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Catalytic processes are the cornerstone of chemical industry, and catalytic conversion of nitrogen to

ammonia remains one of the largest industrial processes implemented. Rational design of catalysts and

catalytic reactions largely depends on approximate computational chemistry methods, such as density

functional theory, which, however, suffer from limited accuracy, especially for strongly-correlated

materials. Rigorous ab initio methods which account for static and dynamic electron correlation, while

arbitrarily accurate for small systems, are generally too expensive to be applied to modelling of catalytic

cycles, due to prohibitive time and space computational complexity with respect to the size of the

active space. Recent advances in quantum computing give hope for enabling access to accurate ab

initio methods at scale. Herein, we present a prototype hybrid quantum-classical workflow for modeling

chemical reactions on surfaces, applied to proof-of-concept models of activation and dissociation of

nitrogen on small Fe clusters and a single-layer (221) iron surface. First, we determined the structures of

species present in the catalytic cycle at DFT level and studied their electronic structure using CASSCF.

We show that it is possible to decouple the half-filled Fe-3d band from the Fe–N and N–N bond

orbitals, thereby reducing the active space significantly. Subsequently, we translated the CASSCF wave-

functions into corresponding qubit quantum states, using the Adaptive Variational Quantum Eigensolver,

and estimated their energies using a state vector simulator, H1-1E quantum emulator and (for selected

systems) H1-1 quantum computer. We demonstrated that if a sufficiently small active orbital space is

chosen, ground state energies obtained with classical methods and with the quantum computer are in

reasonable agreement. We argue that once quantum computing methods are scaled up so that larger

active spaces are accessible, they can offer a tremendous practical advantage to the computational

catalysis community.

1 Introduction

Quantum computing and quantum simulations are creating
transformative possibilities by exploiting the principles of
quantum mechanics in new ways to process and generate
information. Although classical computational chemistry has
shown great progress in predicting and describing the proper-
ties of a wide range of systems, simulating some chemical
systems is still classically difficult. Therefore, there is a great
interest in applying quantum algorithms to solve these pro-
blems efficiently, especially for the so-called strongly correlated

systems.1 These are systems usually described by wavefunctions
with a high degree of entanglement. Strong correlation is
ubiquitous in the study of chemical kinetics and catalysis at
the atomistic level, as well as in the modelling of light–matter
interactions, magnetic materials, novel semiconductors, Mott
insulators and high-temperature superconductors.2 Today’s
‘‘workhorses’’ among computational methods for catalysis
and kinetics, while extremely useful for many use cases, are
not accurate enough to drive process or materials discovery and
optimisation. Quantum computing will transform this land-
scape by unlocking the practical potential of accurate first-
principles computational methods that currently—on classical
CPUs—rely on Density Functional Theory (DFT) and steeply
scaling wavefunction methods in estimating total energies.3–5

Several early applications of quantum computers and quantum
simulations have already been presented,6–13 and the initial results
are quite promising. Today’s quantum computers, with their
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2-digit qubit counts and ever-improving gate fidelities, are
sometimes referred to as NISQ (‘‘Noisy Intermediate-Scale
Quantum’’) or ‘‘near-term’’ devices.14 Their computing power
can be measured in terms of quantum volume, which refers to
the maximum number of operations a quantum computer can
perform before the signal disappears into noise. Near-term
quantum algorithms for molecular ground state problems,
such as Adapt-VQE15 and UCCSD-VQE,16–18 leverage variational
techniques and parameterized quantum circuits to approximate
molecular ground state energies on quantum computers, offering
promising approaches for quantum chemistry simulations with
existing or near-future quantum hardware. Efforts to tackle the
challenge of the excited state issue involve the exploration of
novel approaches like quantum subspace expansion19 (QSE)
and quantum self-consistent equation-of-motion20 (Q-SC-EOM).
These methods harness the distinctive computational powers of
quantum computers to precisely simulate and investigate excited
electronic states within molecular systems. Additionally, effective
Hamiltonian techniques and embedding-type approaches such
as doubly unitary coupled cluster21 (DUCC) and transcorrelated
Hamiltonian methods22–24 are being explored on quantum
computers, using their computational power to address complex
electronic correlations and enable efficient simulations of large
molecular systems with improved accuracy and scalability.

However, the quantum hardware available today needs to be
further improved for quantum technology to have a significant
impact on a range of industries, including the chemical industry.
We believe that sufficiently large, fault-tolerant quantum compu-
ters will surpass the capabilities of currently available classical
machines to simulate large, highly correlated systems.25,26 More-
over, before such large, fault-tolerant computers are available,
further improvements in algorithms are expected, which would
further reduce runtimes and resource requirements. Advanced
modelling capabilities, such as those offered by quantum com-
puting, will not only provide new insights into the fundamentals
but, thanks to their ever-increasing accuracy, will also accelerate
progress in research by enabling fast in silico experimental testing
of new ideas, thus reducing the number of costly ‘‘trial-and-error’’
experiments in the laboratory.

With this in mind, the aim of this study is to demonstrate
the workflow of a typical surface science ab initio simulation on
quantum computers. To this end, we focused on the activation
and dissociation of nitrogen on iron clusters. Although the
production of ammonia is the oldest and one of the largest
catalytic processes in the chemical industry, it still requires
high temperatures and pressures. Therefore, considerable
efforts are being made to develop novel catalysts and methods
for milder, more environmentally friendly activation of
nitrogen.27–30 Catalytic cycles on conventional catalysts for
ammonia synthesis have been rationalised via DFT models.31

However, predictive simulation of these processes requires
first-principles methods that correctly describe the strongly
correlated properties of the catalysts. Strong magnetic inter-
actions, such as those found in the Haber–Bosch catalysts, are
thought to be important for their catalytic activity.32,33 The
FeMo cofactor, nature’s solution for ammonia synthesis,34 is

beyond the reach of current computational chemistry methods35

and is considered a prime target for quantum-accelerated com-
putational chemistry.36 Moreover, with reference to the currently
available literature,37 it is believed that Fe3 and Fe4 clusters on the
y-Al2O3(010) surface can be successfully used as a heterogeneous
catalyst for ammonia synthesis.

Larger model systems such as iron clusters and surfaces
require quantum phase estimation (QPE) algorithms. However,
their resource requirements are too large for the currently
available quantum computers. Variational algorithms are con-
sidered the most suitable techniques for NISQ devices. In these
algorithms, a hybrid quantum-classical setup is constructed in
which a relatively flat-parameterised quantum circuit performs
heavy tasks such as encoding correlated molecular wavefunc-
tions to calculate the expected value of the energy, while the
classical computer collects the quantum computer data to
optimise the parameters within the variational loop. In this
study, the variational quantum eigensolver (VQE) algorithm38

was used, which is one of the most commonly used variational
algorithms to perform quantum chemical simulations on NISQ
devices.

This work is structured as follows. In Section 2, the classical
and quantum computational methods of the simulations are
discussed. In Section 3 we provide all the results on the iron
clusters and surfaces with nitrogen, starting with classical
calculations to find the best way to simplify the system for
calculations with quantum algorithms. Finally, in the last
section (Section 4), we present a detailed summary of our
results and future work.

2 Methods

To model the activation and dissociation of nitrogen on iron
clusters and surfaces, we used a wide range of classical and
quantum computational methods. First, we built the atomistic
models and optimised them classically, and then used these
data to build our quantum models. This section is structured
as follows: first, we describe the computational details and
classical optimisation methods used for the iron clusters and
surfaces. Then we present the methods and technical details for
the quantum calculations including the Hamiltonian construc-
tion and the details of the quantum hardware used. In the last
section, we mention all the equations and approaches used in
the various energy calculations.

2.1 Hartree–Fock, CASSCF and DFT calculations

Atomistic models of nitrogen activation on iron were built by
running simulations for the bulk metal and for the single/multi-
layer surface slabs using the Quantum Espresso (QE) Kohn–Sham
Density Functional Theory (DFT) package.39,40 Spin-polarised simu-
lations were performed using DFT-D3 van der Waals dispersion
correction41 to optimise the geometry of the structures of interest.
In all DFT calculations, we employed the Perdew–Burke–Ernzerhof
(PBE) GGA exchange–correlation functional together with projector
augmented-wave (PAW) pseudopotentials.42 Wavefunction and
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charge density cut-offs of 36–47 Ry and 221–448 Ry, respectively,
were used together with a Brillouin zone sampling mesh of
(12 � 12 � 12) for the bulk system and a Marzari–Vanderbilt
smearing of 0.04 Ry. Single-point calculations were performed at
the restricted open-shell Hartree–Fock (ROHF) and CASSCF
levels of theory and with the Los Alamos National Labora-
tory (lanl2dz) effective core potential (ECP) and the basis set in
PySCF.43,44

A cubic box of at least 10 Å for the iron clusters and 35 Å
of vacuum on top of single/multi-layer surfaces (z-axis) were
adopted to avoid any density overlap along non-periodic
directions. The PBE0 functional was also used here, which
mixes the PBE exchange energy and the Hartree–Fock (HF)
exchange energy in a 3 : 1 ratio together with the full PBE
correlation energy. In addition to building the structures, the
Nudged Elastic Band (NEB) method45 available in the Quantum
Espresso package39,40 was used to find transition states and
minimum energy paths between known reactants and pro-
ducts. A loose force convergence threshold of approximately
0.05 eV Å�1 was also used.

Periodic HF mean-field calculations were performed using
the Los Alamos National Laboratory (lanl2dz) basis/pseudo-
potentials of the double-z type for both nitrogen and iron
atoms, as implemented in PySCF. For the clusters, first, a
ROHF calculation and then a CASSCF calculation was per-
formed, each time using the CI coefficients and orbitals from
the previous CASSCF calculation as the initial guess. To ensure
convergence of the total energy, a general second-order solver
called the Co-Iterative Augmented Hessian (CIAH) method,
implemented in PySCF, was used. The same setup was applied
to the iron surface models by sampling the Brillouin zone only
at the G-point and using a Gaussian auxiliary basis set for
density fitting in the form available in PySCF.

2.2 Atomic valence active space (AVAS) orbital localisation

To construct the active orbital space for post-Hartree–Fock and
quantum calculations, we used our own implementation of
Regional Embedding (RE),46 a variant of the AVAS method.47 In
AVAS, the active space is constructed by selecting a list of
atomic orbitals (projectors) defined as spherically averaged
ground state HF wavefunctions of free atoms in a minimal
basis (MINAO). In the RE variant and only for the virtual
orbitals, basis functions of the current computational basis
are used. An overlap matrix of the occupied orbitals is calcu-
lated, which is projected into the space of these selected atomic
orbitals:

[SA]ij = hi|P̂|ji (1)

Next, a matrix of eigenvectors [U]ij is computed such that:

SAU = U diag(s1,. . .,sNocc
) (2)

Now there are at most as many non-zero eigenvalues as there
are selected atomic orbitals. This matrix defines a rotation of
the occupied orbitals, separating them into two groups: those
that have a non-vanishing overlap with the target atomic
orbitals (si a 0) and the remaining ones that have exactly zero

overlap with our target space. The latter can remain inactive
(as nuclear orbitals), and the former are the active occupied
orbitals. An analogous transformation is performed for the
virtual orbitals. To further reduce the size of the active space,
we remove orbitals whose overlap si is lower than a certain
threshold called the AVAS Overlap Threshold.

The new set of rotated molecular orbitals in the basis of the
fragment projectors defines a sorted descending set of eigen-
values for the occupied and unoccupied orbitals. These values
represent the AVAS overlap threshold in the range between 1.0
(highest overlap) and 0.0 (lowest overlap).

2.3 ADAPT-VQE and NEVPT2 methods

Adaptive variational quantum eigensolver (ADAPT-VQE) is an
extension of the traditional VQE algorithm that aims to address
challenges in efficiently finding the ground state energy of
quantum systems, particularly in the realm of quantum chem-
istry. In the standard VQE, a parameterized quantum circuit is
repeatedly executed, and its parameters are adjusted to mini-
mize a cost function, eventually converging to an estimate of
the ground state energy. Adapt VQE builds upon this framework
by introducing an adaptive strategy during the optimization
process. This adaptability allows the algorithm to dynamically
alter its optimization approach based on the characteristics of the
quantum system it is analyzing.

The key innovation of Adapt-VQE lies in its ability to
intelligently respond to the specific properties of the quantum
system under consideration. By adjusting its optimization
strategy on-the-fly, the algorithm can navigate more efficiently
through complex energy landscapes, potentially leading to
faster convergence and improved accuracy in estimating
ground state energies. This adaptability is particularly advanta-
geous when dealing with diverse and challenging quantum
chemistry problems, providing a promising avenue for enhan-
cing the practical utility of variational quantum algorithms in
real-world applications.15

NEVPT2 (N-electron valence perturbation theory of second
order) is a powerful quantum chemical method employed
to calculate accurate electronic energies and properties of
molecular systems, particularly for systems with significant
electron correlation effects.48,49 It is a perturbative approach
that extends beyond the limitations of simple wave function
methods by systematically incorporating electron correlation
effects that are crucial for describing the electronic structure of
molecules. In NEVPT2, the reference wave function is typically
obtained from a lower-level method, such as a single-reference
method like Hartree–Fock, and the correlation effects are
then treated as perturbations. The second-order perturbation
theory accounts for dynamic electron correlation, offering a
more accurate description of electron–electron interactions
than the reference method alone.

One notable feature of NEVPT2 is its ability to handle multi-
reference systems where a single determinant wave function is
insufficient to represent the electronic structure adequately.
By incorporating a reference wave function that includes multi-
ple determinants, NEVPT2 can capture complex electronic
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correlations, making it a versatile tool for studying molecular
systems with diverse electronic behaviors. NEVPT2 is commonly
used as an energy correction method because it calculates the
contribution of dynamic electron correlation. This correction is
crucial for obtaining more accurate predictions of molecular
properties, especially in cases where electron correlation plays a
significant role. The perturbative nature of NEVPT2 allows it to be
computationally tractable while providing a substantial improve-
ment in the accuracy of electronic structure predictions.

2.4 Technical details for the quantum calculations

To calculate the total single-point energies of products, transi-
tion states and reactants to evaluate the reaction energies,
quantum simulators and state-of-the-art quantum hardware
were used. This was achieved by using a stack of PySCF,43

InQuanto50 and Pytket51 as well as Qulacs52 statevector simu-
lator, Qiskit Aer simulator53 and the ‘H1-1’ quantum device and
its emulator.

The second-quantized Hamiltonians for the VQE calcula-
tions were obtained by Hartree–Fock calculations in the PySCF
extension of InQuanto using the lanl2dz basis set and the
corresponding ECP, localising the orbitals with AVAS, and
transforming the Hamiltonian to the MO representation in
InQuanto. The terms with coefficients smaller than a certain
threshold (i.e. below 10�8) were then removed.

For the state preparation, we applied the Adaptive Derivative-
Assembled Pseudo-Trotter (ADAPT15) approach, which uses the
Unitary Coupled Cluster Singles Doubles formalism (UCCSD)
excitation pool and the ‘Chemically Aware’54 circuit synthesis
method. The Jordan–Wigner transformation was used. In the
final step, all circuits are optimised and compiled with pytket for
the target backend. The ADAPT-VQE algorithm was run on the
Qulacs statevector simulator to build the ansatz and determine
its parameters. The expectation value of the energy was then
evaluated using Hamiltonian averaging. We measured the Pauli
terms by appending measurement circuits directly to the system
register and using Partition Measurement Symmetry Verification
(PMSV) error mitigation.55 NEVPT2 dynamical correlation was
applied to the iron surface models only and evaluated using the
CASSCF reduced density matrices.

The measurement circuits were then prepared, optimised
and delivered for processing on quantum emulators and hard-
ware using pytket. For our 6-qubit calculations, we used the
emulation and processing of the Quantinuum H-Series, ‘H1-1’,
20-qubit device. The ‘H1-1’ device is constantly being developed
and upgraded. The experiments presented in this study were
conducted from March to May 2023. The device specifications
can be found online.56

2.5 General details of the energy calculations

The focus of this study is on the calculation of the activation
and dissociation energies of nitrogen on iron clusters and
surfaces. Fig. 1 shows the quantities we would like to calculate

Ea ¼ Etot
Fe=N2

� Etot
Fe=N�

2
(3)

representing the electronic activation energy with respect to the
kinetic constant of the process, and

Ed ¼ Etot
Fe=N2

� Etot
Fe=2N (4)

representing the electronic component of the thermodynamical
driving force for surface-assisted molecular dissociation
(i.e. neglecting the vibrational and entropy contributions).
In the figure, the initial, transition and final states of the iron
slab are shown for illustration. In the case of the iron clusters,
the same approach was followed.

In the quantum emulator and hardware experiments, the
approximate correlation energy Ecorr is calculated, which is
defined as the difference between post-HF and HF energies.
The DE(y) can be defined as

DE yð Þ ¼ Etotal yð Þ � E
�
HF (5)

where E
�
HF denotes the HF energy which is calculated with the

classical computer and Etotal(y) refers to the total energy calcu-
lated on quantum hardware or simulator, which may be
affected by noise and/or stochastic errors. If these errors are
small enough, the value of DE(y) calculated with optimal
parameters y is a good approximation to Ecorr, which must be
a negative value. However, quantum noise in the NISQ device
can cause DE(y) to even take on a positive value, since noise-
induced high energy excited states can contaminate the calcu-
lated ground state wavefunction.

2.6 Technical details of emulator experiments

Before running experiments on the quantum computer, we
performed a thorough analysis and benchmarking using clas-
sical quantum simulators, to investigate the convergence with
respect to the number of measurements (‘‘shots’’) and the
effect of quantum errors (noise). The quantum circuits were
built using the exponents (fermionic excitations) selected by
the ADAPT-VQE algorithm. The start geometry of the Fe3N2

cluster was used in all the benchmark simulations.
Simulating an actual machine is a key step towards under-

standing the resources needed to run on hardware. Fig. 2 shows
the relationship between the number of shots and the accuracy
of calculations performed using the initial geometry for the
Fe4N2 cluster. The cost of a hardware experiment depends on
the type and number of gates used for the circuits, as well as the
total time required for all processes to be compiled. In Fig. 2,
an approach called batching has been used, where we repeat

Fig. 1 Generic energy profile scheme for the nitrogen dissociation step in
the ammonia synthesis process. Fully relaxed structures of Fe/N2 and
Fe/2N are also shown. Colour code: gold for Fe and silver for N.
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each experiment with a target number of shots ten times. In the
case of 4k shots, for example, the target number is 4k, and after
10 repetitions, we have an experiment with 40k shots in total.
The energy and error bars shown in Fig. 2 and 3 are the mean
and standard deviation, which were obtained at the end of each
repetition. We can see that error bars get significantly smaller
when there are enough samples. For the case of a hardware
device, only a single batch of experiments will be run. To limit
the effect of noise when estimating expectation values, PMSV
(Partition Measurement Symmetry Verification) noise mitiga-
tion method has been employed. This reduces experimental
noise by removing shots in which a symmetry-breaking error
has occurred. Here, the mirror planes (Z2) and electron-number
conservation (U1) symmetries have been used which can be
represented by a single Pauli string that tracks the parity of the
wavefunction.

To reduce circuit depth and limit the magnitude of noise, we
investigated the effect of relaxing the ADAPT convergence
threshold from 10�3 to 10�2, see Fig. 3. Clearly, increasing

the threshold negatively affects accuracy, but the maximum
energy difference was 0.07 Ha, which we consider to be within
the acceptable limits for VQE experiments. Taking into con-
sideration the different results and the limited availability of
the actual hardware device, the optimal choice was to conduct
experiments with 4000 shots.

Finally, six qubits with three parameters and twenty 2-qubit
gates were used in the circuits designed for the start and final
geometry. The deepest circuit in this study, the TS geometry
utilised six qubits as well, but this time four parameters and
thirty-nine controlled-NOT gates were used. The convergence of
the expectation value of energy with respect to the number of
measurements in the absence of noise is discussed in ESI.†

3 Results
3.1 Simulations of iron clusters

It is shown37,57,58 that Fe clusters promote N2 reduction. Thus,
the applicability of our hybrid quantum-classical workflow was
first tested on small iron clusters. For the Fe4 cluster (Fig. 4(a)),
which is the smallest 3D iron cluster, different multiplicities of
the ground state have been found in the literature.37,59,60

Therefore, the geometry of Fe4 was optimised for several possible
spin multiplicities (7, 9, 11 and 13) and we found that the state
with multiplicity 7 has the lowest energy. Here we focus on the
catalytic behaviour of the Fe4 clusters, while we also studied the
Fe3 cluster and its relevant products by adding two nitrogen
atoms similar to the case of Fe4 (ESI†). As with the Fe3 cluster,
after optimising the Fe4 system, the Fe4N2 clusters were con-
structed by adding two nitrogen atoms and re-optimising (initial
geometry, Fig. 4(b)) or by stretching only the nitrogen atoms and
re-optimising to obtain the final geometry (Fig. 4(c)).

To calculate the activation energy Ea we had to determine
the structure of the transition state (TS), N2 for the Fe4 cluster.
The results for Fe4N2 with eleven NEB images are shown in
Fig. 5. The activation energy calculated here is in the range of
values found in the literature.37,60

3.1.1 Active space selection. Due to hardware limitations,
active space approximations were employed. It is clear that the
use of a small active space leads to neglection of the dynamical
correlation energy, which is the dominant part of the correla-
tion energy of these systems. However, a minimal active space
should be sufficient to capture any static correlation, provided
the orbitals are carefully localised, selected and optimised. To
this end, we have used the AVAS (Atomic Valence Active Space)
localisation procedure and the CASSCF orbital optimisation.

Fig. 2 Expectation value obtained by changing the number of shots used
in the computations with the Quantinuum ‘H1-1E’ noisy emulator backend.
The Fe4N2 cluster’s initial geometry was consistently utilized across all
simulations. The error bars in the results represent the standard deviation.

Fig. 3 Expectation value obtained by varying the ADAPT-VQE threshold
when running emulator (‘H1-1E’) experiments with 4k shots. The Fe4N2

cluster’s initial geometry was consistently utilized across all simulations.
The error bars in the results represent the standard deviation.

Fig. 4 Visualisation of the optimised geometries of the (a) Fe4 cluster (b)
N2 adsorption on Fe4 and (c) N2 dissociation on Fe4 using InQuanto-NGLView.
Colour code: orange for Fe and blue for N.
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If one constructs the active space from (partially) filled Fe d
orbitals and the N–N occupied and virtual orbitals, no excita-
tions from Fe 3d to N–N s or p orbitals are found in the CI
wavefunction. We have also separately verified that excitations
from the occupied N–N orbitals to the empty Fe-3d orbitals do
not contribute. This means that the excitations in the Fe d
manifold and in the N–N bond are not coupled and that a
reduced active space can be created consisting of orbitals of the
dinitrogen system and selected Fe orbitals interacting with it,
i.e. excluding all half-filled 3d-like orbitals on Fe.

As can be seen in Table 1, the contribution of the excited
determinants in the wavefunction is at least 10% and only the
first, second and third active orbitals are significantly active.
ESI† contains an illustration of these orbitals. For the construc-
tion of the AVAS active space, we selected 2p orbitals of the two
nitrogen atoms and doubly occupied or empty 3d orbitals of the
five iron atoms. The overlap threshold for occupied orbitals was
0.9, while the threshold for virtual orbitals was set at 0.97. The
half-filled orbitals of Fe atoms were frozen and thus excluded
from the active space.

3.1.2 Energy calculations. Along the minimum energy path
derived from the NEB calculation, energy calculations using
DFT, HF, CASSCF, and classical VQE statevector were carried
out. The CASSCF orbitals were used to construct the Hamilto-
nian for VQE, starting from the AVAS-localised orbitals (point 1)
or from the orbitals of the previous data point.

The CASSCF and the classical VQE statevector results are
quite unexpected. As can be seen in Fig. 6, the energy of the
final state is higher than that of the initial and transition states.
Also, the trend of the CASSCF and VQE energy graphs does not
follow the DFT. The most likely reason for this is that the
potential energy surfaces at the CASSCF and DFT levels of
theories are qualitatively different, especially at the middle
and the end of the NEB path. However, the middle section of
the CASSCF and VQE curves still exhibits a peak, which can be
taken as an approximation to the transition state. Therefore, we
decided to focus only on the range between images 6 and 9, i.e.
between two dashed orange lines shown in Fig. 6. Thus, for the
next calculations, the initial state is the 6th image, the transi-
tion state is the 7th image and the final state is the 9th image of
NEB calculation. The energy difference between the zero point
energy (NEB image 1) and the present NEB image is used to
determine energies in Fig. 6.

3.1.3 VQE emulator and hardware experiments. In this
section, we compared the Fe4N2 cluster activation and dissocia-
tion energies calculated using statevector, emulator, hardware
VQE, and DFT. The aim was to capture correlation energy
equivalent to CASSCF. Therefore, we conclude that the ‘H1-
1E’ results are particularly reliable, as illustrated in Fig. 6 and 7,
where ADAPT-VQE statevector energy values with a (4,3) active
space are quite similar to those obtained from CASSCF with a
(10,12) active space. Despite the iron clusters not being strongly
correlated, the dissociation energies are reproduced at a rea-
sonably good level. As depicted in Fig. 7, the data points
computed on the hardware are in excellent agreement with
the emulation results. The activation energy calculated using
emulator and hardware experiments is not close to the activa-
tion energy obtained using DFT. However, the dissociation
energy only varies by less than 0.02 Ha. Moreover, the deviation
between state vector simulations and quantum hardware (or
noisy emulation) is much larger than the finite-sampling error
(denoted by the error bars). This variance primarily stems from
the noise in quantum hardware and also the noise model

Fig. 5 NEB simulation of the minimum energy path for the dissociation of
the N2 molecule on the Fe4N2 cluster. The light blue region represents the
range of activation energy values available in the literature.37,60 Colour
code: orange for Fe and blue for N.

Table 1 Largest CI components of the transition state for the Fe4N2

cluster when the 2p orbitals of the two nitrogen atoms and 3d orbitals of
the five irons are selected

Alpha occ-orbitals Beta occ-orbitals CI coefficient

[012] [012] 0.98709
[013] [013] �0.12552
[013] [023] 0.03952
[013] [014] �0.04160
[023] [013] 0.03952
[014] [013] �0.04160

Fig. 6 Relative energies (Efirst � Ecurrent) of various Fe4N2 geometries
obtained by using (a) classical ADAPT-VQE statevector with a (4,3) active
space; (b) CASSCF with a (10,12) active space; (c) HF and (d) DFT.
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implemented in the emulator. Various factors contribute to this
noise, including gate errors, crosstalk between qubits, qubit
readout errors, decoherence effects, and imperfections in
qubits. It highlights the challenges and complexities in achiev-
ing accurate and reliable quantum computations on real hard-
ware at the moment.

Comparing the energy results computed classically with the
ADAPT-VQE statevector to those from emulator and hardware
experiments, we can see that the highest level of accuracy is
achieved for the final state in both the emulator and hardware
(Table 2). However, it is about 7 times worse than the so-called
‘‘chemical accuracy’’ target of 1 kcal mol�1 (1.6 mHa).

3.2 Simulations of iron surfaces

The high quality of the experimental output obtained on the
Quantinuum ‘H1-1’ device (and ‘H1-1E’ noisy emulator) has
shown encouraging results, indicating that this workflow
is suitable for larger simulations. Thus, our next target was to
study the activation and dissociation of nitrogen on iron surfaces.

To model the dissociation on the Fe catalyst, the equili-
brium value of the lattice parameter was first calculated. A final
value of 2.829 Å was found, which is very close to the lattice
parameter available in the literature of about 2.832 Å.61 Then,
the orientation of the simulated surface was determined. It has
been shown61 by comparing the relative difference in intrinsic
reactivity of various iron facets that the reaction rate, relative to
the (100) facet follows the order of (221) 4 (311) 4 (111) 4
(211) 4 (310) 4 (210) 4 (110), with 5.59, 5.13, 4.92, 4.32, 4.19,

2.40, and 1.90 orders of magnitude higher than the (100) facet,
respectively. Thus, we opted for the (221) direction, even
though this was not the simplest case. We constructed the
atomistic structure by selecting the number of repeated unit
cells along the X and Y axes of the slab, determining the
number of layers, and specifying the vacuum thickness above
and below the structure (along the non-periodic ‘z’ axis).

We found that a (3 � 3 � 1) monolayer slab with a total
amount of about 20 Å of vacuum, equally distributed around
the model, was large enough to prevent density overlapping
between neighbouring cells along the Z axis and ensure enough
surface space for the adsorption of a single molecule. The slab
was generated using the model-building functions of the
Atomic Simulation Environment (ASE).62 Even though we can
consider the 3 � 3 � 1 slab good enough for testing purposes,
more ‘‘realistic’’ models should include at least 7 layers to
mimic the bulk behaviour in the innermost region, as sug-
gested by Kaushal et al.63 and Krupski et al.64

In this study, we adopted the geometries proposed by Zhang
et al.61 as initial and final states. This choice was influenced by
the close agreement of the lattice parameter obtained in our
PBE/PAW pseudo-potential study using the Equation of States
(EOS) approach within the Quantum ESPRESSO (QE) package.
Fig. 8(a) provides an overview of the complete slab, encompass-
ing 66 iron atoms.

Maintaining consistency with our DFT setup, we performed
geometry relaxation on the iron slab first as depicted in
Fig. 8(a), and after achieving convergence, proceeded to relax
the deposited adsorbates based on the geometries suggested in
reference ref. 61. This process generated the initial and final
images for our 8-image NEB calculation, where only the degrees
of freedom of the nitrogen atoms were allowed to change while
mapping the minimal energy path. The resulting NEB path was
further refined around the saddle point using the Climbing
Image approach65 to ensure accurate determination of the
Transition State (TS) structure. The relative energies to the
initial state for the N2 dissociation on the 66-atom iron slab
are presented in Fig. 9, indicated by full red circles.

Fig. 7 Comparison of the activation (Ea) and the dissociation (Ed) energies
by using ADAPT-VQE with (a) Quantinuum ‘H1-1’ device, (b) Quantinuum
‘H1-1E’ noisy emulator backend, (c) Qulacs backend statevector emulator
and by using (d) DFT. The error bars in the hardware and emulator results
represent the standard deviation.

Table 2 Comparison of the energy values of ADAPT-VQE when running classical statevector, emulator and hardware calculations

State State vector (Ha) ‘H1-1E’ emulator (Ha) Deviation (mHa) ‘H1-1’ hardware (Ha) Deviation (mHa)

Initial �598.561 �598.523 38 �598.524 0.74
Transition �598.523 �598.476 47 �598.461 14
Final �598.556 �598.544 12 �598.542 1.6

Fig. 8 The slab (a) and the one-layer (b) atomistic models were used in
this work to mimic the Fe(221) surface.
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Given our primary interest in the applicability of quantum
computers to surface reactions, we decided to simplify the slab
model for the following quantum experiments. We reduced
its thickness to encompass solely the surface iron atoms,
resulting in a 22-atom single layer system depicted in Fig. 8(b).
Considerations regarding the stability of larger models were
deferred to another context. This choice was reinforced by two
key observations: (1) the additional residual electron density
generated during adsorption and dissociation mainly concen-
trated on the surface at the contact site between iron and
nitrogen atoms (refer to the density difference in the ESI† for
the larger model); (2) the relative energy of the transition state did
not significantly change with varying thickness of the two iron
systems (Fig. 9, path length = 0.1, full blue circle). This is likely
due to an effective screening of iron atoms when the landing site
is on the Fe (221) ‘‘step’’ region, as supported by the apparent
increase of stability of the final state with one nitrogen atom
sitting in the hollow of the single layer terrace region (Fig. 9, path
length = 1.00, full green circle). The initial (image 1), transition
(image 2), and final (image 8) states for the single layer model
were subsequently utilized for all subsequent calculations.

3.2.1 Choice of the fragment and the active space. For the
AVAS active space definition, only a few atoms around the
adsorption site were selected from the single-layer atomistic
model (Fe20N2) as depicted in Fig. 10. The choice of the sub-
system (fragment) was based on the observation that the
electronic density changes upon adsorption are essentially
restricted to the immediate vicinity of the adsorption site, as
demonstrated by the figures provided in the ESI,† which display
total density difference plots. To ensure confidence in the
selection of the sub-system, we conducted calculations with a
diverse range of iso-values for both activation and dissociation
geometries. These calculations encompassed both the slab
model and the single-layer model. It is important to highlight

that the decision to test a larger system than the clusters was
driven by the need to assess our quantum-classical workflow in
more extensive settings. However, it is acknowledged that
opting for a single-layer instead of the entire slab, may influ-
ence our results when seeking comparisons with calculations
done on larger (i.e. multi-layer) models.

3.2.2 VQE emulator experiments. For the single-layer iron
surface, we only ran emulator experiments because we observed
a minimal difference between the emulator and hardware
energy results. The results of the iron cluster experiments
confirmed the high performance of Quantinuum’s ‘H1-1E’
noisy emulator backend. Thus, we believe that a similar small
difference would have been detected if hardware experiments
had been conducted.

The agreement between the energies computed with the
ADAPT-VQE statevector simulator and those from the ‘H1-1E’
emulator experiments is quite good. The initial geometry has a
difference of only 0.74 mHa, as seen in Table 3. By comparing
the dissociation energy, it can be seen (Fig. 12) that the results
from DFT are very consistent to those from ADAPT-VQE for
both the statevector and the emulator. In contrast to DFT
results, the activation energy is much overestimated. As men-
tioned before, the origin of this error in the activation energy
may be attributed to the noise in quantum hardware and also
the noise model implemented in the emulator. Furthermore,
the shape of the potential energy surface at the ADAPT-VQE
level differ to that obtained with DFT. In Fig. 11 and Figs. 5 and
6 of ESI†, where DFT density difference calculations are
employed to screen the N–N bond, it is evident that the density
of the iron layers does not have an impact on this reaction.
While the literature commonly suggests incorporating a mini-
mum of 7 layers in more realistic models to simulate bulk
behaviour in the innermost region,63,64 the specific character-
istics of this system, such as the packing morphology of iron
atoms at the adsorption ‘‘step’’ site, enable us to employ a
considerably simplified model with just one layer without a

Fig. 9 NEB simulation of the minimum energy path for the dissociation of
N2 molecule on top of the 3-layer Fe(221) model. For comparison, the
activation energy (Ea, indicated by the blue dot) and dissociation energy
(Ed, indicated by the green dot) were calculated at the DFT level with
respect to the initial state for the 1-layer Fe(221) model and are also
presented. The light blue area represents the range of values for the
activation energy available in literature.61

Fig. 10 The selected sub-system of the single-layer atomistic model
(Fe20N2). Colour code: gold for Fe and silver for N.

Fig. 11 Illustrations depicting the DFT density differences are generated
for the initial, transition, and final state geometries during the activation
and dissociation of nitrogen on the single iron layer surface.
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substantial loss of descriptive accuracy for the activation
energy.

4 Conclusions and future work

We have presented proof-of-concept calculations of the static
correlation energies of molecular and periodic models of
species involved in the catalytic activation of nitrogen on iron.
We have attempted to replicate state-of-the-art results in quan-
tum chemistry by using quantum algorithms on noisy quantum
computers with few qubits to demonstrate the current state of
quantum computing for chemistry. We focused on 6-qubit
computations in the Jordan–Wigner encoding representing
3-orbital active spaces of 2 chemical systems with 3 states each.
Efficient circuits were prepared for Hamiltonian averaging by
using the ADAPT-VQE ansatz, compiled and processed on
backends by using pytket. We applied post-selection symmetry
verification error mitigation to reduce the impact of quantum
errors. Overall, our results showed an accuracy of about 12 mHa
for the best-case cluster systems, which is typical for quantum
simulations on current hardware, but about 7 times worse than
the so-called ‘‘chemical accuracy’’ of 1 kcal mol�1 (1.6 mHa).
For the single-layer surface model, the results were much
better, as chemical accuracy was achieved for the initial state.
These results are very encouraging, even if they do not yet allow
us to prove the advantage of quantum solutions for the simula-
tion of complex catalytic systems.

Quantum machinery was not applied to the entire atomistic
model – that would be not only expensive but also unnecessary;
rather, we used it to describe the immediate vicinity of the
reaction site. This is made possible by carefully transforming
the mean-field orbitals so that a compact active space is
constructed. Crucially, we have found that it is possible to
decouple the half-filled Fe-3d band from the Fe–N and N–N
bond orbitals, as their mutual correlation turns out to be
negligible.

In the case of the single-layer iron surface with 22 atoms, the
charge density difference calculations confirmed our hypoth-
esis that we can use only the top iron layer instead of the whole
slab and still be able to capture correlation energy equivalent to
the CASSCF. As our relative energy results showed, the VQE
results were very successful in reproducing the DFT energy
trend when studying the activation and dissociation of nitrogen
on iron surfaces. Even though this was an approximation, it has
clearly shown that large surface models are not necessary and
that fragmentation can instead be an accurate way to deal with
similar cases.

Future studies of these systems, using both quantum and
classical methods, may provide further insight into elementary
steps of catalytic ammonia synthesis. A suggestion to better
understand the iron catalyst would be to use a simpler facet
such as 111 or 211. Even though facets like 221 are more
reactive, a simpler facet is an easier problem for today’s
quantum computers. Other catalysts could be also explored.
Examples include ruthenium-based catalysts, which are the
most commonly used catalysts for ammonia synthesis after
iron, as Ru supported on CaFH can achieve ammonia synthesis
at an exceptionally low temperature (50 1C), electron-based
catalysts such as an ionic O2� compound in which electrons
act as the anion, cobalt-based, as it has been found that Co
supported on CeO2 or carbon and promoted with Ba has very
high activity, nickel-based, which has high activity at low
temperatures, and metal nitride catalysts consisting of binary
nitride systems based on uranium, cerium, vanadium, molyb-
denum and rhenium.66–69

In addition to investigating other related systems, future
work should focus on building up the methodology to reduce
errors and increase the size of the calculated systems. It is clear
that the Variational Quantum Eigensolver running on noisy
quantum processors cannot provide the required accuracy, nor
is it applicable to larger problems. A transition to phase
estimation algorithms is necessary but requires fault-tolerant
quantum computation, which is not yet available. Whether
stochastic approximations to phase estimation that can tolerate
a certain amount of noise can fill this gap remains to be
answered.70

While the quantum advantage for Hamiltonian simulation
of strongly correlated systems has been postulated in princi-
ple due to the exponential scaling of classical brute-force
algorithms, its practical implementation depends on the cost
comparison between a classical approximate heuristic algo-
rithm and the quantum method (including the cost of prepar-
ing the initial state) for a given use case.1 Therefore, follow-up

Table 3 Comparison of the ADAPT-VQE energy values when running
classical statevector and ‘H1-1E’ emulator calculations

State State vector (Ha) Emulator (Ha) Deviation (mHa)

Initial �2546.783 �2546.785 1.6
Transition �2546.696 �2546.686 9.6
Final �2546.861 �2546.866 5.1

Fig. 12 Comparison of the activation (Ea) and the dissociation (Ed) ener-
gies by using ADAPT-VQE with (a) Quantinuum ‘H1-1E’ noisy emulator
backend, (b) Qulacs backend statevector emulator and by using (c) DFT for
the 1-layer Fe(221) model. The error bars in the emulator results represent
the standard deviation.
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studies could use state-of-the-art approximate classical FCI sol-
vers (such as Stochastic Heat-Bath Configuration Interaction,71 or
the Density Matrix Renormalisation Group72) to (1) investigate
how complex the electronic states of catalytic species are, (2) deter-
mine the scaling of classical approximate ab initio methods for
such systems, and (3) develop prototype end-to-end workflows
applicable to large and dense Hamiltonians.
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