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Classically forbidden nonadiabatic transitions
in multidimensional chemical dynamics

I-Yun Hsiao, a Yoshiaki Teranishi*a and Hiroki Nakamura†b

An accurate method is proposed to deal with such nonadiabatic

transitions as those energetically inaccessible, namely, classically

forbidden transitions. This is formulated by using the corresponding

Zhu–Nakamura formulas and finding the optimal paths in the

classically forbidden tunneling regions that maximize the overall

transition probabilities. This can be done for both the nonadiabatic

tunneling type (so-called normal case in electron transfer) in which

two diabatic potentials have opposite signs of slopes and the

Landau–Zener type (inverted case) in which two diabatic potentials

have the same sign of slopes. The method is numerically demon-

strated to be useful for clarifying chemical and biological dynamics.

I. Introduction

Nonadiabatic transition presents a very basic mechanism of
state and phase change in various branches of science.1,2 As is
well known, in the case of chemical and biological dynamics,
for instance, this transition is ubiquitous and occurs through the
conical intersection of adiabatic potential energy surfaces.1–3 In
the one-dimensional picture, there are two types of transitions;
nonadiabatic tunneling (NT) type and Landau–Zener (LZ) type,
which correspond to the normal and inverted cases in the electron
transfer problems as Marcus named.4

For these two types of transitions, the analytical Zhu–Nakamura
formulas are available for the whole energy region and the whole
electronic coupling strength.1,2,5 Although the Zhu–Nakamura
theory has been formulated for one-dimensional problems, the
formulas are actually applicable to multidimensional dynamics,
since the nonadiabatic transition occurs predominantly along the
direction of nonadiabatic coupling vector. Multidimensional

potential energy surfaces are cut along this direction and the
formulas are employed along these one-dimensional potential
curves. Practical applications have been made successfully to real
chemical and biological systems, not only to triatomic reaction
systems but also to reactions in the environment.1,2,6–8 The electron
transfer processes can also be treated for the whole range of
electronic coupling strengths.9–12 In such a way, a semiclassical
molecular dynamics simulation method can be developed with
quantum mechanical effects taken into account.13 The quantum
mechanical effects meant here are nonadiabatic transition, quan-
tum mechanical tunneling, and phases associated with these
transitions.

The above mentioned reduction to the one-dimensional
system is a good approximation in the case that the corres-
ponding nonadiabatic transition, i.e., conical intersection posi-
tion, is located in the energetically accessible, namely, classically
allowed region. It naturally becomes less accurate in the case of
classically forbidden transitions, since the quantum mechanical
tunneling in the multidimensional space occurs simultaneously.
What is the best way to use the Zhu–Nakamura formulas in this
case? This is the main theme of this paper. Our basic strategy is
as follows: (1) run a classical trajectory. (2) When a caustic is
detected, draw a straight line tunneling path (blue line in Fig. 1)
from the caustic and calculate the nonadiabatic transition
probability. (3) Optimize the tunneling path (the purple line)
to achieve the maximum transition probability. (4) Run the
classical trajectory to find the next caustic. Owing to the localiz-
ability of nonadiabatic transitions in the adiabatic state represen-
tation, the dynamics along a tunneling path can be decomposed
into localized nonadiabatic transition and adiabatic tunnel-
ing processes, the former of which can be treated nicely with
Zhu–Nakamura formulas, and the latter is treated by calculating
the tunneling action. The methods of finding caustics and
calculating tunneling action were proposed by us in ref. 13 for
multi-dimensional pure tunneling. In this paper, we combine the
two theories of nonadiabatic transition and multi-dimensional
tunneling to develop a new theory for multi-dimensional classi-
cally forbidden nonadiabatic transitions.
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This paper is organized as follows: Section II presents the
main formulation of this paper, namely, it describes how to
treat the classically forbidden transitions in multidimensional
space. In Section III, the method presented in Section II is
numerically demonstrated to work well by using a two-
dimensional model system. Our conclusions and future per-
spectives are given in Section IV.

II. Method
A. Basic idea

Let us consider a general system composed of n atoms with
masses mk(k = 1 B n). First, the mass-scaled relative internal
coordinates and momenta {qj,pj}( j = 1 B 3n � 3) are intro-
duced. Then the Hamiltonian is given by

H ¼ 1

2
p � pþ VðqÞ (1)

In the Zhu–Nakamura trajectory surface hopping (ZN-TSH)
method the following two approximations are employed:1,2 (i)
the minimum energy separation between two relevant adiabatic
potential energy surfaces Ej (q)( j = 1,2) is detected along each
classical trajectory, which is used as the transition point, and
(ii) the nonadiabatic coupling vector is evaluated there, along
which direction the potential energy surfaces are cut to define
two potential energy curves that are used to calculate the
transition probability. This method has been proven to work
well.1,2,7,8 In the case of classically forbidden transitions, how-
ever, this method becomes naturally less accurate, since the
quantum mechanical tunneling in a multidimensional space is
involved and the straight line path does not necessarily provide
the optimal path. First, we have to detect caustics along each
classical trajectory, since the caustics define the boundary
between classically allowed and forbidden regions. It is also
easily conjectured that the optimal tunneling path in the
classically forbidden region is not just a straight line.

In Zhu–Nakamura theory, there are two basic parameters,
sZN and dZN, which represent the effects of nonadiabatic
transition and the tunneling, respectively, can be evaluated
separately.1,2 This scheme of separate evaluation of sZN and dZN

is guaranteed by the fact that the nonadiabatic transition is

localized in the vicinity of the avoided crossing point. The
parameter sZN can be estimated locally at the minimum energy
separation position and the parameter dZN can be given by the
action integral along the tunneling path. This theory has been
demonstrated to work well in the various one-dimensional
potential systems.1,2 Thus what we have to do is to determine
the optimal tunneling path in multi-dimensional space that
maximizes the overall transition probability. This can be done
by using a method similar to the one that we have proposed
before to treat multidimensional tunneling (see ref. 13–16).
Besides, the Zhu–Nakamura theory provides the explicit analy-
tical expressions of the overall transition probabilities PZN for
both NT and LZ types. The main objective of this paper is to
propose an accurate method usable in multi-dimensional non-
adiabatic chemical dynamics.

The detection of caustics is made by propagating the matrix

Aij ¼
@piðtÞ
@qjðtÞ

ði; j ¼ 1 � NI Þ (2)

along the classical trajectory, where pi(qj) is the i-th ( j-th) compo-
nent of the momentum vector p(q) in the NI-dimensional space. At
the caustics the maximum absolute value of the eigenvalues of
this matrix diverges,

Maxj|Diag(A)jj| = N or Minj|Diag(B)jj| = 0, (3)

where Diag(X) means the diagonalized matrix of X and B = A�1.
Depending on the types of the nonadiabatic transition, we

have different ways of representing the tunneling path, basi-
cally because the trajectory runs on the same adiabatic
potential surface in the NT type, while the LZ type induces a
jump from one potential surface to another. This indicates that
it is necessary to have a priori knowledge about the potential
topography, i.e., NT type or LZ type, before starting the
dynamics calculation. Hereafter, our treatments for the two
types are explained, respectively.

B. In the case of NT-type

Starting from the caustic, the tunneling path runs through the
potential barrier of the adiabatic potential E1(q). It is noted that
the overall tunneling is affected by the nonadiabatic coupling
as explained below. In order to determine the optimal tunnel-
ing path, we can employ basically the same method used in
ref. 13. The optimal path is determined variationally by max-
imizing the probability PZN given by the Zhu–Nakamura theory
(see, for instance, eqn (8.119) of ref. 2). As the zero-th order
approximation to start with, two straight lines, one in the
steepest ascent direction and the other in the direction of the
nonadiabatic coupling vector at the caustic (C) are employed.
Then the one providing the larger probability is selected to start
with. This enables the computation time for optimization to be
reduced, but it is possible to start with any linear path in
principle.

The tunnel action in the m-th order approximation is
expressed as

S(m) = SCP
m + SPQ

m (4)

Fig. 1 Schematic view of the zero-th order and the optimal nonadiabatic
tunneling path.
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where P(Q) is the crossing point of the path with the equipo-
tential surface at the entrance to (exit from) the tunneling
region (see ref. 13). The tunneling path {q(m)

j } is expressed
geometrically as a function of parameter z A (0,1) as

q
ðmÞ
j ¼ qCj þ

XNb

k¼1
C
ðmÞ
jk zk (5)

where qC
j represents the coordinate at the caustic C, Nb is a

certain number to guarantee the convergence, the parameter z
runs from z = 0 at C to z = 1 at Q, and C(m)

jk are the expansion
coefficients to be determined.

The procedure to determine the optimal path is summarized
as follows:

(1) When the trajectory enters the reaction zone, the first
caustic is detected and the straight line is drawn from there.
This straight line is extended and the crossing point P0 with the
equipotential surface, i.e. the entrance to the tunneling region,
should be detected. The zero-th order action integral along this
line is denoted as

SSA
0 ðxÞ � S

CP0
0 þ S

P0
0 ðxÞ; (6)

where S
CP0
0 is the action from C(x = 0) to P0(x = P0). The action

S
P0
0 ðxÞ from the point P0 is evaluated step by step up to x. When

the total action SSA
0 becomes bigger than a certain criterion,

SSA
0 (x) Z Bigact, (7)

then the tunneling there is not carried out and the trajectory is
further propagated. If the straight line reaches the equipoten-
tial surface in the exit channel at x = xQ0

and the total action is
smaller than the above criterion, then the determination of the
optimal tunneling path is carried out.

On this straight line, the minimum adiabatic energy differ-
ence position R0(z = z0) is detected and the normalized non-
adiabatic coupling vector enad is evaluated there. Along the
direction of this vector two adiabatic potentials are calculated
and the basic parameter sZN is evaluated. The negative kinetic
energy Ktr in this direction is given by

K(m=0)
tr = Eeff � E1(q) (8)

with

Eeff ¼
1

2

X
j

dqj

dz
ej

 !2

ð _zÞ2 þ E1ðqÞ;

ð _zÞ2 ¼ � 2ðE1 � EÞP
j

dqj

dz

� �2
;

(9)

where E is the total energy, ej is the j-th component of the
coupling vector enad, and Eeff represents the effective total
energy along the transition direction. This is employed to
evaluate the parameter b2. The overall Zhu–Nakamura transi-
tion probability P (0)

ZN is calculated, where dZN = S(0) � SSA
0 (xQ0

).
The parameter sZN originally defined by the complex phase
integral up to the complex crossing point from the real axis is

given by the simple analytical expression by using the linear
potential model (see ref. 1 and 2). If this probability is smaller
than a certain critical value, say e,

P(0)
ZN r e, (10)

then the search of the optimal path is stopped and the classical
trajectory is further propagated to detect the next caustic. If
P(0)

ZN is larger than e, then we proceed to find the optimal path.
(2) The tunneling path {q (m)

j } in the m-th order approxi-
mation is obtained by slightly modifying the coefficients
C(m�1)

jk in the (m � 1)th order approximation in the direction
of increasing P(m�1)

ZN . The pure imaginary actions SCP
m and SPQ

m are
calculated separately: SCP

m is the action along the steepest ascent
direction and SPQ

m is the action along the tunneling path from P
to Q. Then dZN is given by Sm(=SCP

m + SPQ
m ). The minimum energy

separation position R0(z = z0) is detected along the path and the
parameter sZN is evaluated as mentioned above, where the
negative kinetic energy K(m)

tr at R0 is calculated by eqn (8).
(3) The above procedure to find the optimal path is repeated

until the required convergence of the probability P (m)
ZN is

attained. Then the overall nonadiabatic tunneling probability
is determined in the same way as that in ref. 13 by

PZN ¼ 1�
Yi¼imax

i¼imin

½1� P
ðiÞ
ZN�; (11)

where i designates the i-th caustic in the reaction zone
(see eqn (122) of ref. 13).

(4) After a sufficient number of trajectories is run, the final
reaction probability preact is calculated by taking the average of
the probabilities over the total number of trajectories satisfying
a given quantum mechanical initial condition.

C. In the case of LZ type

The situation in this case is a bit more complicated than in the
case of NT type, since the tunneling path jumps from E1(q) to
E2(q) at R0, giving rise to the non-smoothness of the tunneling
path at the crossing point. In the semiclassical Zhu–Nakamura
theory, the transition is assumed to occur locally at the avoided
crossing point and thus the tunneling processes before and
after the transition can be treated separately. This means that
the second portion of the whole tunneling path, namely the
path from R0 to Q, can be determined separately from the first
one in each iteration process. Such a separated treatment for
before and after the crossing point makes it possible to
represent the non-smooth path, which climbs (descends) the
potential E1(q) (E2(q)) before (after) passing the crossing point.
This treatment for the LZ type relies on the localizability of
nonadiabatic transition the same as the NT type. Owing to the
usefullness of the Zhu–Nakamura formulas both for the NT and
the LZ types, we expect that our method for the LZ type should
work as well as the NT type.

In the zero-th order approximation, the straight line from
the caustic C(z1 = 0) on E1(q) is extended to R0(z1 = 1) and the
second one is a straight line in the steepest descent direction
from R0(z2 = 0) on E2(q) to the exit Q0(z2 = 1). In the higher order
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approximations, the second path from R0 to the exit Q is
determined so that the total transition probability PZN is max-
imized. The first path from C to R0 gives the action,

S1 ¼ SCP
1 þ S

PR0
1 (12)

and the second path from R0 to Q provides the action,

S2 ¼ SR0Q
s : (13)

The basic parameters sZN and dZN are given by (see ref. 1 and 2)

sZN = sZN
0 and dZN = �S1 + S2 + dZN

0 , (14)

where

sZN0 þ idZN0 ¼
ðR�
R0

½K1ðRÞ � K2ðRÞ�dR; (15)

where R* is the complex crossing point and

KjðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E � EjðRÞ�

q
; (16)

The overall transition probability PZN is given in the analytical
form in terms of sZN and dZN (see, for instance, eqn (8.90) of
ref. 2).

III. Numerical demonstration

As mentioned above, the nonadiabatic transition and the multi-
dimensional tunneling can be treated separately once the
tunneling path is given. The nonadiabatic transitions are well
localized in the vicinity of avoided crossing points and the Zhu–
Nakamura theory has been demonstrated to work well even for
the energetically inaccessible transitions in one-dimensional
systems.1,2,5 The method to determine the optimal tunneling
path in the multi-dimensional space, on the other hand, has
been well tested to work well.13–16 Thus, the method proposed
here is supposed to be accurate. In this section it is numerically
demonstrated that the Zhu–Nakamura formulas of PZN in the
linear approximation can be very much improved by using the
present method with the use of the same analytical expressions
of PZN. In the linear approximation, the tunneling path is
assumed to be linear along the direction of the nonadiabatic
coupling vector at the caustic.

Here, the NT-type two-dimensional model reaction system
A + BC - AB + C proposed in ref. 17 is used.‡ The adiabatic
potentials E1(r,R) and E2(r,R) are given as follows:

E1 ¼
1

2
ðVR þ VPÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVR � VPÞ2 þ 4VC

2

q� �
; (17)

E2 ¼
1

2
ðVR þ VPÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVR � VPÞ2 þ 4VC

2

q� �
; (18)

with

VR ¼ Df1� exp½�bðr� reÞ�g2 �
1

2
D

þ 1

2
D 1þ exp �bðRþ 1

2
r� 2reÞ

� �� �2

;

(19)

VP ¼ D 1� exp �b Rþ 1

2
r� re

� �� �� �2

�1
2
D

þ 1

2
D 1þ exp �b Rþ 1

2
r� 2re

� �� �� �2

;

(20)

VC = A exp{�g[(r � rC)2+ (R � RC)2]} (21)

where r and R are the distance between B and C and the
distance of A from the center of mass of BC, respectively. The
various parameters are D = 4.9 eV, b = 1.877 Å, re = 0.7417 Å,
rC = 1.5707re, RC = 1.5rC, A = 0.3 eV, and g = 1.0 Å�2, which are
the same as ref. 17 except A. The coupling strength A is taken to
be smaller than the original one in order to emphasize the
difference between the pure and nonadiabatic tunneling. The
smaller the parameter A, the larger the difference, naturally.

Fig. 2 shows the numerical result of tunneling probability
against total energy. It is clearly seen that the present optimized
nonadiabatic tunneling probability improves the one in the
linear approximation. The difference is emphasized naturally
in the low energy region.

IV. Concluding remarks

A method has been proposed to treat energetically inaccessible,
namely, classically forbidden, nonadiabatic transitions in
multi-dimensional space for both NT and LZ types of transi-
tions. Since the nonadiabatic transition itself is localized, it can
be treated by the Zhu–Nakamura formulas along the direction
of the nonadiabatic coupling vector at the minimum energy
separation position in the tunneling region.1,2 The multi-
dimensionality effect, on the other hand, comes from the
tunneling, namely, the optimal tunneling path is not a straight
line in general. Determination of the optimal tunneling path
can be achieved by the method proposed by the authors.13 The
caustics are detected along a classical trajectory and the opti-
mal path up to and from the nonadiabatic transition position

Fig. 2 Nonadiabatic tunneling probability against energy. PT: optimized
pure tunneling through E1(r,R), NT: optimized nonadiabatic tunneling,
NTSL: nonadiabatic tunneling along a straight line. The saddle point energy
of the lower adiabatic potential is Esp = 2.275 eV.
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can be determined geometrically. The simple linear approxi-
mation in which the tunneling path is assumed to be linear
from the caustic can be very much improved by using the
present method. The method proposed in this paper properly
takes into account the effect of multi-dimensionality and is
expected to be usefully utilized to clarify the classically forbid-
den nonadiabatic chemical dynamics. For instance, the spin
crossover of thiophosgene is a good example.18,19 The detailed
description of the method together with applications to real
reaction systems will be reported in a full paper.
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