
t-AmOH/H2O (3:1)

100 ºC, 5-18 h
CCE at 4.0 mA

[RhCp*Cl2]2 (2.5 mol %)

RVC Pt

H2
O

O

R2
321

R1

O

OH

H
R1 R2

up to 88%

71 Scheme 1: Assembly of isobenzofuranones 3 enabled by the first rhodaelectro-catalyzed C–H 

72 activation.

73 Subsequently, in 2019, Ackermann established an user-friendly and scalable flow rhodaelectro-

74 catalyzed alkyne annulation for the synthesis of isoquinolines 6 (Scheme 2).[12] The 

75 electrocatalysis proved amenable to differently substituted aryl imidates 4 under flow-

76 electrochemical conditions. This electrocatalytic CH/NH alkyne annulation exhibited high 

77 levels of functional group tolerance and remarkable regioselectivity with unsymmetrical alkynes 

78 5. Moreover, the electro-flow approach was suitable for intramolecular C−H/N−H 

79 functionalization, providing direct access to azo-tetracycles.[12] 
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80   
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25 ºC, 18-22 h

MeOH, O2
CPE at 1.5 V

[Cp*RhCl2]2 (2.5 mol %)R2

R3
R3

R = H, 83%
R = Me, 77%
R = Cl, 68%
R = Br, 72%

N

R2

N

n-Bu

N

R
Ph

R1

H

OMe OMe

R = Me, 81%
R = Et, 73%
R = CO2Me, 76%

OMe

NH

OMe

Me

OH
Me

N

Ph

OMe

OH

Et
Me

90%

4 5 6

R

N

n-Bu

OMe

Me

OH
Me

OMe

MeO

72%

N

Me

OMe

OEt

O

43%

GF Ni

H2R1

81 Scheme 2: Flow rhodaelectro-catalyzed alkyne annulations for the synthesis of isoquinolines 6.

82 The mechanism of rhoda-electrocatalysis was investigated in detail, employing the isolation and 

83 characterization of relevant organometallic intermediates, in-operando kinetic studies, cyclic 

84 voltammetric investigations, and DFT analyses. Thus, the pre-catalyst [Cp*RhCl2]2 first undergoes 

85 ligand exchange with NaOPiv to form the monomeric Cp*Rh(OPiv)2 7. This complex then is 

86 coordinated by the imidate 4, followed by the formation of the rhoda(III)-cycle 8 through CH 

87 activation. Subsequent coordination of the alkyne 5 and migratory insertion result in the generation 

88 of the rhodium(III) heptacycle 10. Under the electrochemical conditions, the formation of product 

89 6 is promoted by an oxidation-induced reductive elimination involving the anodic oxidation of the 

90 rhoda(III)-cycle 10 to generate rhodium(IV) intermediate 11 (Scheme 3).[12] 
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91   

RhIII

R3

R2

R3

R2

Cp*RhIII(OPiv)2
CH activation

anodic oxidation

reductive elimination

NH

OMe

H

Cp*
MeO

H
N

OPiv

OPiv

OPiv

HOPiv

R3

N

R2

OMe

RhIII

MeO
H
N Cp*

OPiv

R3

N R2MeO
RhII

OPiv

Cp*

HOPiv4

8

5

9

1011

12

6

R1

R1

R1
R1

OPiv

insertion

anodic oxidation

7

R1

R2

R3

MeO

R2

R3
MeO

HN
RhIII

HN
RhIV

Cp* OPiv Cp*

R1R1

1/2 [Cp*RhCl2]2

2 Cl

2 OPiv

OPiv

cathodic
reduction

2 H H2

92 Scheme 3: Mechanism of flow rhodaelectro-catalyzed alkyne annulations for the synthesis of 

93 isoquinolines 6.

94 In 2020, Ackermann reported an unique one-step electrochemical assembly of aza-polycyclic 

95 aromatic hydrocarbons 14 (aza-PAH) using rhodaelectro-catalyzed domino C−H annulations 

96 (Scheme 4).[13] The reaction of amidoximes 13 and alkynes 5 resulted in the desired aza-PAHs 14 

97 via threefold C−H activations with high levels of regioselectivity. The feasibility of this 

98 electrocatalysis was proven by scalability, user-friendly setup, and mild reaction conditions. 

99 Hence, the electrocatalytic transformation was efficiently established in an undivided cell setup 

100 with ample scope and significant levels of functional group tolerance.[13] 
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101

AdCO2H, KOAc
MeOH

35 ºC 12 h
CCE at 2.0 mA

Cp*Rh(CH3CN)3(SbF6)2
(5.0 mol %)

GF Pt

R = Me, 94%

R = t-Bu, 66%

R = F, 73%

R = CO2Me, 57%

R1 H

R2 = Me, 81%

R2 = OMe, 92%

R2 = t-Bu, 45%

R2 = TMS, 67%

NH

R2

R2

H

N
H

OMe
N

N

R1

R2

R2

R2

R2

R2

R2

N

N

R2

R2

R2

R2

R2

R2

N

N

13

5
14

R

2 H2

R2

R2

5

R2

R2

5

102 Scheme 4: Electrochemical synthesis of aza-polycyclic aromatic hydrocarbons 14 via 

103 rhodaelectro-catalyzed domino C−H annulations.

104 Recently, metallaelectro-catalyzed reactions have provided efficient routes for the constructions 

105 of various five- and six-membered heterocyclic ring structures via formal [3+2] or [4+2] 

106 cycloadditions.[14] In 2021, Ackermann reported the first rhodaelectro-catalyzed [5+2] 

107 cycloaddition reactions for the synthesis of benzoxepine motifs 16 using 2-vinylphenols 15 and 

108 alkynes 5 (Scheme 5).[15] This rhodium(III/I)-catalyzed annulation reaction was amenable to 

109 diversely functionalized 2-vinylphenols 15 and alkynes 5, demonstrating a broad substrate scope 

110 and functional group tolerance. Detailed mechanistic studies revealed a facile CH rhodation 

111 under a rhodium(III/I) regime. Furthermore, a benzoxepine-coordinated rhodium(I)sandwich 

112 complex 20 could be isolated, which could further be confirmed as a crucial intermediate of the 

113 devised electrocatalysis.[15] 

114
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115  
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H
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O
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R
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R = CO2Me, 77%
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MeO

GF Pt

R1

R1

R1

R1

R1

R1

anodic oxidation

H2

H

7 C–H activation

a)

b) 1/2 [Cp*RhCl2]2

2 Cl

2 OPiv

OPiv

cathodic
reduction

2 H H2

116 Scheme 5: Versatility and mechanism of the rhodaelectro-catalyzed synthesis of benzoxepines 16. 

117 In 2021, Mei established the vinylic C–H annulation of acrylamides 21 with alkynes 5 using 

118 divergent rhodaelectro-catalysis (Scheme 6).[16] Various cyclic imidates 22 and α-pyridones 23 

119 were synthesized by varying the N-substituent of acrylamides 21 in an undivided cell using mild 

120 reaction conditions. The electrocatalysis proceeds for both reaction pathways with excellent 

121 regioselectivity using unsymmetrical internal or terminal alkynes 5.
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O
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60 ºC

R = Ts

R = Ph

R1

R2

O
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R3
R4

R1

R2

NPh

O

R3
R4

Me
O
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92%

Me
O

NTs

95%

Me
O

NTs

R = H, 81%
R = F, 86%
R = OMe, 93%

Me
NPh

O
Me

NPh

O
Me

NPh

O

n-Bu

67%

N
Ts

21 5

22

23

R

CF3

CF3

95% R

R

R = Et, 74%
R = t-Bu, 71%

Pt Pt

Condition A:

Condition B:

Condition A:

Condition B:

H2

H2

123 Scheme 6: Synthesis of imidates 22 and α-pyridones 23 enabled by divergent rhodaelectro-

124 catalyzed vinylic C–H annulation. 

125 Cyclic voltammetric analysis and kinetic isotopic effect studies have elucidated the mechanism of 

126 this rhodaelectro-catalyzed vinylic C–H annulation. The seven-membered rhoda(III)-cycle 27 is 

127 formed by C–H activation followed by insertion of alkyne 5. This intermediate can undergo two 

128 distinct pathways: depending on the electronic nature of the N-substituent of the acrylamide 21 

129 either an ionic stepwise pathway that generates intermediate 28, which further yields the cyclic 

130 imidates 22, or directly a reductive elimination, generating intermediate 29, which leads to the 

131 formation of pyridones 23 takes place (Scheme 7).[16]
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133 Scheme 7: Plausible catalytic cycle for the assembly of imidates 22 and α-pyridones 23. 

134 In 2021, Ackermann developed a rhodaelectro-catalyzed formyl C–H activation (Scheme 8).[17]  

135 This strategy enabled the direct synthesis of various chromones 31 from hydroxybenzaldehydes 

136 30. Notably, despite benzaldehydes generally being considered oxidation-sensitive, the identified 

137 mild reaction conditions for the rhoda-electrocatalysis allowed for an applicability with a wide 

138 range of substrates including peptides (Scheme 8a). Moreover, it was demonstrated that from the 

139 obtained chromone 33 π-extended peptide labels 34 can be accessed through a 

140 photoelectrochemical process (Scheme 8b).[17]
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142 Scheme 8: Versatility of rhodaelectro-catalyzed alkyne annulations for the synthesis of chromones 

143 31 and its application to introduce fluorescent labels 34.

144 In 2021, Zhang described a rhodaelectro-catalyzed C–H annulation for the construction of cationic 

145 polycyclic heteroarenes 36 (Scheme 9).[18] Here, mechanistic studies, including the isolation of 

146 organometallic intermediates and cyclic voltammetric analyses, were conducted. Additionally, the 

147 regioselectivity in the annulation process was elucidated through detailed computational 

148 studies.[18]
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149
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150 Scheme 9: Rhodaelectro-catalyzed C–H annulation to construct cationic polycyclic heteroarenes 

151 36.

152 In 2022, Ackermann, Huang, and Ni reported a rhodaelectro-catalyzed [5+2] C–H/N–H annulation 

153 using 7-phenylindoles 37 with alkynes 5 in an undivided cell to construct azepino[3,2,1-hi]indoles 

154 38 (Scheme 10).[19] This electrocatalysis exhibited a broad substrate scope with ample functional 

155 group tolerance and gram scalability through flow electrocatalysis. Thus, 7-phenylindoles 37 

156 substituted at different positions as well as ortho-, meta-, or para-substituted diphenylacetylenes 

157 5 proved to be compatible.[19]

158
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161 Scheme 10: Rhodaelectro-catalyzed [5+2] C–H/N–H annulation reaction for the construction of 

162 azepino[3,2,1-hi]indoles 38. 

163 A reaction mechanism was proposed derived from deuterium-labeling studies, cyclic voltammetric 

164 analyses, and X-ray photoelectron spectroscopy studies. Based on these findings, the formation of 

165 the six-membered rhoda(III)-cycle 39 through C–H activation was postulated. A migratory 

166 insertion with coordinated alkyne 5 then occurs, leading to the eight-membered rhoda(III)-cycle 

167 41. Finally, an oxidation-induced reductive elimination via a rhodium(III/IV/II) pathway facilitates 

168 the release of the azepino[3,2,1-hi]indole product 38 (Scheme 11).[19] 
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170 Scheme 11: Mechanism of rhodaelectro-catalyzed [5+2] C–H/N–H annulation reaction for the 

171 assembly of azepino[3,2,1-hi]indoles 38.

172 Similarly, in 2022, a rhodaelectro-catalyzed [4+2] C–H annulation was reported by Roy for the 

173 synthesis of cinnolines 45 (Scheme 12).[20] The C−H/N−H annulation of 

174 arylhydrophthalazinediones 44 with alkynes 5 using precatalyst [Cp*RhCl2]2 in an undivided cell 

175 under galvanostatic conditions afforded efficiently the desired cinnolines 45. The robustness and 

176 versatility of the developed method was tested by employing diversely decorated 2-aryl-3-

177 hydrophthalazinediones 44 as well as symmetrical and unsymmetrical internal alkynes 5, while 

178 the desired products 45 were furnished in good to excellent yields. However, terminal alkynes 

179 were not compatible. Cyclic voltammetry and differential pulse voltammetry experiments revealed 

180 the formation of the annulated products 45 through a Rh(III/I) and Rh(III/IV) pathway.[20] 
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182 Scheme 12: Rhodaelectro-catalyzed C−H/N−H annulation for the synthesis of cinnolines 45.

183 Likewise, a rhodaelectro-catalyzed [4+2] C–H activation/annulation with internal alkynes 5 was 

184 reported by Ling in 2022 (Scheme 13).[21] This expedient strategy provided a new series of 

185 polycyclic (7-deaza)purinium salts 47 in excellent yields and proved to be compatible with various 

186 substitution patterns on both the (7-deaza)purine 46 as well as the alkyne 5. Mechanistic studies 

187 employing cyclic voltammetry demonstrated that the coordination of 46 to the Cp*Rh(III) catalyst 

188 and successive cyclometallation gives rhoda(III)-cycle 48, which upon migratory insertion with 

189 alkyne 5 and subsequent reductive elimination delivers the rhodium(I) sandwich complex 51. By 

190 anodic oxidation of complex 51 the annulated product 47 is released and the catalytically 

191 competent rhodium(III) is regenerated (Scheme 13).[21] 

192
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194 Scheme 13: Versatility and mechanism of rhodaelectro-catalyzed [4+2] C–H annulation.
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195 Recently, Ackermann accomplished rhodaelectro-catalyzed CH annulations using enamides 52 

196 and alkynes 5 in an user-friendly undivided cell setup (Scheme 14).[22] Interestingly, a bifurcated 

197 reaction pathway was uncovered, where the solvent system was identified as crucial factor in 

198 controlling the chemo-selectivity. Thus, through the rational choice of the reaction medium, the 

199 product formation between pyrroles 53 and lactones 54 could be switched. This example 

200 demonstrates how the ability to control chemo-selectivity broadens synthesis possibilities and 

201 allows access to a wider range of heterocyclic structures.[22]

202  
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203 Scheme 14: Bifurcated rhodaelectro-catalyzed C−H annulation strategy for the synthesis of 

204 pyrroles 53 and lactones 54.

205 The bifurcated rhodaelectro-catalysis to construct pyrroles 53 or lactones 54 involves a multi-step 

206 reaction mechanism (Scheme 15). Initially, the catalytically active Cp*Rh(III) species is formed 

207 followed by the coordination of enamide 52, yielding intermediate 55. Next, C−H activation takes 
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208 place to form rhoda(III)-cycle 56. Thereafter, migratory insertion of alkyne 5 and anodic oxidation 

209 results in the formation of rhodium(IV) species 58, promoting a reductive elimination to form 

210 intermediate 59. The active rhodium(III) catalyst is then regenerated through anodic oxidation, 

211 ultimately releasing product 53. Regarding the chemo-divergence, it is proposed that the cathodic 

212 hydrogen evolution reaction (HER) promotes the ester hydrolysis when an aqueous medium is 

213 employed, initiating the divergent catalytic scenario primarily involving neutral rhodium 

214 intermediates leading to lactones 54.[22] 
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216 Scheme 15: Plausible catalytic cycle for the bifurcated rhodaelectro-catalyzed C−H annulation 

217 leading to pyrroles 53. 

218
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219 2.2 Iridaelectro-Catalyzed C–H Activation

220 Iridium-catalyzed C–H activation has emerged as a powerful and versatile methodology in modern 

221 organic synthesis.[23] In 2018, Ackermann developed the first irida-electrocatalyzed C–H 

222 activation, which  provided access to various isobenzofuranones 3 from benzoic acids 1 (Scheme 

223 16).[24] With benzoquinone as redox catalyst an indirect, cooperative electrocatalysis was 

224 uncovered. 

225

KOAc, benzoquinone
t-AmOH/H2O (3:1)

100 ºC, 18 h
CCE at 4.0 mA

[Cp*IrCl2]2 (2.5 mol %)

RVC Pt

H2
O

O

R2
321

R1

O

OH

H
R1 R2

up to 88%

226 Scheme 16: First iridaelectro-catalyzed C–H activation enabled by cooperative action of 

227 benzoquinone as redox catalyst.

228 Thereafter, in 2019, Mei developed an irida-electrocatalyzed C−H annulation of acrylic acids 60  

229 to obtain biorelevant α-pyrones 61 (Scheme 17).[25] The reaction conditions comprised 

230 galvanostatic electrolysis in the presence of a [Cp*IrCl2]2 pre-catalyst. Various α-substituted 

231 acrylic acids 60 and internal alkynes 5 were tolerated, resulting in good to excellent yields of the 

232 desired α-pyrones 61. The electrocatalysis demonstrated moderate to excellent regioselectivity 

233 with unsymmetrical alkynes 5.[25] 
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234  

n-Bu4NOAc, MeOH
60 °C, 12 h

CCE at 1.5 mA

[Cp*IrCl2]2 (3.0 mol %)
R3

R4R2 H

OH

O
R1 O
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PhEtO

12%
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94%, 15:1 r.r.

O

O

N
Me

88%

Pt Pt

R

H2

235 Scheme 17: Electrochemical iridium-catalyzed vinylic C−H annulation of acrylic acids 60.

236 The irida-electrocatalysis proceeds in an Ir(III/I) regime (Scheme 18). The irida(III)-cycle 62 is 

237 formed through carboxylate-assisted C–H activation, followed by coordination and insertion of 

238 the alkyne 5. Subsequently, by reductive elimination the sandwich complex 65 is formed, which, 

239 through anodic oxidation, releases the product 61.[25] 
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241 Scheme 18: Mechanism of iridium-catalyzed electrochemical vinylic C−H annulation of acrylic 

242 acids 61.

243 Isocoumarins are known for their significant biological effects and commonly found in natural 

244 substances and medicinal compounds.[26] In 2021, Guo and Mei developed an iridaelectro-

245 catalyzed regioselective annulation of easily accessible aromatic carboxylic acids 1 with internal 

246 alkynes 5 to access isocoumarins 66 with moderate to excellent regioselectivity (Scheme 19).[27] 

247 The electrocatalysis demonstrated broad compatibility with various substrates 1 and 5, including 

248 dialkyl acetylenes. Mono-substituted benzoic acids 1 with electron-donating and electron-neutral 

249 substituents readily reacted in satisfactory yields, while strong electron-withdrawing groups 

250 afforded lower yields. However, with more sterically hindered arylalkynes the efficiency is 

251 decreased (Scheme 19a). Interestingly, the reaction with tert-propargyl alcohols 5a efficiently 

252 furnished isocoumarins 67 under identical reaction conditions as a single regioisomer (Scheme 

253 19b).[27] 
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255 Scheme 19: Synthesis of isocoumarin derivatives 66 and 67 through irida-electrocatalysis.

256 Recently, Guo and Yang described an irida-electrocatalyzed C–H annulation, yielding cationic π-

257 extended heteroarenes 69 (Scheme 20).[28] The strategy demonstrated a broad substrate scope and 

258 was compatible with various N-heteroarenes as directing groups, including pyridine and purine 

259 derivatives. Additionally, mechanistic studies indicated an Ir(III/I) regime.[28]
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260  
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261 Scheme 20: Synthesis of cationic π-extended heteroarenes 69 through irida-electrocatalysis.

262
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263 2.3 Ruthenaelectro-Catalyzed C–H Activation

264 Ruthenium catalysis is highly attractive due to the exceptional catalytic reactivity of ruthenium, 

265 combined with its good availability compared to more expensive transition metals like palladium 

266 and rhodium.[29] In 2018, Ackermann reported the first example of ruthenaelectro-catalyzed CH 

267 activation by weak O-coordination for the construction of  isocoumarins 70 (Scheme 21).[30] The 

268 reaction involves an in situ formed ruthenium(II) carboxylate catalyst mediating the CH bond 

269 activation in a reaction medium of tert-amyl alcohol and water. This ruthena-electrocatalysis 

270 proved to be versatile and was amenable to both electron-rich as well as electron-deficient arenes 

271 1 and alkynes 5. Notably, unsymmetrical alkynes 5 reacted to the desired product 70 with high 

272 levels of regioselectivity (Scheme 21a). Additionally, the electrocatalysis was also found to be 

273 compatible with benzamides 71, to form the corresponding isoquinolones 72 (Scheme 21b).[30] 

274  
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275 Scheme 21: Electro-oxidative ruthenium-catalyzed alkyne annulation to construct a) isocoumarins 

276 70 and b) isoquinolones 72.

277 Based on detailed mechanistic studies, a plausible catalytic cycle was proposed (Scheme 22). 

278 Initially, the ortho C–H activation occurs, leading to the formation of the ruthena(II)-cycle 73. 

279 Subsequently, the insertion of alkyne 5 takes place, forming the seven-membered ruthena(II)-cycle 

280 74, which undergoes reductive elimination to produce the ruthenium(0) sandwich complex 75. 

281 This complex is then anodically oxidized, releasing product 70 and regenerating the catalytically 

282 competent ruthenium(II) carboxylate species, while cathodic reduction generates molecular 

283 hydrogen being the sole stoichiometric byproduct (Scheme 22).[30]  

284   
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285 Scheme 22: Catalytic cycle for the electro-oxidative ruthenium-catalyzed alkyne annulation by 

286 weakly coordinating benzoic acids 1.

287 Concurrently, Xu developed a ruthenaelectro-catalyzed C–H annulation of anilines 76 with 

288 alkynes 5 in an undivided cell under galvanostatic electrolysis (Scheme 23).[31] The 

289 electrocatalysis allowed access to indoles 77 with diverse functional groups in good to excellent 

290 yields. However, substrates with highly sterically hindered functional groups exhibited diminished 

291 regioselectivity and reactivity.[31] 
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292   

R1

R1

99%

N

R3

R2

N
N

NH

N N

N

Ph

Ph

N
N

N

Ph

Ph

N
N

76 77

N

Ph

Ph

N
NOMe

95%

N

n-Bu

N
NMe

69%, 4.5:1 r.r.

N
Ph

N
N

OH

N

Et

Ph

N
N

N

n-Bu

N
N

S

84%

Me

89%, 11:1 r.r.

OH

72%, 10:1 r.r. 63%, 6.9:1 r.r.

5

H2

H
RVC Pt

R3

R2
KPF6, NaOAc

H2Oli-PrOH (1:1)
reflux,1.8-3.9 h
CCE at 10 mA

[RuCl2(p-cymene)]2
(5.0 mol %)

293 Scheme 23: Ruthenaelectro-catalyzed C–H/N–H annulation for the synthesis of indoles 77.

294 In 2018, Ackermann established an electrochemical peri-selective C–H alkyne annulation of aryl 

295 carbamates 78 and naphthols 80 using ruthenium-catalysis (Scheme 24).[32] Here, electrochemical 

296 conditions for facilitating both CH/NH and CH/OH annulations were identified. The 

297 versatility of this approach was assessed by varying the functional groups on both substrates 

298 demonstrating excellent site-, regio-, and chemo-selectivity. The strategy provided access to 

299 diverse benzoquinoline derivatives 79 and pyrans 81 in a step-economical manner with high 

300 efficacy and selectivity.[32] 
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302 Scheme 24: Ruthenaelectro-catalyzed peri-selective C–H alkyne annulations to access 

303 benzoquinolines 79 and pyrans 81. 

304 Based on detailed mechanistic studies, a possible catalytic cycle was proposed (Scheme 25). The 

305 catalytic cycle begins with organometallic C–H activation, generating a ruthena(II)-cycle 82. 

306 Migratory alkyne insertion then forms a seven-membered ruthena(II)-cycle 84, which undergoes 

307 reductive elimination to produce a ruthenium(0)-sandwich complex 85. The anodic oxidation of 

308 complex 88 results in the desired product 79.[32] 
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310 Scheme 25: Catalytic cycle for the ruthenaelectro-catalyzed alkyne annulation of arylcarbamates 

311 78.

312 In 2019, Li likewise employed ruthenaelectro-catalysis to access isocoumarins 70 (Scheme 26).[33] 

313 Here, an electrochemical decarboxylative C–H annulation strategy involving arylglyoxylic acids 

314 86 and internal alkynes 5 was devised for the construction of isocoumarins 70. This regime was 

315 applicable with both symmetrical and unsymmetrical internal alkynes 5 showing high levels of 

316 regioselectivity. However, sterically congested alkynes 5 as well as electron-withdrawing 

317 functional groups on the arylglyoxylic acid 86 resulted in low efficiency of the electrocatalysis.[33] 
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319 Scheme 26: Decarboxylative ruthenaelectro-catalyzed C–H annulation to access isocoumarins 70.

320 To gain mechanistic insights of the decarboxylative ruthena-electrocatalysis, 18O-labeled isotope 

321 and kinetic isotope effect experiments were conducted. Here, a cooperative action of the anodic 

322 decarboxylation and C–H activation was found. The reaction initiates with the carboxyl group of 

323 the arylglyoxylic acid 86 coordinating to the active ruthenium(II) carboxylate species, leading to 

324 the formation of intermediate 87. Subsequently, this intermediate undergoes anodic single-electron 

325 oxidation to promote a decarboxylation and hydration to yield intermediate 88. Next, further 

326 anodic oxidation along with C–H activation leads to ruthena(II)-cycle 89 and the migratory 

327 insertion of alkyne 5 to generate the seven-membered ruthena(II)-cycle 91 is realized. Lastly, 

328 reductive elimination takes place, resulting in the formation of desired product 70 and the active 

329 ruthenium(II) carboxylate species is regenerated by anodic oxidation (Scheme 27).[33] 
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331 Scheme 27: Mechanism of the decarboxylative ruthenaelectro-catalyzed C–H annulation.

332 In 2019, Tang developed an electrocatalytic method for synthesizing polycyclic isoquinolinones 

333 93 through double C−H activation (Scheme 28).[34] The reaction was effective using a simple 

334 undivided cell under galvanostatic electrolysis and was compatible with a wide range of 

335 benzamides 92 and alkynes 5 yielding the desired fused products 93 with medium to excellent 

336 yields. The high site-selectivity of the electrocatalysis was further demonstrated by using meta-

337 substituted benzamides 92.[34] 
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339 Scheme 28: Ruthenaelectro-catalyzed C–H annulation for the chemoselective synthesis of 

340 polycyclic isoquinolinones 93.

341 The initial step of the proposed mechanism involves the formation of ruthena(II)-cycle 94 through 

342 C–H activation. Subsequently, the insertion of alkyne 5 leads to intermediate 95, which then 

343 undergoes reductive elimination to furnish 96. This is followed by a second C–H activation event, 

344 resulting in the formation of yet another cyclometallated intermediate 97. Through a sequence 

345 involving the insertion of a second alkyne 5 and subsequent reductive elimination, the 

346 ruthenium(0) sandwich complex 99 is formed. Ultimately, product 93 is released from complex 

347 99 through anodic oxidation (Scheme 29).[34] 
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349 Scheme 29: Simplified catalytic cycle for the ruthenaelectro-catalyzed double C–H activation. 

350 Li applied the ruthenaelectro-catalyzed  C–H annulation strategy for the synthesis of isocoumarin 

351 cores 70 from primary benzylic alcohols 100 (Scheme 30).[35] Notably, this regime allowed 

352 benzylic alcohols 100 to act as weakly directing group precursors to acquire isocoumarins 70 via 

353 multiple C–H functionalizations. The electrocatalysis displayed high regio- and site-selectivity 

354 with a broad substrate scope. In contrast to internal alkynes 5, terminal alkynes were not found to 

355 be compatible with this strategy.[35] 
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357 Scheme 30: Ruthenaelectro-catalyzed C–H annulations for the synthesis of isocoumarins 70 from 

358 benzylic alcohols 100.

359 In 2020, Ackermann further demonstrated a ruthena-electrocatalysis for the assembly of diverse 

360 bridgehead N-fused [5,6]-bicyclic heteroarenes 102 from imidazoles 101 with alkynes 5, involving 

361 an oxidation-induced reductive elimination pathway (Scheme 31).[36] The versatility of this 

362 strategy was explored with various imidazole 101 and alkyne 5 substrates decorated with a range 

363 of substituents at different positions, amenable to efficiently form the desired products 102. 

364 Besides alkenyl imidazoles, also 2-arylimidazoles 101 were applicable (Scheme 31a). Notably, 

365 organometallic azaruthena(II)-bicyclo[3.2.0]heptadiene intermediates 103a and 104a were 

366 isolated and employed in stoichiometric reactions, providing strong support for an oxidation-

367 induced reductive elimination within a ruthenium(II/III/I) manifold (Scheme 31b).[36] 
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369 Scheme 31: Ruthenaelectro-catalyzed synthesis of bridgehead N-fused [5,6]-bicyclic heteroarenes 

370 102.

371 Hence, the azaruthena(II)-bicyclo[3.2.0]heptadiene intermediate 104 formed through alkyne 

372 coordination and migratory insertion to the ruthena(II)-cycle 103 undergoes anodic oxidation to 

373 form the ruthenium(III) complex 107, followed by a pericyclic ring opening to yield 108. 

374 Reductive elimination then yields the ruthenium(I) complex 109, which releases the final N-fused 

375 [5,6]-bicyclic heteroarene 102 (Scheme 32).[36] 
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377 Scheme 32: Plausible catalytic cycle for the ruthenaelectro-catalyzed annulation involving 

378 azaruthena(II)-bicyclo[3.2.0]heptadiene intermediates.

379 In 2020, Ackermann reported on a ruthenaelectro-catalyzed domino three-component alkyne C–H 

380 annulation, which enabled the expedient construction of isoquinolines 111 from phenones 110, 

381 alkynes 5, and ammonium acetate (Scheme 33).[37] The reaction demonstrated a broad substrate 

382 scope, including the compatibility with unprotected alcohol groups. Additionally, relevant 

383 cyclometallated ruthenium species 113 and 114 were isolated and their significance for the 

384 electrocatalysis was evaluated, supporting a ruthenium(II/III/I) pathway.[37]
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386 Scheme 33: Domino three-component alkyne C–H annulation enabled by ruthena-electrocatalysis.
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387 2.4 Osmaelectro-Catalyzed C–H Activation

388 Osmium, a transition-metal known for its robust reactivity and versatile coordination chemistry, 

389 serves as a remarkable catalyst in various redox processes.[38] In 2021, Ackermann described the 

390 first osmaelectro-catalyzed C–H activation (Scheme 34a).[39] The strategy allowed expedient 

391 access to  isocoumarins 70 from benzoic acids 1 and alkynes 5 with a broad tolerance to functional 

392 groups. Furthermore, systematic reaction monitoring by NMR spectroscopy and HR-ESI-mass 

393 spectrometry provided support for an osmium(II/0) manifold, while key organometallic 

394 intermediates 115 and 116 were isolated and studied (Scheme 34b).[39]
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396 Scheme 34: Osmaelectro-catalyzed alkyne annulation by weakly coordinating acids 1.
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397 2.5 Enantioselective 4d Metallaelectro-Catalyzed Alkyne Annulations

398 In recent years, enantioselective electrocatalysis has emerged as an increasingly versatile tool for 

399 the assembly of complex molecules.[40] Pioneering work in the domain of enantioselective 4d-

400 metallaelectro-catalyzed C–H activation was contributed by Ackermann in 2020, where 

401 palladaelectro-catalyzed C–H alkenylations were disclosed to construct axially chiral biaryls.[41] 

402 Thereafter, in 2021, Mei reported on an enantioselective rhodaelectro-catalyzed C–H annulation 

403 for the synthesis of biorelevant spiropyrazolones 118 by reacting α-arylidene pyrazolones 117 with 

404 alkynes 5 in an undivided cell under potentiostatic electrolysis (Scheme 35a).[42] This robust 

405 annulation strategy provided access to a variety of chiral spirocycles 118 in decent yields and 

406 enantioselectivities.[42] Concurrently, Ackermann established an enantioselective rhodaelectro-

407 catalyzed strategy for the assembly of chiral spiropyrazolones 118, operating under galvanostatic 

408 electrolysis (Scheme 35b). In this study, Ackermann also demonstrated a palladaelectro-catalyzed 

409 spiroannulation with alkynes, although without enantioselectivity.[43]
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411 Scheme 35: Enantioselective rhodaelectro-catalyzed C–H annulations for the synthesis of 

412 spiropyrazolones 118.

413 Very recently, Shi and Zhou applied the rhoda-electrocatalysis strategy[12] to the C–H annulation 

414 of sulfoximines 119, where a chiral carboxylic acid (CCA) was effective in controlling 

415 enantioselectivity.[44] The S-stereogenic products 120 were obtained in moderate to good yields 

416 and enantioselectivities (Scheme 36).[44]
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418 Scheme 36: Enantioselective rhodaelectro-catalyzed C−H annulation of sulfoximines 119. 

419
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420 3 3d Metallaelectro-Catalyzed Alkyne Annulations

421 3.1 Cobaltaelectro-Catalyzed C–H Activation

422 Cobalt, an economically viable and Earth-abundant transition metal, has emerged as one of the 

423 foremost contenders for facilitating carbon–carbon and carbon-heteroatom bond-forming 

424 reactions.[45] In 2018, Ackermann reported on the first cobaltaelectro-catalyzed C–H/N–H alkyne 

425 annulation of benzamides 121 (Scheme 37).[46] The synthesis of isoquinolinones 122 was achieved 

426 under exceedingly mild and environmentally-friendly conditions, employing an undivided cell 

427 equipped with a platinum plate cathode and a reticulated vitreous carbon (RVC) anode under 

428 galvanostatic electrolysis. In particular, the pyridine oxide directing group (PyO) proved to be 

429 suitable for facilitating the electrocatalytic C–H/N–H annulation. Under the optimized 

430 electrochemical conditions, a wide substrate scope was identified, demonstrating broad 

431 applicability. Thus, alkynes 5 having cyclopropyl, alkyl chloride, and ester functional groups were 

432 found to be viable substrates.[46] 

433  
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434 Scheme 37: Cobaltaelectro-catalyzed CH/NH alkyne annulation with benzamides 121.
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435 Recently, in 2020, Ackermann reported key studies that provided mechanistic insights into the 

436 mode of action of cobalta-electrocatalysis (Scheme 38).[47] Herein, the electrosynthesis of the 

437 cyclometallated cobalt(III) complex 123 was achieved, which was further confirmed to be a key 

438 intermediate in the electrocatalytic process (Scheme 38a). Thus, when this intermediate 123 is 

439 reacted with the alkyne 5b in the absence of electricity, the annulated product 122a is formed in 

440 99% yield (Scheme 38b). This result verifies a facile reductive elimination from cobalt(III) for the 

441 C–H/N–H annulation without the need for an oxidation to cobalt(IV), as found for the C–O bond 

442 forming pathway in C–H alkoxylation via oxidation-induced reductive elimination.[47] 

443  

O

N N
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N
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N
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O
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CoIII
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GF Pt

121a

O

N N
O
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NO
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CoIII

Ph
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NaOPiv, MeOH
25 °C, 16 h, N2

N
PyO

O

Ph

122a, 99%

a)

b)

444 Scheme 38: Key experiments to unveil the mechanism of the C–H/N–H alkyne annulation. 

445 Concurrently, Lei applied the cobaltaelectro-catalyzed C–H annulation strategy using 8-quinolinyl 

446 (Q) substituted benzamides 124 and ethyne 5c using a divided cell setup to yield isoquinolinones 

447 125 (Scheme 39).[48] This approach exhibited broad substrate scope, tolerating various benzamide 

448 and acrylamide derivatives 124 as suitable substrates.[48] 

Page 42 of 60ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
2/

20
24

 1
0:

24
:5

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4CC03871A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc03871a


43
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450 Scheme 39: Cobaltaelectro-catalyzed C–H/N–H ethyne annulation. 

451 Furthermore, Ackermann demonstrated the applicability of cobaltaelectro-catalyzed C−H/N−H 

452 alkyne annulation to benzamide 126 bearing an electro-removable N-2-pyridylhydrazide auxiliary 

453 under exceedingly mild conditions at room temperature with ample scope (Scheme 40a).[49] 

454 Interestingly, the auxiliary could be easily cleaved electro-reductive samarium-catalysis, 

455 exhibiting the utility of this strategy (Scheme 40b).[49] In 2019, Ackermann further developed a 

456 cobaltaelectro-catalyzed C−H/N−H annulation approach, specifically targeting the challenging 

457 substrate class of 1,3-diynes 5d (Scheme 40c).[50] The selectivity challenges associated with 1,3-

458 diynes 5d are significantly more intricate compared to those observed with internal alkynes. 

459 Remarkably, the developed approach demonstrated excellent substrate scope and significant 

460 compatibility with various functional groups. Also here, the hydrazide directing group could be 

461 easily cleaved through samarium-electrocatalysis.[50] 
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463 Scheme 40: Cobaltaelectro-catalyzed C−H/N−H annulations with electro-removable hydrazides 

464 126.

465
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466 In 2020, Ackermann further demonstrated the green aspects of cobaltaelectro-catalyzed CH 

467 activation by performing the synthesis of isoquinolinones 122 in biomass-derived glycerol in an 

468 user-friendly undivided cell under galvanostatic electrolysis.[51] Importantly, the direct use of 

469 renewable energy sources, including sunlight and wind power, to drive this sustainable and 

470 resource-economic electrocatalytic transformation was established, showcasing the robustness and 

471 practicality (Scheme 41).[51] 

472  

NaOPiv
H2O/glycerol (1:1)

40 ºC, 6 h
CCE at 8.0 mA

Co(OAc)2•4H2O
(10 mol %)

Ph
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Ph
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GF Pt

N
H

PyO
O

H

121a 122a, 73%

H2

473 Scheme 41: Cobaltaelectro-catalyzed CH alkyne annulation in aqueous glycerol driven by 

474 natural sunlight.

475 In 2020, Lei applied the cobalta-electrocatalysis strategy to synthesize structurally diverse sultams 

476 131 by the annulation of sulfonamides 130 with alkynes 5 (Scheme 42).[52] The reaction was 

477 performed in an undivided cell under galvanostatic electrolysis. Various sulfonamides 130 and 

478 alkynes 5 substituted with different functional groups were explored which delivered the broad 

479 substrate scope of this method. Internal alkynes 5 also produced the annulation products in 

480 moderate to high yields (Scheme 42a). Mechanistic studies revealed that first, the cobalt(II) 

481 species is coordinated by the sulfonamide substrate 130 to produce the cobalt(II) complex 132 

482 which is oxidized to generate the cobalt(III) intermediate 133. Next, the cyclometallated cobalt(III) 

483 complex 134 is generated by C–H activation followed by insertion of alkyne 5. Lastly, reductive 

484 elimination leads to the final annulation product 131 (Scheme 42b).[52] 

Page 45 of 60 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
2/

20
24

 1
0:

24
:5

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4CC03871A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc03871a


46
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486 Scheme 42: Versatility and schematic catalytic cycle for the synthesis of sultams 131 via 

487 cobaltaelectro-catalyzed C–H annulation.

488
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489 3.2 Cupraelectro-Catalyzed C–H Activation

490 Copper plays a significant role in transition metal-catalysis being an Earth-abundant and cost-

491 effective transition metal with unique properties and versatility.[53] In 2019, Ackermann reported 

492 on the first cupraelectro-catalyzed C−H activation (Scheme 43).[54] This resource-economic 

493 strategy allowed for alkyne annulation with benzamides 124 and terminal alkynes 5  and exhibited 

494 excellent functional group tolerance (Scheme 43a). Interestingly, the cupra-electrocatalysis led to 

495 the formation of isoindolones 136, rather than isoquinolones as observed under cobalta-

496 electrocatalysis.[46, 49] In addition, the strategy also allowed for decarboxylative C−H/C−C 

497 functionalizations by electrocatalysis (Scheme 43b).[54] 
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499 Scheme 43: Cupraelectro-catalyzed C−H alkyne annulations to construct isoindolones 136.

500
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501 Based on detailed mechanistic investigations, including H/D exchange experiments, kinetic 

502 isotope effect studies, and in-operando kinetic analyses as well as cyclic voltammetry studies, a 

503 plausible mechanism was described (Scheme 44). Hence, by coordination of the substrate 124 and 

504 anodic oxidation, the formation of the copper(III) intermediate 138 is promoted. This species then 

505 undergoes C−H activation to form the cupra(III)-cycle 149, followed by metalation of the terminal 

506 alkyne 5. The subsequent reductive elimination delivers the C−H alkynylated arene 141, which 

507 undergoes cyclization to furnish the desired isoindolone product 136. The copper(I) complex is 

508 then oxidized at the anode to regenerate the catalytically active high-valent copper species 

509 (Scheme 44).[54] 
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511 Scheme 44: Catalytic cycle for the cupraelectro-catalyzed C−H activation leading to isoindolones 

512 136.
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514 3.3 Enantioselective 3d Metallaelectro-Catalyzed Alkyne Annulations

515 The 3d transition metal cobalt has recently emerged as a particularly promising catalyst for 

516 enantioselective C–H activation.[55] Its low cost, abundant availability, and unique reactivity make 

517 it an attractive alternative to the earlier established 4d and 5d transition metals such as palladium, 

518 rhodium, and iridium. Hence, in the field of high-valent cobalt-catalyzed C–H activation, various 

519 strategies for controlling enantioselectivity have been identified (Scheme 45).[56] In 2018, 

520 Ackermann introduced newly designed C2 symmetric chiral carboxylic acids to enable the first 

521 examples of enantioselective high-valent cobalt-catalyzed C–H activation.[57] Later, in 2019, 

522 Cramer identified chiral cyclopentadienyl cobalt(III) complexes as viable pre-catalysts for C–H 

523 activation reactions with high enantioselectivity.[58] Subsequently, in 2022, Shi[59] and Niu[60] 

524 applied chiral salicyloxazoline ligands, first described by Bolm[61], for enantioselective cobalt-

525 catalyzed C–H activations employing bidentate directing groups.

526

N

NPh

Ph
CO2H

O
R1

O
R1

chiral acids

Co
X

L
X

chiral Cpxcobalt(III)
complexes

* N

O

OH
R2

chiral bidentate ligands

527 Scheme 45: Control of enantioselectivity in high-valent cobalt-catalyzed C–H activation.

528 In 2023, Ackermann delineated the first enantioselective cobaltaelectro-catalyzed  C–H activations 

529 (Scheme 46).[62] Employing L1 as ligand, the enantioselective C–H annulation of arylphosphinic 

530 amides 142 and alkynes 5 successfully yielded P-chiral cyclic phosphinic amides 143 with 

531 exceptional enantioselectivity and broad substrate scope (Scheme 46a). Furthermore, the efficacy 

532 of this transformation extends beyond conventional alkynes 5, as the cascade annulation involving 

533 alkynoates 5f was also accomplished. Importantly, it could be demonstrated that the 

534 enantioselective cobalta-electrocatalysis can directly be driven by natural sunlight as a renewable 

535 form of energy using a solar-panel (Scheme 46b).[62]
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537 Scheme 46: Enantioselective cobaltaelectro-catalyzed C–H alkyne annulations for the synthesis 

538 of P-stereogenic compounds 143 and 144.

539
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540 Based on mechanistic studies and previous reports[47, 59, 62-63], a reaction mechanism is depicted 

541 (Scheme 47). First, anodic oxidation of the cobalt(II) pre-catalyst generates the active chiral 

542 cobalt(III), which is coordinated by the chiral ligand L1 und substrate 142 to form intermediate 

543 146. Next, the cyclometallated cobalt(III) intermediate 147 is formed via enantioselective CH 

544 activation, followed by coordination and migratory insertion of alkyne 5.  Subsequent reductive 

545 elimination delivers the chiral compound 143 along with cobalt(I) complex 150. Finally, 150 is re-

546 oxidized by anodic oxidation to complete the catalytic cycle. 
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548 Scheme 47: Schematic catalytic cycle for the cobaltaelectro-catalyzed enantioselective C–H 

549 annulation. 

550 Moreover, Ackermann devised the first enantioselective cobaltaelectro-catalyzed synthesis of 

551 axially chiral compounds 152 (Scheme 48).[62] The atropo-chiral products 152 were accessed with 
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552 excellent yields and enantiomeric purities. Notably, the atroposelective cobalta-electrocatalysis 

553 proved to be scalable using cost-effective stainless steel as cathode material instead of the 

554 commonly used precious platinum.[62] 
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556 Scheme 48: Atroposelective cobaltaelectro-catalyzed C–H alkyne cascade annulation.

557 Following the pioneering studies by Ackermann[62-63], enantioselective cobaltaelectro-catalyzed 

558 reactions have flourished with several reports.[56] Ling applied the cobalta-electrocatalysis strategy 

559 for the enantioselective[63b] and non-enantioselective[64] synthesis of P-stereogenic compounds 143 

560 using an aqueous solvent system (Scheme 49).[63b, 64] 
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562 Scheme 49: Enantioselective and non-enantioselective cobaltaelectro-catalyzed C–H annulation 

563 for the synthesis of P-stereogenic phosphinic amides 143.

564 Furthermore, Niu contributed significantly demonstrating several cobaltaelectro-catalyzed 

565 annulation reactions with alkynes for the assembly of axially chiral molecules using chiral salox-

566 based ligands (Scheme 50). First, an atroposelective annulation of alkynes 5 with sulfonamides 

567 153 was reported, forming atropo-chiral sultams 154 with high level of selectivity (Scheme 50a). 

568 The strategy consisted a broad scope and high enantioselectivity in the products.[65] Later, Niu 

569 devised an atroposelective annulation reaction with internal and terminal alkynes 5, where 7-

570 azaindole derived directing groups were employed, leading to versatile NN axially chiral 

571 compounds 156 with high levels of enantioselectivity (Scheme 50b).[66] In addition, Niu reported 

572 an atroposelective annulation of alkynes 5 employing benzamides 157 bearing pyridine-N-oxide 

573 derived directing groups (Scheme 50c).[67] 

574
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576 Scheme 50: Atroposelective cobaltaelectro-catalyzed C–H annulations with diverse directing 

577 groups.
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578 4 Conclusion

579 The intersection of organic synthesis, renewable energy, and hydrogen economy through 

580 metallaelectro-catalysis reveals seminal opportunities towards sustainable development. Thus, 

581 electrocatalytic processes, powered by renewable forms of energy, can provide an alternative to 

582 traditional chemical methods, reducing the need for harsh reagents and minimizing waste. 

583 Importantly, pairing of organic synthesis to the valuable hydrogen evolution reaction (HER) 

584 enables a prospective integration into a decentralized green hydrogen economy. 

585 Metallaelectro-catalysis, a rapidly evolving field, has emerged as a cutting-edge technique to forge 

586 new synthesis routes. Given that past research on C–H annulation reactions has primarily focused 

587 on precious transition metals, such as rhodium and ruthenium, it is anticipated that future efforts 

588 will increasingly emphasize more the Earth-abundant and less toxic transition metals. Hence, the 

589 commencing exploration of 3d transition metals, such as cobalt and copper, has paved the way for 

590 the development of resource-economical and environmentally benign processes. Moreover, the 

591 ability to control enantioselectivity, which is an essential feature in the synthesis of 

592 pharmaceuticals and agrochemicals, has very recently been accomplished and offers novel 

593 opportunities towards full selectivity control. 

594 As electrocatalysis continues to advance, it is expected that this innovative technique will become 

595 an integral part of the toolkit of organic chemists. Its ability to redesign organic synthesis, coupled 

596 with its potential to be integrated into a decentralized green hydrogen economy, bodes well for a 

597 future in which electrocatalysis plays a central role in advancing sustainable chemical processes.
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