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A model analysis of centimeter-long
electron transport in cable bacteria†
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Yaroslav M. Blanter a and Filip J. R. Meysman *bc

The recent discovery of cable bacteria has greatly expanded the known length scale of biological

electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across

centimeter-scale distances. To enable such long-range conduction, cable bacteria embed a network of

regularly spaced, parallel protein fibers in their cell envelope. These fibers exhibit extraordinary electrical

properties for a biological material, including an electrical conductivity that can exceed 100 S cm�1.

Traditionally, long-range electron transport through proteins is described as a multi-step hopping

process, in which the individual hopping steps are described by Marcus electron transport theory. Here,

we investigate to what extent such a classical hopping model can explain the conductance data

recorded for individual cable bacterium filaments. To this end, the conductive fiber network in cable

bacteria is modelled as a set of parallel one-dimensional hopping chains. Comparison of model

simulated and experimental current(I)/voltage(V) curves, reveals that the charge transport is field-driven

rather than concentration-driven, and there is no significant injection barrier between electrodes and

filaments. However, the observed high conductivity levels (4100 S cm�1) can only be reproduced, if we

include much longer hopping distances (a 4 10 nm) and lower reorganisation energies (l o 0.2 eV)

than conventionally used in electron relay models of protein structures. Overall, our model analysis

suggests that the conduction mechanism in cable bacteria is markedly distinct from other known forms

of long-range biological electron transport, such as in multi-heme cytochromes.

1 Introduction

Electron flow through proteins is central to the functioning of
living organisms, as it connects the sites where oxidation
and reduction half-reactions occur that support vital bio-
chemical processes.1 The best studied systems in terms of
biological electron transport are the membrane complexes
that enable photosynthesis in chloroplasts or respiration in
mitochondria.2,3 These protein structures incorporate a series
of non-protein cofactors (e.g., hemes, FeS clusters) that act as
relay centres for electron transport. Electrons migrate through
the electrically insulating protein medium by quantum-
mechanical tunneling from one center to the next. As the
tunneling rate exponentially decreases with distance, cofactors
must be closely spaced (o1.4 nm apart) to allow for sufficiently

fast rates (4103 s�1 time scale) that can sustain metabolism.3

Typically, electron transport chains incorporate up to 10–20
cofactors, and so the overall length scale of conduction is
limited to o20 nm. This has fueled the idea that biological
electron transport takes place at the nanometer scale, and so,
any electron current exceeding 3 nm in biology is generally
referred to as ‘‘long-range electron transport’’.2

The recent discovery that cable bacteria can channel elec-
trical currents across centimeter distances,4 i.e. 106 times
further, thus gives a radically new meaning to the concept of
‘‘long-range electron transport’’.5 Cable bacteria are long,
motile, filamentous bacteria that thrive in the surface sedi-
ments of rivers, lakes, and oceans.6–9 Their respiratory meta-
bolism couples the oxidation of free sulfide (H2S) to the
reduction of oxygen (O2), which is an energetically favorable
reaction.10,11 The remarkable feature is that these two half-
reactions are carried out by different parts of the long fila-
ments, and so the sites of oxidation and reduction can be
millimetres to centimetres apart.4 To ensure that the redox
half-reactions remain electrically coupled, electrons are intern-
ally conveyed through the cable bacterium filaments.12–14

To mediate this centimeter-scale electron transport, cable
bacteria harbor an electrical grid consisting of thin protein

a Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft,

2628CJ, The Netherlands. E-mail: j.r.vanderveen@tudelft.nl
b Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,

Delft, 2629HZ, The Netherlands
c Excellence center for Microbial Systems Technology, University of Antwerp,

Universiteitsplein 1, Wilrijk, 2610, Belgium. E-mail: filip.meysman@uantwerpen.be

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d3cp04466a

Received 14th September 2023,
Accepted 11th December 2023

DOI: 10.1039/d3cp04466a

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 7
/1

8/
20

25
 1

2:
42

:3
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0009-0002-3091-7189
https://orcid.org/0000-0002-5385-0282
https://orcid.org/0000-0002-7956-9966
https://orcid.org/0000-0001-5334-7655
http://crossmark.crossref.org/dialog/?doi=10.1039/d3cp04466a&domain=pdf&date_stamp=2024-01-08
https://doi.org/10.1039/d3cp04466a
https://doi.org/10.1039/d3cp04466a
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp04466a
https://rsc.66557.net/en/journals/journal/CP
https://rsc.66557.net/en/journals/journal/CP?issueid=CP026004


3140 |  Phys. Chem. Chem. Phys., 2024, 26, 3139–3151 This journal is © the Owner Societies 2024

fibers embedded in the cell envelope13 (Fig. 1a). Recent studies
have resolved the intricate architecture of this highly organized
fiber network15–17 (see Fig. 1b and discussion below). Addition-
ally, it has been shown that these protein fibers display
extraordinary electrical properties for a biological material.
Electrical measurements demonstrate that the fiber conductiv-
ity can reach up to 100 S cm�1, which is comparable to that of
highly doped conductive polymers.13,18 Because of this, the
protein fibers are regarded as a promising new material for
bio-based electronics.13 Such technological application how-
ever necessitates the resolution of some fundamental ques-
tions. What mechanism allows for such highly efficient
centimeter-scale conduction in proteins? Does the electron
transport in cable bacteria bear any similarity to the mechan-
isms seen in the well-studied protein systems of photosynthesis
and respiration?

At present, the molecular structure of the fiber network
remains unresolved, and as a result, the conduction mecha-
nism remains elusive. Model analysis, however, allows us to
explore potential mechanisms. Nanoscale electron transport
across proteins, as seen in multi-heme cytochromes, is con-
ventionally described by the multistep hopping formalism.19

Here, we investigate whether this same model formalism can

describe the highly efficient, centimeter-scale electron trans-
port in cable bacteria. In the multi-hopping picture, it is
assumed that charges are temporarily localized at particular
sites, and that electron transport occurs by incoherent ‘‘hop-
ping’’ between consecutive sites along a chain. The electron
transfer during a single hop is described by Marcus theory,
which requires that the reorganization energy, l, is significantly
larger than electronic coupling, H, so that localized charge
carriers form in the initial and final states.20 These Marcus-
type hopping models comprise the default modelling approach
for biological conduction, and have been used previously to
describe nanometer scale electron transport in multi-heme
cytochromes21 and protein-based molecular junctions,22–24 as
well as micrometer scale electron transport in the nanowires of
metal-reducing bacteria.25–27

The distance over which electron transport occurs in cable
bacteria is however very different from the length scale for
which the Marcus multi-stepping model has been originally
developed. To test the validity of the Marcus formalism, we
describe the conductive fiber network in cable bacteria as a set
of parallel one-dimensional hopping chains. This is the most
parsimonious model description, given that the molecular
structure of the fibers still remains unresolved. The model

Fig. 1 Conduction in cable bacteria is modelled as a set of parallel one-dimensional hopping chains (a) Scanning electron microscope image of a cable
bacteria filament. The outer surface shows a set of parallel ridges, each embedding a conductive fibre. (b) Schematic of the conductive structure of cable
bacteria based on recent investigations. A filament consists of a long chain of cells. Electrons are uploaded through H2S oxidation, transported along the
filament, and downloaded via O2 reduction. The cell envelope incorporates a set of conductive fibres, with diameter dF, that consist of thinner fibrils, with
diameter dC, which each act as a single independent conduction path. (c) A single conduction path is schematically represented as a linear chain of
hopping sites (blue stripes). Between two adjacent sites (i,i + 1), there is a forward transition rate, Gi,i+1, and a backward transition rate, Gi+1,i. At the terminal
ends, electron exchange occurs with electrodes or donor/acceptor molecules, formally represented by the sites i = 0 and i = N + 1.
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describes the electron transport through the hopping chains
when a voltage bias is imposed by connecting electrodes
(Fig. 1). In our analysis, we simulate the site occupancy along
the chain as well as the resulting current/voltage response, and
investigate the relationship between the hopping rate and the
electrical conductivity. The model output is compared to an
experimental dataset that was recently obtained by detailed
electrical characterization of individual fiber networks of cable
bacteria.28

2 Model framework
2.1 The conductive structure in cable bacteria

Cable bacteria possess a set of NF fibre structures in their cell
envelope, which are arranged in parallel and run continuously
along the whole length of the centimeter-long cable bacterium
filaments (Fig. 1a and b). These fibres consist of a conductive
core (diameter dF = 26 nm), surrounded by an electrically
insulating shell,17 and always appear to have a similar
geometry.15 Thicker cable bacteria simply embed more parallel
fibers in the cell envelope (NF ranges from 15 to 7515). Here, we
adopt NF = 60 as a reference value, which is a characteristic
value for Electrothrix gigas, the larger strain of cable bacteria29

that was used in our electrical characterization experiments.
The large ratio of the fiber length (107 nm) to the fiber

diameter (26 nm) suggests that charge transport in the fibers is
largely one-dimensional. Still, the fiber core diameter is con-
siderably larger than the typical spacing between charge carrier
sites in metalloproteins3 (E1 nm). Hence, there could be
multiple conduction channels acting in parallel in a single
fiber. Here, we assume that each conductive fiber core consists
of NC parallel conduction paths, each dC = 2 nm in diameter
(Fig. 1b). Assuming a hexagonal packing of cylinders, this
implies that each fiber embeds NC = 125 parallel conduction
channels. This large number of conduction channels can be
regarded as an upper limit, thus providing a conservative
estimate for the conductivity estimated by the model. If less
channels are present, then the conductivity of individual chan-
nels must be higher. We disregard electron transport between
channels, and so the total electrical current through a single
bacterial filament is due to electron transport in NP = NF�NC =
7500 parallel one-dimensional conduction channels (see
Table 1).

2.2 Electron flow in a one-dimensional hopping chain

Each conduction channel is described as a one-dimensional
chain of charge carrier sites that spans a length L. From a

biological perspective, a charge carrier site can be interpreted
as a electron-carrying cofactor embedded in a non-conductive
protein matrix. Electrons are assumed to be solely transported
by hopping, i.e., sequential tunneling through the protein
matrix from one cofactor to the next. A site can be in two
states: uncharged (carrying no electron; Xi) or charged (carrying
an electron; Xi

�). The resulting electron transfer can be repre-
sented by a biomolecular self-exchange reaction between elec-
tron carriers

Xi
� + Xj - Xi + Xj

�. (1)

Between any pair of charge carrier sites i,j, the forward transi-
tion rate is denoted by Gi,j and the reverse rate is given by Gj,i

(Fig. 1c). To keep the analysis tractable, we assume that these
transfer rates are only dependent on the present state of the
protein complex, and not on past states (Markov assumption).
The hopping transitions at different locations are also assumed
to be uncorrelated.30

When the energies of the departure and destination sites
differ (Ui a Uj), energy must be exchanged with the environ-
ment during the electron transfer from i to j to ensure energy
conservation. If this energy is dissipated to an environment at
constant temperature T (heat bath), the ratio of the transition
rates must follow the detailed balance relation:31,32

Gi;j

Gj;i
¼ exp �Uj �Ui

kBT

� �
; (2)

where kB is Boltzmann’s constant. The electron flow (i.e.,
number of electrons transported per unit time) between two
sites is given by:

Ji,j = Gi,jpi(1 � pj). (3)

Here, pi is the site occupancy. An electron can only jump to a
site when it is vacant (Pauli exclusion principle without electron
spin). The transition rate is hence weighted by the probability
that the starting site is occupied, pi, and that the destination
site is empty, (1 � pj). The dynamics of the site occupancy is
governed by the combined effect of all electron currents that
arrive at or leave a given site:

dpi

dt
¼
X
j

Jj;i � Ji;j
� �

: (4)

The net electrical current that passes through the chain seg-
ment between sites i and i + 1 becomes:

Ii;iþ1 ¼ e
X

m¼1;...;i
pm

X
n¼iþ1;...;N

Gm;nð1� pnÞ

� e
X

m¼iþ1;...;i
pm

X
n¼1;...;i

Gm;nð1� pnÞ:
(5)

The quantity e = 1.6 � 10�19 C is the elementary charge. The
first term represents the electrons travelling to the right (i.e. the
forward currents passing site i), while the second term repre-
sents the electrons travelling to the left (i.e. the backward
currents passing site i + 1). Our interest is in the steady state
situation, where no charge builds up in the hopping chain, and

Table 1 Parameterization of the conductive network in cable bacteria

Parameter Symbol Units Value

Fibre diameter dF nm 26
Number of fibres NF — 60
Conduction channel diameter dC nm 2
Number of conduction channels per fibre NC — 125
Total number of parallel conduction channels NP — 7500
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so the net electron flow from/to a particular hopping site must
be zero (dpi/dt = 0). In the steady state, the current must be the
same across all segments the chain (Ii,i+1 = I).

2.3 Nearest neighbour hopping

Electron tunneling in protein structures is known to have a
strong exponential dependence on distance.33–36 Therefore, the
chance that an electron hops to a remote site in the chain is
improbable. We can implement this by only allowing transi-
tions between adjacent sites, i.e., nearest neighbour hopping.
Moreover, when the protein structure that forms the conduc-
tion channel is highly regular, all charge carriers will be
identical, and the interdistance and site energy (without an
imposed electrical field) will show little variation. As a result,
the transition rates between neighbouring sites will be identical
throughout the whole chain (Gi,i+1 = GR and Gi+1,i = GL).
Assuming nearest neighbour hopping in a regular chain with
identical sites, the net chain current (eqn (5)) simplifies to:

I = eGRpi(1 � pi+1) � eGLpi+1(1 � pi). (6)

Similarly, the site occupancy balance reduces to

dpi

dt
¼ GRpi�1ð1� piÞ � GLpið1� pi�1Þ

þ GRpið1� piþ1Þ � GLpiþ1ð1� piÞ:
(7)

When the hopping chain is very long, as is the case for cable
bacteria, we can describe the occupancy profile as a continuous
function of the position along the chain, pi�1 = p(xi + a), where
xi is the center position of site i, and a is the center-to-center
distance between sites. The total number of sites in the chain
hence amounts to N = L/a. Expansion to second order,

pðxi � aÞ ¼ pðxiÞ � a
dp

dx

� �
xi

þ a2

2

d2p

dx2

� �
xi

; (8)

and substitution into the site occupancy balance (eqn (7)), leads
to the differential equation:

d2p

dx2
þ 2

a
tanh

D
2kBT

� �
ð2p� 1Þdp

dx
¼ 0: (9)

Here, D = Ui� Ui+1 = eV(1� a)/N represents the difference in site
energy between two sites (a = aL + aR specifies the total voltage
drop at the electrodes; see Fig. 2 and below). In a similar
fashion, the normalized chain current can be written as (see
ESI†):

I

eGR
¼ 1� exp

�D
kBT

� �� �
pðxÞð1� pðxÞÞ

� a
dp

dx
pðxÞ þ exp

�D
kBT

� �
ð1� pðxÞÞ

� �
:

(10)

For a given temperature T, site spacing a and site energy
difference D, the site occupancy profile p(x) along the chain
can be calculated from eqn (9), and then implemented into
eqn (10) to provide the current.

2.4 Charge transfer to and from the chain

The site occupancy equation (eqn (9)), which governs the
electron transport within the hopping chain, requires suitable
boundary conditions. For this, we need to consider how elec-
trons are either injected or ejected from the chain at the left
and right boundaries. Two different situations can be consid-
ered: the metabolic operation of cable bacteria under in vivo
conditions (in which electrons are supplied and removed
through redox half-reactions; Fig. S2 in the ESI†), and the
situation under which cable bacteria are electrically investi-
gated in the laboratory (in which electrons are exchanged with
electrodes; Fig. 2). The latter will be the focus of our analysis
here, as it represents the situation under which the conduc-
tance data are collected.

In the laboratory, the conductance of cable bacteria is
studied by connecting individual filaments to metal
electrodes.13,18,28 A bias voltage, V, is applied to the two
terminal electrode contacts, and the electrical current, I, that
flows through the cable bacterium segment is recorded (opera-
tion of the electrode set-up is illustrated in Fig. 2a). If charge
injection from the electrode is non-limiting (J c GR,L; see
Fig. S3 and additional derivations in ESI†), the occupation
probability at the edges reads:

pL;R ¼
1

exp
UL;R � mL;R

kBT

� �
þ 1

¼ 1

exp
U0 � aL;ReV

kBT

� �
þ 1

: (11)

In this expression, UL,R is the site energy of the start x = 0 and
end x = L of the hopping chain and mL,R is the chemical
potential of the left/right electrode (Fig. 2b). The site energy
at the terminal ends is given by UL,R = mL,R + U0 � aL,ReV. In this
approximation, the edge occupancies, pL,R, follow the Fermi–
Dirac distribution of the corresponding electrodes. In the
general case, an injection barrier, U0, is present (difference
between Fermi level of the electrodes and the site energy in the
hopping chain), and voltage drops (aL, aR) may occur at the
interface between filaments and electrodes (see details in
Fig. 2).

2.5 Marcus hopping rate

Semi-classical Marcus theory provides the following expression
for the electron transfer rate between two sites in the hopping
chain:20

GR ¼
2p
�h

H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT
p exp �ðl� DÞ2

4lkBT

� �
: (12)

Here, H represents the electronic coupling between the
initial and final states, and l is the reorganisation energy.
The Marcus expression only holds for the case of weak
electronic coupling, i.e., when H { l.20,37,38 When the driving
force is small compared to the reorganization energy (D { l),
the approximation (l � D)2Bl(l � 2D) holds, and the Marcus
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rate can be written as:

GR ¼ G0
R exp

D
2kBT

� �
: (13)

The prefactor G0
R represents the unbiased Marcus rate at a given

temperature (eqn (12) with D = 0). If the electronic coupling H is
only weakly dependent on the driving force, this prefactor can
be considered to be independent of the applied voltage bias.

2.6 Numerical approach

The solution of the occupancy balance equation (eqn (4)) with
suitable boundary conditions (eqn (11)) fully describes the
electron transport through the hopping chain. To solve this
differential equation, we implemented a numerical solution
procedure (see ESI†) that calculates the site occupancy profile,
p(x), as a function of the position along the chain x and the
applied bias voltage V. Subsequently the normalized chain
current I/(eGR) is calculated, and this is then combined with
the Marcus expression (eqn (12)) to simulate the full I(V) curve
(see Fig. S1, ESI†). We also derived a set of analytical expres-
sions for the occupancy profile and normalized chain current
for the case when there’s a symmetric voltage drop at the
electrodes (aL = aR). Expressions are derived for the absence
(U0 = 0) or presence (U0 4 0) of an injection barrier. These
analytical expressions allow to identify how different end-
member transport regimes influence the shape of the I/V curve.

The details of the derivations are given in the ESI† and the
resulting expressions are summarized in Tables S1 and S2.

3 Results

The mapping of the electrical current, I, as a function of the
applied bias voltage, V, forms a key analysis in the electrical
characterisation of materials. As a baseline and reference
situation, we simulated a hopping chain with following para-
meters: N = 200, transport is predominantly field-driven (a =
0.2), resides in the resonant regime (U0 = 0), and has a
reorganisation energy, l = 200 meV, and electronic coupling,
H = 16 meV. Subsequently, we systematically varied each
parameter individually to verify its impact on the I(V) curve.
We also compared the output of the model simulations to an
extensive experimental dataset, consisting of I(V) curves col-
lected at different temperatures (T = 80–300 K) for cable
bacterium filaments of different length. The data collection
procedure is presented in detail elsewhere.28 Fig. 5 displays
relevant I(V) curves for three segments of different length (L = 4,
40, 300 mm).

3.1 Concentration-driven versus field-driven regime

A first question is whether the electron transport in
cable bacteria is concentration-driven or field-driven.
These regimes correspond to two limiting cases for the

Fig. 2 Electrical investigation of cable bacteria filaments between electrodes. (a) Schematic of the electrical characterization approach. A filament is
deposited onto insulating silicon dioxide (SiO2) substrate and connected to two gold (Au) electrodes with a gap length L. Electrons flow from one side to
the other, through the conductive fiber network of the filament. (b) Site energy vs. position along the hopping chain for the case without any voltage bias.
Transfer rates between hopping sites are denoted G, and injection/ejection rates from electrodes J. Electron states in the metal electrode (dark yellow)
are filled up until the chemical potential, chosen as m = 0. Site energies are equal to the injection barrier (Ui = U0). (c) Site energy vs. position for an
electrode bias V. The left electrode is at chemical potential mL = eV, and the right electrode at mR = 0. An electron looses an energy aLeV at the biased
electrode and aReV at the grounded electrode, while the rest of the energy is lost in the hopping chain (eV(1 � a) with a = aL + aR). As long as the voltage
drops linearly inside the hopping chain, there is an constant voltage drop between adjacent hopping sites, D = eV(1 � a)/N. The injection barrier at the left
electrode is U0 � aLeV, and the other side, it is U0 + aReV.
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behaviour of the electrical field at the electrode interfaces
(see Fig. 3): either the applied voltage completely drops
over the electrode interfaces (a = 1), or there is no voltage
drop at the electrodes (a = 0). In our simulations, we
assume that the voltage drop is similar at both electrodes
(aL = aR = a/2).

When the current is exclusively concentration-driven,
the entire voltage drop occurs at the interface of the electro-
des (a = 1, Fig. 3a), and there is no electric field or electric
potential gradient present in the hopping chain (D = 0).
As a result, all sites reside at the same site energy, and
the detailed balance relation (eqn (2)) implies that the
forward and backward transition rates must be equal. In
this regime, the electron transport is purely ‘‘diffusive’’,
i.e., driven by the difference in site occupation probability
along the chain. The differential equation describing
the occupancy profile (eqn (9)), becomes the stationary

diffusion equation and has a linear solution (Fig. 3c):

pðxÞ ¼ pL � ðpL � pRÞ
x

L
; (14)

with pL = p(x = 0) and pR = p(x = L). The normalized chain
current shows an hyperbolic tangent dependence on the
applied voltage (Fig. 3f, derivation in ESI†):

I

eGR
¼ 1

N
tanh

eV

4kBT

� �
: (15)

Because there is no electric field within the hopping chain
(D = 0), the transition rate matches the unbiased Marcus rate
(GR = G0

R), and so the I/V curve attains the form:

I ¼ NP
eG0

R

N
tanh

eV

4kBT

� �
: (16)

The current starts out linearly (I p V), and saturates

Fig. 3 Concentration-driven versus field-driven electron transport. (a) and (b) Energy vs. position diagram in the concentration-driven end-member (a =
1) and field-driven end-member (a = 0). (c) Site occupancy, pi vs. site position, i, in the concentration-driven limit (a = 1). (d) Site occupancy, pi vs. site
position, i, in the field-driven limit (a = 0). (e) Site occupancy, pi vs. site position, i, in the combined scenario (a = 0.2). (f) Normalized chain current, I/(eGR)
as a function of the applied voltage, V, in the concentration-driven limit (a = 1). (g), Same graph in the field-driven limit (a = 0). The inset shows higher-
voltage regime, with a vertical line plotted at eV = NkBT. (h), Same in the combined scenario (a = 0.2), with the field- and concentration-driven terms (red
and blue respectively). The inset shows higher-voltage regime, with a vertical line plotted at eV(1 � a) = NkBT.
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around eV E 4kBT, as the occupancy gradient approaches its
maximum (pL = 1; pR = 0). At room temperature, this satura-
tion should occur around V = 0.1 V. The experimental I(V)
curves (Fig. 5a–c), however, do not show this saturation
effect. When the bias voltage is increased beyond 0.1, the
I(V) curve still remains linear. Therefore, the electron trans-
port in fiber network of cable bacteria does not appear to be
concentration-driven.

Oppositely, when the current is exclusively field-driven
(a = 0, Fig. 3b), the site occupancy does not show a gradient
(pi = 1/2, Fig. 3d). In this field-driven scenario, electron trans-
port is solely ‘‘drift’’ based, i.e., it is driven by the difference in
the forward and backward transition rates. The normalized
chain current becomes (Fig. 3g, derivation in ESI†):

I

eGR
¼ 1

4
1� exp

�eV
NkBT

� �� �
: (17)

This relation predicts that the normalized chain current
becomes constant (I/(eGR) = 1/4), when the applied voltage
becomes sufficiently high, i.e, when eV/N 4 kBT (inset in
Fig. 3g). Yet, when the chain includes many hopping sites, this
transition voltage V = NkBT/e is very large. For example,
for a long cable bacterium segment (B2 mm) and a short
hopping distance (B1 nm), the number of hopping sites
becomes N = 2 � 106, and so the corresponding transition
voltage at room temperature (kBT E 25 meV) equals V = 50 �
103 V. This explains why the transition is not seen in the
experimental I/V data.

When the voltage bias is sufficiently small compared to the
reorganization energy (eV/N o l), we can use the Marcus rate
expression, eqn (13), and so the I/V curve attains the form:

I ¼ NP
eG0

R

2
sinh

eV

2NkBT

� �
� NP

eG0
R

4

eV

NkBT
: (18)

The experimentally recorded I(V) curves closely fit the
temperature-dependent response that is predicted by the above
relation (Fig. 5d–f). When the temperature is high and the bias
is sufficiently small, i.e., when eV/N o kBT, the approximation
in eqn (18) is valid and the I/V becomes linear. Such linear I/V
curves are indeed observed near room temperature. Moreover,
when the temperature is lowered, the experimental I/V curves
become more non-linear and adopt a hyperbolic sinus shape,
as predicted by eqn (18). This hence suggests that conduction
in cable bacteria is field-driven.

When a = 0.2, the site occupancy profile adopts a non-linear
shape, which lies in between the linear concentration-driven
and flat field-driven profile (Fig. 3e). Likewise, it can be shown
that the resulting I(V) curve can be decomposed into the sum of
a field-driven and a concentration-driven contribution (Fig. 3h;
see derivation in ESI†). At higher voltages, the field-driven
current becomes dominant (Fig. S5, ESI†).

3.2 Resonant versus off-resonant transport

A second question is whether the electron transport in the
conductive fibers of cable bacteria is affected by an injection
barrier, U0, or not. When the charge transport is not hampered

by the barrier, it resides in the resonant regime. Oppositely,
when the injection barrier is slowing down the transport, it is
off-resonant. Fig. 4 shows the transition from the off-resonant
to resonant transport regime for the reference parameters, but
with U0 = 0.1 eV instead of zero. Analytical expressions can be
derived for the occupancy profile and the normalized chain
current (see ESI†). For low bias voltages, transport is off-
resonant (aLeV o U0), and the site occupancy stays low through-
out the chain (Fig. 4a). As the bias voltage increases, the
conduction enters the resonant regime when aLeV = U0 and
the occupancy profile evolves towards a static tangent-shaped
profile (Fig. 4a, similar to that displayed in Fig. 3e). The
normalized I(V) curve shows the transition from off-resonant
to resonant transport, which occurs at V = U0/(eaL) (Fig. 4b). At
low bias, in the off-resonant regime, the normalized chain
current is non-linear, while in the resonant regime, the current
increases linearly with the applied voltage bias.

In the off-resonant regime, the temperature has a large effect
on the site occupancy profile, and induces an overall decrease
of the site occupancy upon cooling. In contrast, in the resonant
regime, the occupancy profile is only marginally influenced by
the temperature (Fig. 4c). Overall, the full I(V) curves show the
same strong non-linear shape as the normalized I(V) (Fig. 4d).
The experimental I(V) curves do not display this strong non-
linearity (Fig. 5). This indicates that there is no significant
injection barrier present, when the cable bacterium filaments
are interfaced to gold electrodes.

3.3 Length dependence of the I(V) curve

A third aspect relates to the impact of the hopping chain length
on the I(V) curve. As clearly seen in the experimental data
(Fig. 5a–c), the shape of the I(V) curve becomes more linear
as the length of the investigated segment increases. This
phenomenon is well represented by eqn (18), which predicts
that the I(V) curve becomes more linear as the number of sites
N increases (simulated I/V curves are displayed in Fig. 5d–f).
The explanation is rather straight forward: as the number of
sites N decreases, the site energy difference D = eV/N increases
at a given fixed voltage. When D increases, the expression for
the normalized current (eqn (17)) becomes non-linear, while
also the Marcus rate (eqn (13)) adds to the non-linearity. As a
result, the full I(V) curve becomes increasingly hyperbolic, when
the temperature decreases and/or the segment length decreases
(Fig. 5).

3.4 Conductivity

Overall, the multistep hopping model appears to adequately
simulate the experimental I(V) curves, in the field-driven regime
with no significant injection barrier. Therefore, a prominent
question is whether the model can also reproduce the conduc-
tivity of the cable bacteria fibers, which is extremely high for a
biological system (reaching up to 4100 S cm�1 at room
temperature). To this end, we now investigate the relationship
between the hopping rate and the electrical conductivity.

Assuming a suitably long chain (such that the low-bias limit
eV/N { kBT holds), and adopting field-driven transport (a = 0)
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Fig. 5 Dependence of I(V) curves on temperature in the range 80–300 K. (a)–(c) Experimental data showing the rescaled current, I/I0, as a function of
voltage, V. The current, I, is rescaled to its maximum value, I0, per I(V)-trace, to illustrate the shape of the curve. The three panels (a)–(c) correspond to
three different segment lengths (L = 4 mm, L = 40 mm, and L = 300 mm). (d)–(f) Simulated I(V)’s with N = 70 (d), N = 450 (e) and N = 3000 (f). The other
parameters are: U0 = 0, a = 0, H = 16 meV and l = 0.2 eV.

Fig. 4 Resonant and off-resonant electron transport in a hopping with an injection barrier. Model parameters are: N = 200, U0 = 0.1 eV, a = 0.2, T =
300 K. (a) Simulated occupancy profile for six different voltages (as indicated by numbers next to the colour bar). The dashed lines indicate the crossing at
pN/2 = 1/2. (b) Normalized chain current, I/eGR, plotted as a function voltage bias, V. The transition from off-resonant to resonant occurs at eV = U0/aL =
1 V. (c) Occupancy profile at two fixed voltages (off-resonant V = 0.75 V and resonant V = 2 V) for six different temperatures (indicated by numbers next to
the colour scale). (d) Simulated current–voltage response for six different temperatures, using the Marcus rate (eqn (12)) with parameters H = 16 meV and
l = 0.2 eV.
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and no injection barrier (U0 = 0), we can use eqn (18) to express
the conductivity of a fiber of length L and cross-section A:

s ¼ I

V

L

A
¼ e2G0

R

4kBT

a

pðdC=2Þ2
: (19)

This expression is insightful, because it has the familiar form,
s = nem, with the charge carrier density n = 1/(4ap(dC/2)2) and
mobility, m = eG0

Ra2/(kBT). The factor 1/4 in the charge carrier
density n arises from the occupation factor p(1 � p) with p = 1/2
the site occupancy in the resonant, field-driven regime (Fig. 4).

Eqn (19) provides a direct relation between the hopping rate
and the conductivity, and readily illustrates the problem of
explaining the high conductance in cable bacteria. If we
assume that multistep hopping in cable bacteria occurs over
a similar length scale as in multi-heme cytochromes,21 the
center-to-center distance between sites would be a B 1 nm.
Using this value in eqn (19), the required hopping rate for a
conductivity of 100 S cm�1 becomes GR E 2 � 1013 s�1. This
value exceeds by far the fastest hopping rate reported in
literature for a biological protein structure (109 s�1).39,40 More
problematically, it also exceeds the typical relaxation rate of
vibrational modes in cofactors, B1013 s�1, which is considered
as a ‘‘speed limit’’ for hopping conduction.41 The relaxation

rate of vibrational modes must be higher than the hopping rate
itself, so that the electron has time to dissipate energy before
hopping onwards (see ESI:† ‘Non-adiabatic constraint’ for
further detail).

To examine the maximum conductivity that a hopping
model for cable bacteria can support, we can evaluate the
theoretical limits of the Marcus rate expression eqn (12). Mar-
cus theory requires that the inter-site electronic coupling H is
weak,20 so that it remains small with respect to the reorganisa-
tion energy (H { l). When H E l or beyond, the electron will
no longer be localised on the hopping site.37,38,42 To quantita-
tively evaluate the maximum conductivity allowed by the Mar-
cus formalism, we adopt the working assumption that the
maximum electronic coupling is Hmax = 0.1l (see ESI† for
additional discussion of this ‘weak coupling’ constraint).

As a result, the conductivity in eqn (19) only varies with the
reorganisation energy l and the center-to-center distance a. The
resulting model simulations are shown in Fig. 6a. For para-
meters representing electron transport through multi-heme
cytochromes21 (l = 0.8 eV, a = 1 nm), a hopping rate of
5 � 1010 s�1 and a conductivity level of 0.2 S cm�1 form
the theoretical maximum within the Marcus framework.
Note however that this conductivity limit is based upon an

Fig. 6 Idealized hopping conductivity and mobility within the one-dimensional hopping chain, using Marcus rates (eqn (12)). (a) Conductivity colour
map, under the constraint H = 0.1l, as a function of reorganisation energy l and center-to-center distance between hopping sites a. The red and black
square are indicators for the typical reorganisation energy and center-to-center distance in hemes and cable bacteria, respectively (see panel (c)).
Directions for increased conductivity compared to cytochromes are drawn in white. (b) Conductivity, s, as a function of center-to-center hopping
distance, a, for a biological system that improves on heme-to-heme hopping with distance a0 = 1 nm, reorganisation l0 = 1 eV and electronic coupling
H0 = 0.1l0 = 100 meV, by wave function dilution (H, l p 1/a). (c) Scheme of heme-to-heme transport (red) and the proposed hopping mechanism in
cable bacteria (black), with center-to-center distance, a, between regions in which is the electron is unobstructed (orange, zero resistance) with
repetitive surrounding protein structure (grey). Electrons hop between repeated structures with hopping rates GR,L.
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unrealistically high electronic coupling, H E l/10 = 80 meV. As
known from experimental and theoretical assessments, H = 10
meV is already on the high side for multi-heme cytochromes.21

Adopting the latter value lowers the maximum allowed con-
ductivity to 4 mS cm�1 (hopping rate: 8 � 108 s�1).

We conclude that a multi-step hopping model with
cytochrome-like parameters cannot explain the conductivities
measured in cable bacteria. As illustrated in Fig. 6a, there are
two ways to achieve a higher conductivity. A first way is to
reduce the reorganisation energy, and effectively, cable bacteria
appear to do this. Recent studies18,28 indicate that the reorga-
nisation energy of conductance in cable bacteria is remarkably
low (l = 0.2 eV), i.e., a factor 4 lower compared to heme-to-heme
transport in multi-heme cytochromes.

Still, a reduction of the reorganization energy alone is not
enough to explain the high conductivity in cable bacteria. With
l = 0.2 eV and a = 1 nm, we can only reach a hopping rate of 2 �
1012 s�1 and a conductivity level of 10 S cm�1 (vertical arrow in
Fig. 6a). Therefore, a second way is to increase increase
conductivity is to increase the center-to-center distance a, thus
lowering the number of hopping steps. To attain a conductivity
of s = 100 S cm�1 as reported for cable bacterium fibers, we
need to increase the hopping distance to a E 10 nm, under the
constraint Hmax = 0.1l with l = 0.2 eV (horizontal arrow in
Fig. 6a). This provides a hopping rate 2.2 � 1012 s�1, which is
still high, but below the ‘‘speed limit’’ for hopping
conduction.41 For more stringent constraints with lower H/
ratios, higher a values are required (see Fig. S10 and additional
results in ESI†).

The predicted electron mobility accompanying l = 0.2 eV
and a = 10 nm is m = 80 cm2 V�1 s�1 (Fig. S10, ESI†).
This mobility value is high and similar to that of metals
(B50 cm2 V�1 s�1). Metals are highly conductive because many
electrons contribute to transport (n E 1022 cm�3), but their charge
carrier mobilities are not exceptionally high, since electrons
frequently collide with the crystal lattice. The predicted charge
carrier density in the one-dimensional hopping chain model with
a = 10 nm, is n = 1/(4ap(dC/2)2) E 8 � 1018 cm�3, which is much
lower than for metals, thus explaining why the conductivity in
cable bacteria is 4 orders of lower than in metals.

4 Discussion and conclusions

We have developed a one-dimensional hopping model to
describe the extremely long-range electron transport in the
periplasmic fiber network of cable bacteria. When filaments
are connected to metal electrodes, we propose that the edge
occupation probabilities in the hopping chain can be treated as
if they were part of the electrode (see eqn (11)). This allows
simplified analytical expressions to be derived for the current–
voltage characteristics in the field- and concentration-driven
regimes (Tables S1 and S2, ESI†). For more general cases, I/V
curves can be numerically simulated.

The conductive fiber network in cable bacteria has been
shown to consist of a metalloprotein that incorporates a nickel

cofactor.17 Yet, the detailed molecular structure of this cofactor
remains unresolved, and consequently, any model of charge
transport in cable bacteria remains somehow speculative. Still,
the model analysis here allows to exclude certain transport
models, while at the same time, it provides guidance for further
experimental investigations and theoretical developments.

4.1 The shape of the I/V curve

When cable bacterium filaments are connected to electrodes
and electrically investigated at room temperature, the resulting
I/V curves are conspicuously linear.13,18,28 Comparison of our
model results to these experimentally recorded I/V curves,
shows that the model adequately reproduces the impact of
segment length and temperature on the shape of the I/V curve,
provided that we adopt a field-driven regime with no significant
injection barrier (Fig. 5).

The linearity is explained by the fact that the filaments
investigated are long, and so the charge transfer involves a
large number of charge transfer steps N. As a result, the driving
force D = eV/N remains small compared to the thermal energy
scale (D { kBT and so eqn (17) becomes valid). Moreover, the
driving force also stays well below the reorganization energy
(D { l), implying that the electron transfer rate GR remains
largely independent of the applied voltage bias (see eqn (12)).
These conditions generate linear I/V curves near room tempera-
ture, which become increasingly non-linear (sinus hyperbolic)
for lower temperatures and shorter segments, as seen in the
experimental data (Fig. 5). Note that the condition (D { l) also
implies that the charge transport well remains within the
normal Marcus regime (and hence does not enter into the
inverted regime).

When using gold electrodes, there appears to be no injection
barrier involved in the charge transport. This absence of an
injection barrier is intriguing, and requires further experi-
mental examination. The work function, which directly influ-
ences the barrier, varies among metals (the energy to bring an
electron from the electrode to vacuum of the electrode).43,44

Therefore, it could be that for electrode materials other than
gold, there is a sizable injection barrier.

4.2 Impact of reorganization on conductivity

Our model analysis demonstrates that a low reorganization
energy is key to achieving a high conductivity in cable bacteria
(Fig. 6a). Recent studies have shown that the reorganisation
energy in cable bacteria is indeed considerably lower than in
other conductive protein systems.18,28 Yet at present, the mole-
cular structure of the conductive fibers in cable bacteria
remains largely unresolved, and therefore, it is not understood
why the reorganisation energy of cable bacteria is so small. One
potential explanation could be delocalization along the electron
transport path, as would result from an ordered aggregation or
tight stacking of cofactors. Recently, an extension of Marcus
theory has been developed that accounts for charge transfer
between so-called donor and acceptor ‘‘aggregates’’, in which
the charge is no longer localized on a single cofactor, but
delocalized across a cluster of multiple cofactor molecules.45
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It was shown that such delocalization can substantially reduce
the reorganization energy below what is possible with a single
donor and a single acceptor. For example, for a donor aggregate
with a fully delocalized state of N identical donors, the reorga-
nisation energy is decreased N-fold.45 For example, if we
assume that the reorganization energy l between a single donor
and a single acceptor would be similar to that between con-
secutive hemes in multi-heme cytochromes, the observed
4 times reduction in l for cable bacteria as compared to
multi-heme cytochromes18,28 then would imply a delocalization
of the charge across B4 cofactor molecules. Yet, to verify
whether such a delocalization mechanism is truly at play, we
need a better insight into the actual identity and structure of
the cofactor molecules in cable bacteria.

4.3 A tentative model of charge transport in cable bacteria

Our model analysis reveals that the high conductivity recorded
in the conductive fibers of cable bacteria (4100 S cm�1) can
only be explained by a Marcus-type hopping model, unless the
number of hopping steps is substantially reduced and the
center-to-center distance a becomes very large (Fig. 6a). Clearly,
a hopping distance of a E 10 nm exceeds by far the known
hopping distances in metalloproteins such as multi-heme
cytochromes. If electrons are transported by quantum mechan-
ical tunneling, the center-to-center distance a must be lower
than 1.4 nm to attain metabolically relevant electron transport
rates (see Moser et al.3). How can such a large value for a be
reached?

A tentative model is depicted in Fig. 6c. The key difference
with classical hopping models of biological transport
(e.g. heme-based electron transport) is the amount of delocali-
zation, as reflected by the size of the charge carrier sites.
Instead of being localized on a small cofactor molecule, elec-
trons are delocalized across wide ‘‘relay segments’’ (distance
LD B 10 nm) that are connected through small non-conductive
bridges (distance d). The electron transport through this pro-
tein connection is the rate limiting process, and follows a
Marcus-type hopping mechanism. In contrast, the electron
transport in the delocalized segments is very fast, and needs
to have a far higher mobility than the hopping transport. These
relay segments could either be large conjugated molecules, as
seen in pi-conjugated polymers and graphene nanoribbons,46

or alternatively, they could involve sets of tightly stacked
cofactor molecules that induce electron delocalization (the
donor and acceptor ‘‘aggregates’’ discussed above).

This model immediately provokes the question of how
biology can synthesize such a structure. Clearly, to ensure high
charge transport rates, the ‘‘relay segments’’ should be carefully
positioned and oriented, which hence requires a precise coor-
dination by ligating proteins. Furthermore, it is known that
delocalized regions are particularly sensitive to disorder effects,
as impurities and defects will induce Anderson localisation of
electrons,47 and hence reduce the conductivity. Effectively, the
latter phenomenon may help explaining the observation that
the conductivity in cable bacteria fibers is variable (ranging
from 0.1 to 4100 S cm�1; see ref. 13). Differences in levels of

defects/impurities may induce variability in conductance
between filaments.

4.4 Impact of delocalization on conductivity

As detailed above, the conductivity can be increased by low-
ering the reorganization energy and increasing the center-to-
center distance (Fig. 6a). To quantitatively assess the conjoint
impact of both factors, we can introduce reference values for
the hopping distance (a0 B 1 nm) and reorganization energy
(l0 B 1 eV) for conventional biological electron transport.
We can now increase a while keeping d constant, thus simulat-
ing the process of wave function dilution (Fig. 6c). When a
becomes much larger than a0, we can approximate the deloca-
lization length LD E a and write the reorganisation energy as
l = l0(a0/a) and the electronic coupling as H = H0(a0/a), where l0

is the original reorganisation energy and H0 the original
electronic coupling. With these constraints, the ratio between
H and l stays constant, and so the transport remains within the
Marcus regime. Moreover, the conductivity can be calculated as
a sole function of the center-to-center distance:

sðaÞ / a�1=2 exp �a0
a

l0
4kBT

� �
: (20)

The impact of wave function dilution on conductivity is shown
in Fig. 6b. With increasing a, the conductivity first increases,
after which it reaches a maximum at a = a0l0/(2kBT) = 19 nm,
which is equivalent to l = 2kBT. At higher values of a, the impact
of l fades and the influence of H becomes dominant, and as a
result, the conductivity decreases again. This analysis demon-
strates that delocalization may indeed form a mechanism that
can substantially increase the conductivity in cable bacteria.

4.5 Hopping versus band transport?

In our model analysis, we described the electron transport in
cable bacteria as thermally assisted hopping, as this is the
default modelling approach employed to describe long-range
biological conduction. Is there a possibility that the charge
transport is not due to hopping, but rather acts as a form of
band transport? In a hopping regime, the charge carrier is
localized on a single molecule whereas in the band regime, the
charge carrier (wave function) is delocalized over the entire
system. In order to achieve a band regime, one must have a
highly ordered structure with only a few defects or impurities,
and a large electronic coupling between adjacent sites. In
highly purified molecular single crystals such as pentacene,
transport at low temperature can be described within a band
picture.48 However, at higher temperatures, the charge carriers
get localized over single polymer strands and transport oper-
ates by a thermally activated hopping mechanism between
adjacent polymer chains.49

As impurities, disorder and structural defects seem hard to
avoid in the cm-long fiber structures in cable bacteria, a
hopping regime is expected to operate at room temperature,
as in organic crystals. Nevertheless, the models investigated
here consider only one electronic state in a given ‘‘relay
segment’’. This leaves the possibility that there is more than
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one electronic state in a given ‘‘relay segment’’. Recall that the
driving force behind localisation in our model is a weak
electronic coupling at the edge of the hopping site (H o l). If
a relay segment would be composed of N tightly stacked
molecules, these must all be strongly coupled with an inter-
action energy, t 4 l, if not, the electron would localise in a
smaller region.37 According to the tight binding model, this
results in multiple electronic states lying in an energy band of
width 4t.26,50 Within a 10 nm wide ‘‘relay segment’’, and
assuming a stacking distance of 0.35 nm (a typical intermole-
cular distances in organic conjugated crystals and films), each
molecule (N = 30) would add a single state to an energy band
with an expected level spacing 4t/N B 4l/N E 27 meV. At room
temperature, the majority of states would contribute to the
conductance (thermal window kBT E 25 meV). Therefore, while
pure band transport is not expected in the conductive fiber
network of cable bacteria, future studies should consider more
elaborate model approaches that allow the existence of multi-
ple electronic states within ‘‘relay segments’’.
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