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Electron–vibrational renormalization in fullerenes
through ab initio and machine learning methods†‡

Pablo Garcı́a-Risueño, *a Eva Armengol, b Àngel Garcı́a-Cerdaña,b

Juan Marı́a Garcı́a-Lastra c and David Carrasco-Busturia *de

The effect of nuclear vibrations on the electronic eigenvalues and the HOMO–LUMO gap is known for

several kinds of carbon-based materials, like diamond, diamondoids, carbon nanoclusters, carbon

nanotubes and others, like hydrogen-terminated oligoynes and polyyne. However, it has not been

widely analysed in another remarkable kind which presents both theoretical and technological interest:

fullerenes. In this article we present the study of the HOMO, LUMO and gap renormalizations due to

zero-point motion of a relatively large number (163) of fullerenes and fullerene derivatives. We have

calculated this renormalization using density-functional theory with the frozen-phonon method, finding

that it is non-negligible (above 0.1 eV) for systems with relevant technological applications in

photovoltaics and that the strength of the renormalization increases with the size of the gap. In addition,

we have applied machine learning methods for classification and regression of the renormalizations,

finding that they can be approximately predicted using the output of a computationally cheap ground

state calculation. Our conclusions are supported by recent research in other systems.

I. Introduction

Fullerenes1–4 have been an object of great interest since the
discovery of the first one, the buckminsterfullerene in the
1980s, which was awarded with a Nobel Prize. In recent times
there has been an increasing research effort in fullerenes due to
their properties and applications. These include supercon-
ductivity, ferromagnetism and many potential biomedical
utilities.4–10 In addition, fullerenes have acquired a prominent
role in photovoltaics.11–17 For example, fullerene derivatives
are suitable for the elaboration of photovoltaic cells and
photodetectors.18 In the last decades the market has been
dominated by inorganic, silicon-based solar cells; these, how-
ever, present marked drawbacks, like their cost, weight, lack
of flexibility and high fabrication-related environmental and
energetic costs.11 In contrast, these inconveniences are solved

to a great extent in organic solar cells which include fullerenes:
their preparation is cheaper and less polluting, they can be
light, flexible, semitransparent and suitable for large-area
devices.11,14,17,19 In perovskite-based solar cells, the addition
of fullerenes can double the power conversion efficiency.12

These properties have boosted a strong interest in fullerene-
based photovoltaic materials. In them, fullerenes can take the
role of acceptors, taking electrons in their unoccupied states,
which enables a photocurrent which is a source of electrical
energy.11,12 The interplay between a donor polymer and a
fullerene acceptor leads to an increased performance of the
polymer solar cells compared with inorganic cells.

The electron–vibrational interaction can have a remarkable
impact on properties,20,21 like the eigenvalues of the HOMO
and LUMO and the HOMO–LUMO gap, which are central for
many applications, such as the mentioned photovoltaics.22,23

The LUMO level itself is a key quantity for the performance of
solar cells, and the difference between LUMO levels of the
donor and acceptor can be of the same order of magnitude
(hundreds of meV)11 as the typical renormalizations due to
phonons of carbon-based materials; the effect of nuclear
motion on electronic properties is strong in bulk diamond,24,25

diamondoids26,27 and graphene.28,29 Hence, the calculation of the
impact of electron–vibrational interaction on electronic eigenva-
lues must be taken into account for an appropriate analysis of
relevant properties of fullerenes. Despite the fact that high-quality
works on the electron–phonon interaction in fullerenes have been
performed,30 there is a lack, to the best of our knowledge, of an

a Independent scholar, Barcelona, Spain. E-mail: risueno@unizar.es
b Artificial Intelligence Research Institute, (IIIA, CSIC) Carrer de Can Planes, s/n,

Campus UAB, 08193 Bellaterra, Catalonia, Spain
c Department of Energy Conversion and Storage, Technical University of Denmark,

2800 Kgs. Lyngby, Denmark
d DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
e Division of Theoretical Chemistry and Biology, School of Engineering Sciences in

Chemistry, Biotechnology and Health, KTH Royal Institute of Technology,

SE-100 44 Stockholm, Sweden. E-mail: davidcdb@kth.se

† PACS numbers: 63.22.Kn, 71.38.-k, 81.05.uj, 65.80.-g.
‡ Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d4cp00632a

Received 12th February 2024,
Accepted 10th June 2024

DOI: 10.1039/d4cp00632a

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 3
:1

9:
10

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-8142-9196
https://orcid.org/0000-0003-3077-1407
https://orcid.org/0000-0001-5311-3656
https://orcid.org/0000-0003-1588-338X
http://crossmark.crossref.org/dialog/?doi=10.1039/d4cp00632a&domain=pdf&date_stamp=2024-07-09
https://doi.org/10.1039/d4cp00632a
https://doi.org/10.1039/d4cp00632a
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00632a
https://rsc.66557.net/en/journals/journal/CP
https://rsc.66557.net/en/journals/journal/CP?issueid=CP026030


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 20310–20324 |  20311

extensive analysis of it in a wide number of fullerenes, which
makes it possible to extract a general conclusion on the
strength of such interaction in these systems. In this article
we attempt to perform such an analysis. We present the
HOMO–LUMO gap renormalization of several fullerenes, as
well as fullerene derivatives with applications in photo-
voltaics.18,19,31 These renormalizations were calculated in the
density-functional theory (DFT) framework.32 Despite the fact
that more expensive methods, like GW,33,34 provide higher
accuracy,25,30 DFT is expected to provide reasonable results in
the calculation of quantities derived from the electron–vibra-
tional interaction.27,35 Moreover, recent research proved that
gap renormalizations calculated with GGA-PBE are similar to
those of B3LYP for small molecular carbon compounds.26

During the past years, machine learning36–38 (ML) has emerged
as an incredibly powerful tool for a variety of applications. Since
ML is especially suitable for identification of patterns, some of
these applications include medical diagnoses, language processing
and generation (chatbots), computer vision, automatic driving or
internet search engines, among many others. The complexity of
quantum mechanics, where numerous particles interact in intri-
cate manners, makes the suitability of ML for forecasting of
features of quantum systems far from granted, for an unaffordable
amount of data might be necessary for appropriate training.39,40

Nonetheless, in recent times numerous authors have proved that
ML is indeed suitable also in a quantum mechanical context. For
example, ML has achieved impressive results in biophysics, where
the application of deep neural networks has found a solution to
the problem of protein folding,41 which had been unresolved for
over 50 years. Other remarkable applications of ML to problems of
physics include materials discovery,38,39,42 accelerating molecular
dynamics or promptly finding solutions for equations in a variety
of formalisms, including the Schrödinger equation (directly),
reduced density matrix theory,43 Green’s functions or tight-binding
Hamiltonians.38,44,45 Through the usage of data from DFT, which
is probably the most widely employed theory for discovery of
materials, ML has been applied to several purposes, like approxi-
mating density functionals46–49 or determining properties of the
system, like structures,50,51 excitation and atomization
energies,52,53 catalytic activities,54 and many other quantities like
band gap or electron affinity.55 This article continues the latter
line, presenting ML forecasts for renormalization of electronic
eigenvalues due to the interaction between electrons and phonons.
Some authors have already used machine learning in the context
of electron–phonon theory, e.g. for efficient computation of
potential energy surfaces.56 Others have suggested its use for
efficient material discovery57 or materials characterization.58

Recently, ML (neural networks, in particular) has also been applied
to calculate energy levels renormalized due to the electron–phonon
interaction using Holstein Hamiltonians in a Heisenberg chain59

and many-body perturbation (Allen–Heine–Cardona) theory in
diamond.60 Moreover ref. 61 employed an approach very similar
to the one that we present in this paper. They also evaluated the
renormalization of electronic energies due to electron–phonon
interaction through ab initio methods in less than two hundred
(133) systems and used machine learning methods for forecasting

them without further explicit electron–phonon calculations. The
primary differences between the analysis presented in ref. 61
(whose research project is fully independent and had no commu-
nication with ours) and our current study lie in both the analyzed
systems and the methods employed for calculating renormaliza-
tions. While the former investigates 2D materials using the special
displacement method, our work focuses on fullerenes and utilizes
the frozen phonon approach (with corrections for the effects due
to crossings and anticrossings26). Recent research hints that the
special displacement method might yield not fully accurate pre-
dictions for band gap renormalizations in some cases, like C214N
and C510N62 using moderately sized supercells.

The present article is structured as follows. In Section II we
present the input data employed in our calculations; in
Section III we present the methods used to perform these
calculations. Section III.A presents our procedures for perform-
ing the calculations of renormalization of electronic eigenva-
lues due to electron–phonon interactions. In Section III.B we
present the machine-learning methods employed for efficient
forecasting of these renormalizations, with its subsections
describing the methods for regression using random forests
(Section III.B.1) and the methods for calculations of classifica-
tion using decision trees (Section III.B.2). Our results are
presented in Section IV, which presents the calculated renor-
malizations (Section IV.A) and the results of ML-based forecasts
of them (Section IV.B). Finally, in Section V we briefly outline
the conclusions of this work.

II. Data

Our analysis takes atomic positions of fullerenes as the starting
point. Many of them were generated through geometric means,
which means that not all them correspond to synthesized and
isolated molecules. Synthesis of fullerenes has so far proved to
be a tricky task, and researchers continue to search for better
ways for it. The easiest-to-produce fullerenes are63 C60-Ih (buck-
minsterfullerene, footballene) and C70-D5h (rugbyballene), yet
others are also attainable. For example, plasma synthesis con-
tains a mixture of fullerenes, with C60 being dominant.64

Several research works state that fullerenes of many different
sizes have been produced (e.g. Cn for all even numbers between
30 and 8465). Many fullerenes with over 70 carbon atoms
(higher fullerenes) have been synthesized in the past decades
(though not always in an isolated molecular form). This
includes C72,66 C74,67 C76,68 C80,69 C82,68 C84,63 C86 and C88,70

as well as C90 to C106.71 Synthesis of lower fullerenes (those
made of fewer than 60 carbon atoms) is more complex, prob-
ably due to their higher curvature (which is thought to make
them more interesting72). For instance, syntheses of C20,73

C32,65,74 C36
75 and C50

76,77 have been attained (again, not
necessarily in molecular form). Notwithstanding their non-
availability, many authors have published theoretical research
based on not-yet-synthesized fullerenes. Note that even the first
discovered fullerene was theoretically proposed before its first
synthesis.78 Examples of simulations of non-synthesized-and-
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isolated fullerenes are given in ref. 72 and 79–85, among many
others. For example, ref. 84 displays computed properties of
271 isomers of the C50 fullerene, ref. 86 simulates 2385 isomers
of C62 and ref. 85 performs calculations of a not-yet-synthesized
solid which involves C32. Finding their properties in silico is
considered a good way to estimate which ones have more
promising features, and hence in which syntheses special
efforts should be made. For example, fullerenes with strong
electron–phonon interactions may be good candidates for high
temperature superconductors.72

In the present paper, we use coordinates of fullerenes
mainly generated by geometrical means to generate a family
of molecules, which are expected to have similar features that
can be extracted using statistics and machine learning.
We present our procedure as a proof-of-concept, i.e. an example
to be applied to other sets of systems which share a similar
structure among them.

Our calculations consist of two clearly different stages:
(i) quantum mechanical; (ii) ML-based. The first one consists
of ab initio computations of electronic eigenvalues and the
subsequent evaluation of renormalizations due to the inter-
actions between electrons and vibrating nuclei87 using the
method presented in ref. 26. The second stage uses the infor-
mation outputted in the first stage as its input.

The input data for the first stage (ab initio) is merely the set
of atomic coordinates of the analysed molecules, together
with the chosen set of input parameters for the calculation
(e.g. pseudopotentials, plane wave cutoff, etc.).

For the second stage (ML-based) we have considered numer-
ous variables as possible inputs for the employed regression
and classification methods. We classify them into eleven sets of
features: electronic structure features (selected, few, all), geometric
features, phonon features, bond length features and bond order
features (Mayer, GJ, NM1, NM2, NM3). Comprehensive explana-
tions about them can be found in the ESI.‡ The electronic
structure features are obtained from the output of the DFT
ground state calculation. These are easy to obtain from a
human viewpoint; moreover, they are computationally cheap,
because just one PBE-based relaxation, one PBE-based ground
state calculation and one B3LYP-based calculation are neces-
sary (see Section SII of the ESI‡). Many of the electronic structure
features are differences between electronic eigenvalues (e.g.
HOMO–LUMO gap using PBE and B3LYP functionals, eHOMO �
eHOMO�1, . . ., eHOMO � eHOMO�6, eLUMO+1 � eLUMO, . . ., eLUMO+6 �
eLUMO) as well as their inverses (e.g. (eHOMO � eHOMO�1)�1). The
reason for considering the inverses of differences between eigen-
values is that such terms appear in the renormalizations given by
many-body perturbation theory according to the Allen–Heine–
Cardona formalism.26,88,89 We also consider the mean, variance,
skewness and kurtosis coefficients of the electronic eigenvalues,
as well as the inverses of the average occupied and unoccupied
eigenvalues. We analyse three sets of regressors containing
electronic structure features. One of them (all, consisting of
38 variables) includes all them; another one (few) includes 10
of the variables; finally, the feature set called electronic structure
selected consists of a lower number of regressors, which were

chosen based on their predictive power (further remarks on
these variables can be found in Section IV.B and in the ESI‡).

Another set of variables which were tried as input (regres-
sors) of the machine learning methods corresponds to phonon
features. It includes the minimum and maximum phonon
frequencies, as well as the mean, variance skewness and
kurtosis coefficients of the set of phonon frequencies of the
fullerene. Note that the evaluation of these frequencies is
numerically more complex (i.e. it requires more computing
time) than a single ground state calculation, and hence one
of the goals of ML-based forecasting of renormalizations would
be to avoid performing the phonon calculations (i.e. to avoid
solving the dynamical equation90).

The geometric features include the number of atoms and the
number of hexagons occurring in the fullerene (the number of
pentagons is constant, 12, for all them91), as well as the surface
and volume of the molecule and the quotient between both.

The bond length features are a collection of regressors
calculated from the lengths of the bonds of each molecule.
Finally, there are five bond order features (Mayer, GJ, NM1, NM2
and NM3), which were calculated using the information on the
bond orders of the molecules. These five features differ in the
way the bond orders are calculated (see the ESI‡ for further
details).

So far we have listed the regressors (input columns) of our
dataset. The regressands (i.e. the quantities to forecast) are the
renormalizations of the HOMO, LUMO and HOMO–LUMO gap.
The rows of our dataset are those displayed in Table 2, exclud-
ing the C62-C2v (which is singular because it contains a ring of
just 4 carbons) as well as the fullerene derivatives ([6,6]-phenyl-
C61-butyric acid methyl ester [60]PCBM, [70]PCBM and indene
IC60BA) which due to the attached atoms are expected to behave
slightly differently than pristine fullerenes. We have also
discarded three of the fullerenes (C28-D2, C30-C2v-b, C58-C3),
considering them outliers, because the values of the LUMO
renormalization that they provide strongly differ from the rest.
Their names appear in italics in Table 2.

III. Methods
A. Renormalization of electronic eigenvalues

Our calculations are based on the frozen-phonon method26,92,93

to calculate the variation of electronic eigenvalues (renormali-
zation) due to the interaction among electrons and phonons.
This method consists of calculating the ground state of
the system with relaxed nuclear positions and with positions
displaced in the directions given by the nuclear vibrations
(normal modes). This provides the renormalizations for both
zero (zero-point renormalization) and nonzero temperatures.
The calculation of eigenvalue renormalizations using the
frozen-phonon method (as presented in ref. 26 and 92) is more
efficient and less complex than the explicit calculation of
electron–phonon couplings24,88 because it does not require
summations in unoccupied eigenstates, which converge very
slowly. We performed our calculations following an accurate
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version of the frozen-phonon method recently developed by
us;26 this method avoids distortions arising from mixing of
states (anticrossing). We used the Quantum Espresso (v.5.3.0)
DFT code94 with HGH pseudopotentials.95 For efficiency’s
sake we have performed all the calculations necessary
to evaluate renormalizations using the GGA-PBE96 exchange
correlation functional and a basis set with a plane-wave cutoff
of 30 Ry (see Section SI of the ESI‡ for remarks about
convergence). In addition, we have run ground state calcula-
tions using the B3LYP functional,97,98 so that the HOMO–
LUMO gap calculated with B3LYP can be used as a regressor
in our subsequent machine learning-based analysis. Despite
our choice of GGA due to its low computational cost, the
conclusions presented in this article are expected to hold for
renormalizations calculated using more accurate theory levels,
like GW. Our conclusions indicate that the renormalizations
can be forecast using just ground state properties, and we find
no reason to expect that this does not hold if the regressors
and regressands are calculated with a higher accuracy
(this should indeed reduce noise and hence improve the
predictability).

We relaxed the geometry of the systems with PBE until
individual forces on the atoms of the order of 10�6 Ry bohr�1

were reached. Phonon frequencies and normal modes were
calculated using density-functional perturbation theory.99

These quantities, as well as relaxed geometries, if calculated
with PBE, are thought to be nearly as accurate as if calculated
with methods like DFT-B3LYP or GW (ref. 30, ESI‡).

The atomic geometries of some analysed systems were taken
from experimental references.18,19,31,69,71 Other initial geo-
metries were obtained from further works.86,100 The rest were
generated by geometrical means, and taken from the database
of ref. 101; among them, an important part had been post-
processed using force fields,102 and extracted from ref. 103. For
the sake of a broader scope we included the renormalizations of
a singular fullerene which contains a 4-carbon ring.104 The
geometries of all the simulated systems can be downloaded
from ref. 105. The input and output files of the ab initio (DFT)
calculation can be found in ref. 106.

B. Forecasting through machine learning

The relatively high numerical complexity of the calculations of
the electron–vibrational renormalization of electronic bands,
together with their need to master the phonon theory,

may discourage many research groups from evaluating such
renormalization. Nevertheless, as stated in Section I, this
renormalization can have a large size and a potentially strong
impact on technological applications like photovoltaics. In this
section we present methods to make estimations of the elec-
tron–vibrational renormalization of electronic bands without
the need for performing complicated and costly calculations.
In our analysis we have used different sets of regressors and
applied both regression (Section III.B.1) and classification
(Section III.B.2) methods.

1. Regression. We selected several widely used machine
learning methods for regression, including random forests,
neural networks (NN) and k-nearest neighbors (KNN). In this
document we focus on RF. This is a popular ML method for
both classification and regression,36 which is not very prone to
overfitting. RF-based methods were also found to be the most
appropriate ones in similar research for 2D materials.61 For
each of the analysed ML methods we split the dataset into a
training set and a test set, which included 80% and 20% of the
data (125 and 31 points), respectively. We calculated the
average absolute error of the forecast in the test set, which
gives an estimate of the accuracy of the regression. For every
analysed ML method we performed three kinds of calculations:

(i) Using the (bare) ML method to forecast the renormaliza-
tions (as found in our frozen-phonon calculations, i.e. as they
appear in Table 2);

(ii) Using an ordinary least squares linear regression (LR);
(iii) Using the ML method to forecast the residuals of linear

regressions performed (ii), this is applying ML on top of linear
regression.

In the latter case (iii), we first apply LR to the training
dataset; we then calculate the difference between the result of
this linear regression and the outputs, i.e. the residuals; then,
the ML method (e.g. RF) learns these residuals, rather than the
renormalizations themselves. Finally, the forecasting of the test
dataset is performed by adding the outputs from both LR and
ML methods (whose parameters were obtained in the training
stage).

As already mentioned, we performed ML calculations
using different sets of input variables. Among them, the
set of regressors which performed best for the linear regression
(LR) and random forests (RF) calculations corresponds to
the electronic structure selected dataset, whose constituents are
presented in Table 1. In it GapPBE and GapB3LYP stand for the

Table 1 Input regressors used for linear (LR) and random forests (RF) to predict HOMO, LUMO and GAP renormalizations (electronic structure selected)

Predicted property Model Input regressors

HOMO renorm. LR, RF GapPBE, AvgOcc, (eHOMO � eHOMO�1), . . ., (eHOMO � eHOMO�5), (eHOMO � eHOMO�1)�1, . . ., (eHOMO � eHOMO�5)�1,
(eLUMO � eHOMO�1)�1, (eLUMO � eHOMO�2)�1, (eLUMO+1 � eHOMO)�1, (eLUMO+2 � eHOMO)�1

LUMO renorm. LR GapPBE, AvgEmpty, (eHOMO � eHOMO�1), (eLUMO+2 � eLUMO)�1, (eLUMO+1 � eLUMO)�1

RF GapPBE, GapB3LYP, AvgEmpty, (eLUMO+4 � eLUMO)�1, . . ., (eLUMO+1 � eLUMO)�1

GAP renorm. LR GapPBE, AvgOcc, AvgEmpty, (eHOMO � eHOMO�1)�1, (eLUMO+1 � eLUMO)�1

RF GapPBE, GapB3LYP, AvgEmpty, AvgOcc, (eHOMO � eHOMO�1)�1, . . ., (eHOMO � eHOMO�4)�1,
(eLUMO+4 � eLUMO)�1, . . ., (eLUMO+1 � eLUMO)�1
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HOMO–LUMO gaps calculated using PBE and B3LYP, respec-
tively, e indicates electronic eigenvalues, and AvgOcc and
AvgEmpty indicate the average value of occupied and unoccupied
electronic eigenvalues (see their definitions in Section SII of the
ESI‡).

In order to evaluate the predicting power of each regression
method we executed 1000 trials. In each of them a training
dataset and a test dataset were randomly generated (shuffle). In
order to perform comparisons on equal footing, these datasets
are equal for the three mentioned kinds of calculations and for
the different analysed ML methods. We finally evaluated the
predictive power of a regression method as the mean for the
1000 trials of the average absolute error out-of-sample (this is in
the test dataset).

We have run the RF algorithm with 250 estimators, making
the maximum number of features equal to 3, and minimum
number of samples required to split an internal node equal to
4. We have executed the NN algorithm with two layers of
neurons. For the forecast without using linear regression (i.e.
using bare NNs) they consisted of 400 and 200 neurons,
respectively. For the forecast performed on top of linear regres-
sion (i.e. forecasting of residuals) the first layer consisted of 100
neurons, while the second one consisted of just one neuron.
Using different hyperparameters for the NNs in these two cases
leads to more accurate results. For both cases the activation
function was the logistic function, and the chosen solver was
ADAM109 using up to 10k iterations; the a was set to 0.01, the
learning rate was set to 0.0015 and the momentum was set to
0.6. Concerning KNN we have taken into account 22 neighbors
and we have set the Minkowski parameter to 1. We were unable
to attain reasonable predicting power using other popular
regression methods, like kernel ridge or support vector
machines. Details on the way our calculations were performed
can be viewed by analysing our code.107 We have also written
and made publicly available108 a code which performs forecasts
of the electron–phonon renormalizations of any given fuller-
ene. The user must simply specify a few input variables which
can be promptly calculated through a ground state DFT calcu-
lation (example input files as well as pseudopotentials are also
provided). These codes were written in Python; their ML
calculations are based on the functions provided in the scikit-
learn library.109

2. Classification. A different approach is the one using
regression trees110 on top of the outcome predicted by a
regression model (e.g. linear regression) as is described in ref.
111. The idea is to predict a value for a dependent variable and
then to assess its validity using the regression tree. The user
must define the maximum prediction error that he or she is
willing to accept. The error is defined as the absolute difference
between the prediction of the regression model (linear regres-
sion in the analysis that we present here) and the actually
observed (i.e. calculated ab initio) value. In our analysis an
error below 10 meV is considered acceptable; otherwise it is
unacceptable.

Given a dataset with objects (rows) having known values in
the dependent variable v, the first step is, for each object of the

dataset, to use a regression model to predict a value for v for
each object. The second step is, for each object, to calculate the
prediction error (distance d, defined as the absolute value of
the difference between the forecasted and the observed –
i.e. ab initio calculated – renormalization) and to label the
object as either acceptable (if d r 10 meV) or unacceptable
(if d 4 10 meV). Finally, the third step consists of growing a
regression tree with the labeled objects. In order to avoid
overfitting, we decided to prune the regression tree so that it
has a depth equal to one. This means that, in fact, only one
independent variable (the most relevant one) is taken into
account to determine the validity of the prediction. The expla-
nation of how to grow a regression tree is beyond the scope of
this article, but the reader can find the procedure in the
description of the CART system.110

The reliability of our approach has been measured using
5-fold cross-validation, being the results of an average of five
trials.

In the calculations involving classification we have used the
following sets of regressors for the linear regression on top of
which the random tree-based classification is performed:
� For the HOMO renormalization: (eHOMO � eHOMO�1),

(eHOMO � eHOMO�2), (eHOMO � eHOMO�1)�1, (eHOMO � eHOMO�2)�1

and AvgOcc.
� For the LUMO renormalization: an ensemble of two

regression models whose regressors are, respectively:
– {GapPBE, AvgEmpty, (eHOMO � eHOMO�1), (eHOMO �

eHOMO�2)}
– {GapPBE, (eLUMO+1 � eLUMO)�1, (eLUMO+2 � eLUMO)�1}
� For the gap renormalization: an ensemble of two regres-

sion models whose regressors are, respectively:
– {GapPBE, AvgOcc, (eLUMO+1 � eLUMO)�1}
– {GapB3LYP, AvgOcc, (eLUMO+1 � eLUMO)�1}

Concerning the tree construction, it is important to select a
subset of appropriate variables. We tried with (1) the complete
set of variables describing the fullerenes (see Section II);
(2) several subsets of variables; (3) principal component analysis
(PCA) with several subsets of variables. After several preliminary
calculations we decided to use the following variables to grow
the regression trees:
� HOMO renormalization: PCA with hei, GapB3LYP.
� LUMO renormalization: PCA with AvgOcc and AvgEmpty.
� Gap renormalization: PCA with AvgOcc and (eLUMO+1 �

eLUMO)�1.

IV. Results and discussion
A. Renormalization of electronic eigenvalues

We present the results of our calculations of electronic eigen-
value renormalizations due to electron–vibrational interac-
tion in Table 2. This table displays the HOMO–LUMO gap
(calculated using B3LYP) and the renormalizations of HOMO,
LUMO and gap (calculated using GGA-PBE) at zero-
temperature of 163 fullerenes and fullerene derivatives. These
data are also presented in Fig. 1, which displays the
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renormalizations as a function of the HOMO–LUMO gap
calculated from B3LYP (see the ESI‡ for the corresponding
plots as a function of the gap calculated with GGA-PBE). For
the sake of completion and in order to avoid overcomplicating
this table, we report the band gap obtained with PBE in Table
SVI in the ESI.‡

In the literature there exist many research papers, both
theoretical and experimental, which analyse the electron–pho-
non interaction in buckminsterfullerene. However, they usually
focus on given electron–phonon couplings,30,112–116 which cor-
respond to specific electronic levels and vibrational modes, due
to their interest for analysing superconductivity. It is therefore

Table 2 HOMO–LUMO gaps (from B3LYP) and zero-point renormalizations (from PBE) of the HOMOs, LUMOs and HOMO–LUMO gaps of fullerenes
and fullerene derivatives. Names that appear in italics have been discarded from our subsequent machine learning analysis. Names in bold font
correspond to experimentally relevant molecules.18,19,31,69,71 The last three listed ones ([60]PCBM, [70]PCBM and IC60BA) are fullerene derivatives

Fullerene -
symmetry

HOMO–
LUMO
gap
[meV]

HOMO
renorm
[meV]

LUMO
renorm
[meV]

Gap
renorm
[meV]

Fullerene -
symmetry

HOMO–
LUMO
gap
[meV]

HOMO
renorm
[meV]

LUMO
renorm
[meV]

Gap
renorm
[meV]

Fullerene -
symmetry

HOMO–
LUMO
gap
[meV]

HOMO
renorm
[meV]

LUMO
renorm
[meV]

Gap
renorm
[meV]

C28-D2 1495.2 25.7 11.2 �14.5 C56-C2v 1264.8 10.0 �22.0 �32.0 C84-D2 1241.8 28.7 �27.3 �56.0
C30-C2v-a 2200.9 65.7 �74.6 �140.3 C56-Cs 1727.6 20.6 �45.4 �66.0 C84-D2d 1936.4 37.5 �29.6 �67.1
C30-C2v-b 1270.4 26.3 43.0 16.7 C56-D2 1521.9 12.6 �32.2 �44.8 C84-D3d 1232.8 6.8 �12.9 �19.7
C32-C2 1959.4 12.4 �51.5 �63.9 C56-Td 1707.2 11.0 �13.3 �24.3 C84-D6h 2198.9 73.7 �36.7 �110.4
C32-D3 2535.8 48.3 �56.3 �104.6 C58-C1 996.4 17.3 �6.8 �24.1 C84-Td 2493.3 75.2 �39.1 �114.3
C32-D3h 2541.5 16.6 �59.3 �75.9 C58-C3 909.1 �84.0 33.9 117.9 C86-C1 1091.4 5.3 �31.8 �37.1
C34-C2 1420.6 �14.6 �29.3 �14.7 C58-Cs 911.2 7.1 �0.9 �8.0 C86-C2 1408.6 14.4 �24.9 �39.3
C36-C2 1341.7 2.2 �20.4 �22.5 C60-C1 1611.5 25.6 �42.6 �68.2 C86-C2v 1017.1 �2.0 �16.4 �14.4
C36-D2 1544.5 4.6 �59.3 �63.9 C60-C2 1389.4 21.5 �18.4 �39.9 C86-D3 964.3 9.1 �37.3 �46.4
C36-D2d 1290.1 �25.2 �47.9 �22.7 C60-C2v 1795.6 35.2 �31.5 �66.7 C88-C1 927.6 31.5 �7.6 �39.1
C36-D6h 1159.1 30.4 �33.8 �64.2 C60-C3v 1951.6 50.2 �29.2 �79.4 C88-C2 632.4 10.6 0.3 �10.3
C38-C2-a 1675.0 22.4 �68.5 �90.9 C60-Cs 1852.0 75.0 �35.3 �110.3 C88-T 725.9 �25.9 �14.3 11.6
C38-C2-b 1662.7 37.2 �56.0 �93.2 C60-D2h 1446.7 38.9 �17.2 �56.1 C90-C1-a 1156.2 61.2 �9.1 �70.3
C38-C2v 1012.2 26.7 �15.7 �42.4 C60-D5 887.8 �13.9 �28.4 �14.5 C90-C1-b 987.7 84.0 �0.6 �84.6
C40-C1 1441.0 42.1 �19.3 �61.4 C60-Ih 2634.6 3.0 �33.4 �36.4 C90-C2 1535.6 39.5 �20.4 �60.0
C40-D2 1859.2 55.7 �59.9 �115.6 C60-S4 1134.8 10.6 �18.9 �29.5 C90-C2v 1645.1 46.6 �20.7 �67.3
C40-D5d 1983.4 24.1 �7.2 �31.3 C62-C1 1206.2 62.6 �14.7 �77.3 C90-Cs 1635.8 15.3 �35.6 �50.9
C40-Td 1352.0 23.9 �9.2 �33.1 C62-C2 931.7 24.6 0.1 �24.5 C92-C1 859.7 3.1 �10.6 �13.7
C42-C1 1197.5 18.8 �2.8 �21.6 C62-C2v 1704.2 5.3 �37.0 �42.4 C92-C2 1099.5 2.7 �18.3 �21.0
C42-C2 1012.1 23.5 0.8 �22.7 C64-C2 1729.1 37.0 �25.5 �62.5 C92-Cs 1428.4 0.6 �68.0 �68.6
C42-Cs 1074.1 �3.7 7.1 10.8 C64-C3v 1043.2 �8.9 2.1 11.0 C92-D2 1420.0 25.6 �32.6 �58.2
C42-D3 1854.3 33.7 �36.9 �70.6 C64-D2 2098.3 21.5 �53.1 �74.6 C92-D2h 1029.5 3.4 �16.3 �19.7
C44-C1 1317.4 28.0 �15.2 �43.2 C66-C2v 1020.2 16.1 �5.0 �21.1 C92-S4 995.2 11.6 �11.5 �23.1
C44-C2 1379.4 27.6 �14.4 �42.0 C66-Cs 1811.1 60.9 �24.8 �85.7 C92-T 1111.2 �3.9 �6.4 �2.5
C44-C2v 1955.0 115.3 �36.7 �152.0 C68-C1 1207.0 27.2 �11.4 �38.6 C92-Td 1158.5 12.3 �5.8 �18.1
C44-D2 1741.4 116.8 �22.7 �139.5 C68-C2 1744.3 44.8 �25.5 �70.3 C94-C2 1063.9 9.7 �28.0 �37.7
C44-D3 1011.9 8.4 �4.3 �12.7 C68-D2 1271.9 10.7 �62.9 �73.6 C94-C2v 1022.7 37.6 �23.0 �60.6
C44-D3d 1704.4 21.2 �15.9 �37.1 C68-S4 1411.6 8.7 �88.2 �96.9 C96-C2 1239.3 24.3 �29.0 �53.3
C44-T 1990.3 105.6 �13.9 �119.5 C68-S6 1581.2 102.8 �18.8 �121.6 C96-C2v 972.1 7.1 �9.9 �17.0
C46-C1 1338.1 18.9 �11.3 �30.2 C68-T 1158.5 �14.8 �11.5 3.3 C96-Cs 1168.5 2.6 �29.6 �32.2
C46-C2 1244.3 28.9 �13.4 �42.3 C70-C1 968 �1.3 �15.8 �14.5 C96-D2h 1927.7 18.6 �110.4 �129.0
C46-C2v 1546.4 25.6 �36.9 �62.5 C70-C2 1538 36.4 �31.2 �67.6 C96-D3h 2259.9 44.6 �72.3 �116.9
C46-Cs 1522.8 27.3 �20.9 �48.2 C70-D5h 2622.6 59.4 �76.5 �135.9 C96-D6h 1409.3 21.1 �26.1 �47.2
C48-C1 1451.9 11.6 �47.6 �59.2 C72-C2v 1459.2 �11.1 �32.0 �20.9 C98-C1-a 923.4 35.6 �5.6 �41.2
C48-C2-a 1475.8 45.7 �19.3 �65.0 C72-D6d 2326.8 22.2 �56.4 �78.6 C98-C1-b 1199.2 23.0 �27.8 �50.9
C48-C2-b 1923.9 78.2 �29.6 �107.9 C74-C1 887.8 22.3 �1.5 �23.8 C98-C2 1286.1 21.6 �25.5 �47.1
C48-Cs 1490.0 6.3 �58.4 �64.7 C74-C2 1364.1 7.7 �25.5 �33.2 C98-C2v 989.3 21.9 �8.9 �30.8
C48-D2 1634.1 �6.7 �92.1 �85.4 C74-Cs 1133.1 �11.4 �16.2 �4.8 C98-C3 1385.7 90.2 �22.5 �112.7
C48-D2h 1244.3 23.8 �28.5 �52.3 C76-C1 1100.9 5.0 �19.4 �24.4 C98-D3 867.8 4.3 �20.8 �25.1
C48-D6d 1732.9 8.8 �23.6 �32.4 C76-C2 944.4 14.0 �13.4 �27.4 C100-C2 995.7 4.5 �26.3 �30.9
C50-C1-a 1215.7 �0.7 �23.7 �22.9 C76-C3v 813.1 31.3 6.6 �24.7 C100-C2v 1747.7 51.6 �30.3 �81.9
C50-C1-b 1551.2 13.0 �28.9 �41.9 C76-D2 1855.2 17.0 �67.3 �84.3 C100-Cs 834.0 71.0 4.7 �66.3
C50-C2 1543.5 14.0 �38.3 �52.3 C76-S4 1288.9 16.3 �16.1 �32.4 C100-D2 1077.0 �3.5 �34.4 �30.9
C50-Cs 1494.1 8.9 �18.6 �27.5 C78-C2v 1545.1 17.1 �55.3 �72.4 C100-S4 1069.8 �6.6 �23.9 �17.3
C50-D3 2230.3 42.7 �48.4 �91.1 C78-D3 1505.2 3.7 �37.8 �41.5 C100-T 721.9 �34.2 �27.2 7.0
C50-D5h 1193.9 5.8 �12.6 �18.4 C78-D3h 1406.9 19.0 �30.7 �49.7 C100-Td 957.2 51.4 12.0 �39.4
C52-C1 1242.0 �11.8 �24.1 �12.3 C80-C2v 848.8 22.4 �4.0 �26.4 C104-C1 967.0 5.5 �20.8 �26.3
C52-C2 1062.3 39.4 �5.4 �44.8 C80-D2 1217.6 �3.8 �27.4 �23.6 C104-S4 1099.5 15.1 �8.2 �23.3
C52-Cs 1302.2 36.0 �5.0 �41.0 C80-Ih 781.6 �17.0 �29.3 �12.3 C104-T 1357.7 79.4 �11.4 -90.8
C52-D2 1115.8 �7.8 �47.9 �40.1 C80-S4 1148.7 39.6 �12.9 �52.5 C180-Ih 2244.0 38.0 �38.3 �76.4
C52-D2d 1080.2 �16.3 �29.3 �13.0 C82-C2 1179.9 60.5 �15.5 �76.0
C54-C1 1144.0 �6.1 �24.6 �18.5 C82-C3v 770.0 20.7 4.1 �16.5
C54-C2 990.8 7.0 �14.7 �21.8 C82-Cs 1451.5 40.2 �30.8 �71.0 [60]PCBM 2475.5 45.8 �74.4 �120.2
C56-C1 1051.2 �1.2 �10.8 �9.6 C84-C2v 1172.3 5.9 �25.6 �31.5 [70]PCBM 2444.0 68.8 �103.0 �171.8
C56-C2 1480.2 25.4 �27.0 �52.4 C84-Cs 1426.5 17.3 �30.9 �48.2 IC60BA 2489.4 37.7 �79.6 �117.3
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hard to find an analysis of the gap renormalization as the one
that we display in Table 2.

From the results shown in Fig. 1 we notice that most of the
renormalizations of the HOMO are positive, and most of the
renormalizations of the LUMO are negative, as expected from
the Allen–Heine–Cardona theory for systems with a gap. This

theory states that the renormalization of a given eigenvalue en is
given by:

DEnðTÞ ¼ SFan
n ðTÞ þ SDW

n ðTÞ;

SFan
n ðTÞ ¼

X
n;jan

gn;jn
�� ��2
en � ej

2nBn þ 1
� �

;

SDW
n ðTÞ ¼

X
n

gDW
� �n;n

n 2nBn þ 1
� �

;

(1)

gn;jn ¼
X
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2MIon

r
j rI

bH0
��� ���nD E

XnI ;

gDW
� �n;n

n ¼
X1
j¼1
jan

an;j

ej � en

(2)

where en, ej are the unperturbed electronic eigenvalues, on are
the phonon frequencies, Xn are the normal modes (hyperdirec-
tions of vibration), nB

n is the Bose distribution and MI is the
mass of the I-th atom. The indices n, j correspond to electronic
eigenvalues, with |ni, |ji the corresponding orbitals, and I, J
are the atom indices. Ĥ0 is the unperturbed Hamiltonian
(evaluated at relaxed nuclear positions). an,j are multiplicative
coefficients which depend on the normal modes, phonon
frequencies, electronic eigenvalues and atomic masses;
gn,j
n and (gDW)n,n

n are the electron–phonon matrix elements.26

Since the renormalization is proportional to the inverse of
the eigenvalue difference (en � ej)

�1, considering only the linear
term in nuclear displacements (SFan) and assuming that all the
matrix elements g have an equal value if i, j are both occupied
(also another equal value if both are unoccupied), and a lower
value if i is occupied and j is unoccupied (which is a coarse-
grain approximation), the gap makes the contribution of empty
states low for the HOMO renormalization. Analogously, the
contribution of occupied states is expected to be low for the
LUMO renormalization. Under these assumptions, eqn (1)
implies that the HOMO renormalization is expected to be
positive, while the LUMO renormalization is expected to be
negative. The fact that this holds for most of the dots displayed
in Fig. 1 indicates the appropriateness of this approximation.
Eqn (1) also indicates that the lower the gap, the stronger the
negative (positive) contribution of the unoccupied (occupied)
states to the HOMO (LUMO) renormalization, and hence the
more likely a negative HOMO (positive LUMO) renormalization
is. This is also confirmed by our results; as can be viewed in
Fig. 1, the negative HOMO and positive LUMO renormaliza-
tions concentrate in the region of low and middle-sized gap.

The fact that a higher gap correlates with a higher gap
renormalization can be partly due to eqn (1). Higher gaps tend
to damp negative (positive) renormalization of HOMO (LUMO)
due to unoccupied (occupied) states, which increases the size of
the gap renormalization. Despite mentioning eqn (1), note that
our calculations were not performed using many-body pertur-
bation theory (that is, they are not using that equation). Our
calculations used the frozen-phonon approach instead (that is,

Fig. 1 Frozen-phonon renormalizations (calculated using the GGA-PBE
functional) in 163 fullerenes and fullerene derivatives as a function of the
HOMO–LUMO gap (calculated using B3LYP). Top: HOMO renormaliza-
tion; center: LUMO renormalization; bottom: gap renormalization.
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they were based on the calculation of electronic eigenvalues,
not on the calculation of electron–phonon matrix elements
g, gDW).

Other authors have also found a linear relationship between
the gap renormalization and the gap itself,61 which is attributed
to the electric permittivity. The Penn model117 establishes an
inverse relationship between the relative permittivity and the
(average, in a solid) gap between valence and conduction
bands. Avoiding approximations made by Penn, the equations
also display an inverse relationship between the permittivity
and differences between electronic energies.118 A small gap will
thus tend to imply a high permittivity, which implies that the
electric interaction will propagate more weakly (that is, the
electric fields will be weaker, and the interaction will be
screened). The screened interaction will mitigate the effect of
the wavefunctions of positively charged nuclei on the electrons,
thus leading to a weaker variation in the electronic eigenvalues.
This will lower the concavities of e vs. h (eigenvalue vs. dis-
placement size, see eqn (3) of ref. 26), which in turn will lead to
a lower renormalization. At nonzero temperatures, the ampli-
tude of the nuclear vibrations (term proportional to the Bose–
Einstein distribution in eqn (3) of ref. 26 and eqn (1) of this
paper) will also be affected by the screening, also lowering the
renormalization for low gaps.

Fig. 1 indicates that, despite the fact that some data points
correspond to either a negative HOMO renormalization or a
positive LUMO renormalization, just a few (7) of them present a
positive gap renormalization. This indicates that renormaliza-
tions with an unexpected sign for the HOMO or LUMO are
largely canceled out by each other. Moreover, if we discard the
molecules with T symmetry, just three have a gap renormaliza-
tion with an unexpected (positive) sign.

The linear relationship of renormalizations with gap dis-
played in Fig. 1 indicates that it is possible to make a coarse-
grain estimate of the gap renormalization due to electron–
vibrational interaction in fullerenes very efficiently, without
performing any actual phonon calculation. Fittings are pre-
sented in the ESI.‡ The gap renormalizations of 96% of the
fullerenes with C, D or S symmetries lay between �2% and
�18% of the gap calculated with the PBE-GGA exchange
correlation functional.

The results from Fig. 1 also show that the zero-point
renormalization of the HOMO–LUMO gap of fullerenes is
smaller than that of other carbon compounds, like diamond
and diamondoids. Ref. 119 determined experimental values for
the zero-point renormalization of bulk diamond between �320
and �450 meV. Ref. 26 found theoretical gap renormalizations
up to �370 meV in diamondoids. However, due to the fact that
the gap itself is smaller in fullerenes than in bulk diamond and
diamondoids, the average quotient between the absolute value
of the renormalization and the gap have comparable sizes:
8.1% in diamond25 (which is considered very high24), about
4.2% in diamondoids26 and about 3.5% in fullerenes on
average.120 Nonetheless, nearly all of the most prominent of
the analysed systems (in bold in Table 2), with wide technolo-
gical applications, present non-negligible renormalizations.

The module of LUMO renormalizations of the analysed full-
erene derivatives is above 70 meV, which can have a strong
effect on their capabilities as an acceptor in photovoltaics.31

Note that the renormalizations of IC60BA and [60]PCBM
have similar sizes, and the renormalizations of C70 and
[70]PCBM have similar sizes as well. This hints that the addi-
tion of atoms to form derivatives has a limited impact on the
phonon-based renormalization. Also note that the results of
pristine C60 with Ih symmetry clearly differ from those of IC60BA
and [60]PCBM. We deem it to be an exception due to geome-
trical properties: pristine C60 has 5-fold degeneracy in its
HOMO and 3-fold degeneracy in its LUMO; hence it is wise to
calculate the renormalization as an average of states,26 which
lowers the renormalization. In the analysed derivatives of C60,
the addition of further atoms broke the symmetry, thus leading
to a different behaviour. If we calculate the renormalizations of
IC60BA as an average of 5 and 3 states for the HOMO and the
LUMO respectively, we obtain renormalizations similar to those
of pristine C60 (+8 and �52 meV).

The relationship of the gap renormalization with the tem-
perature for some representative systems can be viewed in
Fig. 2. From it we note that the variation of the renormalization
between 0 and 300 K is relatively low, about one order of
magnitude lower than the zero-point renormalization (e.g.
10 meV for [60]PCBM and 12 meV for [70]PCBM). This low
variability agrees with previous calculations and observations
of carbon-based materials.26,35,119

B. Forecasting through machine learning

1. Regression. In this section we discuss the performance
of machine learning methods mentioned in Section III.B.1 for
the quantitative forecast of the renormalizations. In Table 3 we
display the results of our tests using linear regression (LR),
random forests, neural networks and k-nearest neighbors. When
the machine learning methods forecasted the renormalizations

Fig. 2 Renormalization of the band gap of selected fullerenes and deri-
vatives as a function of the temperature.
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themselves, we denote their results with RF, NN and KNN,
respectively. When they forecasted the residuals of linear regres-
sion, we denote their results with RF@LR, NN@LR and
KNN@LR. Though NN and KNN are less accurate than RF, we
include them in our presentation for the sake of a broader scope.
The corresponding calculations were performed as presented in
Section III.B.2. The out-of-sample errors from forecasts using
other regression methods – like gradient boosting, kernel ridge,
SVM or Lasso – were worse than RF’s. Results from linear
regressions are more accurate than several bare ML forecasts.
However, if the ML methods are applied on top of the linear
regressions, this is using the residuals of the linear regressions
as the outputs, then the accuracy of the forecast gets enhanced.
The improvement in the forecast of renormalizations has a low
absolute size (which is much smaller than the errors due to
inaccuracies of the exchange–correlation functionals of DFT).
However, this improvement is non-negligible in relative terms:
the error decreases up to 14.7% if using RF, and up to 6.7% if
using KNN (taking the result of the linear regression as the
baseline). The input variables (regressors) were not standardized
in the calculations leading to Table 3. This is because the results
of RF are equal for standardized and non-standardized input,
the results of NN are more accurate if no standardization is
performed, and for KNN the results are similar for standardized
and non-standardized regressors (for KNN there is no theoretical
reasons which support standardization because there are only
two inputs, which are measured in the same units and whose
sizes are similar).

These results indicate that the renormalizations of electro-
nic eigenvalues due to electron–phonon interactions can be
forecast with a low error (whose absolute value is below 8 meV
on average) from data obtained in a single ground state
calculation. In addition, our results indicate that an ordinary
least squares linear regression provides a fair approximation to
renormalizations, which can be improved by applying random
forests on top of it.

Fig. 3 and 4 present further information on the accuracy for
prediction of renormalizations of the random forests on top
of linear regression. Analogous plots for neural networks and
k-nearest neighbours can be viewed in the ESI.‡ The calcula-
tions represented in Fig. 3 are based on the electronic structure
selected set of features (see Table 1). In Fig. 3 the scatter plots
(around the diagonal line) present the values of the renorma-
lizations; the x axis corresponds to the values obtained in
complete frozen-phonon ab initio calculations, while the y axis

Table 3 Results of the regression tests of the renormalizations using
linear regression (LR), k-nearest neighbours (KNN), neural networks (NN)
and random forests (RF), as well as using the ML methods on top of linear
regression (KNN@LR, NN@LR and RF@LR). The numbers indicate the
averaged absolute error (d) in the test datasets measured in meV

Renorm. of LR KNN KNN@LR NN NN@LR RF RF@LR

HOMO 5.80 11.58 5.46 8.04 5.68 7.62 5.56
LUMO 6.47 11.69 6.11 7.17 6.25 6.95 5.58
Gap 8.55 17.40 8.24 14.02 8.44 10.48 7.75

Fig. 3 Scatter plots: predictions of the renormalizations using random
forests on top of linear regression vs. ab initio results. Histograms: training
and test errors. Top: HOMO; center: LUMO; bottom: gap.
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corresponds to the forecasts, which were made using machine
learning on top of linear regression using the selected regres-
sors. The differences between both quantities are presented in
the histograms of Fig. 3. The data correspond to 1000 random
choices of the training and test datasets, which consist of 126
and 31 molecules (80% and 20%, respectively). In order to
make the graphs clearer, we only display 300 (randomly chosen)
dots for the training data and 150 dots for the test data in the
scatter plots. As it can be viewed in the subplots, the ML
algorithm can predict the renormalization of the HOMO and
LUMO with an error lower than 15 meV for the majority of the
cases, which is lower than the typical errors introduced by DFT
as compared with higher accuracy methods like GW25 (indeed
for the HOMO and LUMO renormalizations most of the test
errors lie in the �7.5 meV range). Hence the data that we report
here do provide a reasonable estimate of the impact of the
electron–vibrational interaction on electronic bands in generic
fullerenes. The forecasts are expected to be more accurate for
molecules not tackled in this article. This is because, when
performing the training of the machine learning methods in
order to perform the corresponding forecast, the whole dataset
of Table 2 is available, not just part (80%) of it.

We have also analysed the predictive power of our forecasts
if using different sets of regressors (the complete lists, together
with an analysis of feature importance, are presented in the
ESI‡). We display box plots of them in Fig. 4. The box itself
indicates the limits of the first and third quantiles. The mean
and the median are represented by dotted and solid lines,
respectively. The most external levels (whiskers) indicate the
limits of the 95% confidence interval. Fig. 4 indicates that fair
forecasts are obtained using linear regression and random
forests with the electronic structure variables. Neural networks
and k-nearest neighbours do still provide reasonable forecasts
if using the electronic structure variables as regressors. How-
ever, other regressors lack predictive power. Among them we
list geometric variables and features of phonons, bond lengths
and bond orders.

The very different sizes of boxes in Fig. 4 (some being less
than 10 meV, others being much larger) for different sets of
features indicate that properties which are important in other
contexts, like bond lengths, bond orders, number of atoms,
area and volume, do not have a close relationship with the
renormalization of electronic eigenvalues due to electron–
vibrational interaction. Conversely, renormalization seems to
be rather a function of the electronic eigenvalues themselves.
The similar sizes of the three boxes which consist of electronic
structure variables indicate that introducing further regressors
neither improves nor worsens the predictive power. That is,
using random forests the further regressors do not contain
much useful information, but the efficacy of the regression
does not drop due to the noise that they introduce.

The fact that average, maximum, minimum, and other
regressors based on phonon frequencies lack any predicting
power for the electron–phonon renormalization might be seen
as counterintuitive, especially noting that on appears in the
denominator of the right-hand side of eqn (2). However, this is

Fig. 4 Test errors of predictions of renormalizations using different
feature sets (predictions made using random forests on top of linear
regression). Boxes: first and third quantiles; lines: mean and median;
whiskers: 95% confidence interval. Top: HOMO; center: LUMO; bottom:
gap.
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supported by recent research: ref. 61 also found negligible
predictive power of minimum phonon frequencies, average
of phonon frequencies and number of atoms, while finding
significant predicting power for the band gap. Our hypothesis
is that, since the range of phonon frequencies is nearly the
same for all fullerenes, it is not a quantity that can give an
account for the differences in their renormalizations.

2. Classification. In this section we discuss the perfor-
mance of using regression trees to assess the validity of the
forecast of the renormalizations given by a linear regression
method. The results of our calculations are displayed in
Table 4. Its first column represents the forecasted quantity,
i.e. the renormalization of the HOMO, the LUMO or the gap. Its
second column presents the coefficient of determination (R2) of
the linear regression method; the used regressors are listed
in Section III.B.2. R2 is interpreted as the proportion of the
variation in the dependent variable (regressand) that is pre-
dictable from the set of independent variables (regressors).
In order to make the prediction more accurate, we employ
decision trees to do a binary classification to discard forecasts
which are expected to be less reliable. As explained in Section
III.B.2 the categories are defined by the size of the distance d.
The threshold which determines whether that forecast is either
acceptable or unacceptable is set to 10 meV. The third and
fourth columns of Table 4 present the errors ( 121) of the bare
LR and of the data subset selected as acceptable by the decision
tree. has been computed as the percentage of objects that
the method has considered as having an acceptable value (i.e.,

d r 10 meV) but it is not (i.e., d Z 10 meV). Both and

are thus percentages of false positives. Their values, as well
as those of the other columns, correspond to the average of the
test data of a 5-fold cross validation calculation. In addition
to the false positives, one must take the false negatives into
consideration. These are predictions which the tree has
wrongly marked as being unacceptable. The fifth column of
Table 4 (Marked) displays the percentage of results that the tree
has considered as (suspicious to be) unacceptable. Column

presents the percentage of marked results that corre-
spond to false negatives (i.e. they are marked as possibly
unacceptable, but are indeed acceptable). This column informs
that many of the data which are selected by the tree as
unacceptable are indeed unacceptable, and hence it is advisa-
ble to discard them from any further analysis. Finally, column

represents the percentage of false negatives with respect to
the whole test set.

To sum up, if we have a fullerene whose electron–phonon
renormalizations have not been calculated ab initio then we can

decide to forecast them using linear regression, which will be
fairly accurate. We can also decide to discard this forecast if the
decision trees indicate that it is unreliable; in this manner the
forecast will be more accurate, as indicated by the third and
fourth columns of Table 4.

V. Conclusion

In this article we have presented ab initio calculations of the
renormalizations of HOMO, LUMO and gap due to electron–
vibrational interaction in a remarkable class of molecules –
fullerenes – showing that the typical size of such renormaliza-
tion is large enough to have an impact on photovoltaics. This is
expected to provide the scientific community with a useful view
on properties of these carbon-based systems. Our subsequent
machine learning-based analysis indicates which features are
closely related with renormalizations and which ones are not,
which we expect will help readers to acquire deeper insights
about this issue. In addition to the presented calculations and
conclusions, we have provided a computing code which fore-
casts renormalizations – to a reasonable degree of accuracy –
using the outputs of simple ground state calculations (with
relaxed nuclear positions) as its input. Calculations that deter-
mine electron–vibrational renormalization of electronic bands
are complex and require a deep understanding of phonon
theory, which may discourage many research groups from
pursuing such investigations. The approach presented here is
expected to enable researchers to swiftly and easily obtain
estimates of the renormalizations. Finally, our analysis
highlights the possibility that features arising from complex
quantum phenomena can be forecast from ground state calcu-
lations, even with training sets of relatively low size. Our results
are expected to provide a proof-of-concept for this fact.
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Table 4 Summary of results for all the renormalizations using a linear regression model (or an ensemble in the case of the LUMO and gap
renormalizations) and then a regression tree to assess the acceptability of the result

Quantity R2 (LR) Marked (%)

HOMO ren. 0.891 17.13 15.51 6.23 39.46 4.78
LUMO ren. 0.74, 0.79 17.59 13.62 6.37 32.07 2.41
Gap ren. 0.86, 0.87 31.36 26.99 14.78 48.63 5.87
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