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analysis and property prediction
for carbon capture solvent molecules†

James L. McDonagh,‡*ab Stamatia Zavitsanou, c Alexander Harrison,a

Dimitry Zubarev,d Theordore van Kessel,e Benjamin H. Wunsch e

and Flaviu Cipcigan *a

We present a new chemical representation (the CCS fingerprint) and data set (ccs-98) for carbon capture

solvents. We then assess the chemical space, data availability and utility of common machine learning

algorithms for high throughput virtual screening in the carbon capture solvents field. This is an area of

growing importance, as carbon capture and storage is part of the road map towards net zero for many

countries around the world. A major class of commercial carbon capture technology involves using

solvents, which are commonly blends of amines and N-heterocyclic molecules in water. Whilst these

blends have proved valuable, there is an increasing need to identify new candidate molecules which are

more efficient and improve performance. We found that the CCS fingerprint can out-perform other

common chemical representations when combined with standard machine learning approaches for

classifying molecules based on absorption capacity. We demonstrate models achieving classification

accuracy for absorption capacity of over 80%.
1 Introduction

Climate change driven by emissions from human activities now
poses the greatest environmental concern of this century.1

Emissions of greenhouse gases such as CO2, methane and
nitrous oxides (NOx) are the primary drivers of global warming.
CO2 is the largest fraction of greenhouse gases emitted.2 Elec-
tricity generation from fossil fuel burning is the largest point
source of CO2 emissions around the world. Yet, fossil fuel
burning infrastructure is still being built.1 Due to this trend,
committed emissions from existing energy generation infra-
structure jeopardise climate targets.3

Modelling suggestes that Carbon Capture, Utilization and
Storage (CCUS) for CO2 emissions is a necessary part of the
technological solutions required to meet the Paris climate
accord.1,4 CCUS is the only technology that can be used to help
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decarbonise existing energy infrastructure without decom-
missioning. CCUS is also important for hard-to-abate emis-
sions, such as those in heavy industries.5 There are a growing
number of planned CCUS plants. A recent survey suggested that
there are at least 87 planned CCUS plants between 2020–2030
according to the map of global CCUS projects by the Interna-
tional Association of Oil and Gas producers.6

Of the currently available CCUS technologies, absorption
using carbon capture solvents is the most mature, seeing
commercial usage with further plans for new developments.7,8

The technology is dominated by the use of amine and N-
heterocyclic based solvents such as Monoethanolamine (MEA)
or proprietary formulations of blends of amines and N-
heterocyclic molecules. MEA has become a defacto standard,
as it has shown good performance in terms of capture capability
as well as being relatively cheap. However, it has several draw-
backs: high-energy penalty on regeneration, thermal degrada-
tion and corrosion.7 As a result, new solvent candidates and new
solvent mixtures are being investigated in both academic and
industrial research laboratories.9

In this context, computational techniques can be used to
screen, rank and predict new carbon capture solvents.10–14 These
computational techniques hold promise to improve the speed
of discovery and innovation if paired with suitable data sets of
solvent performance. In particular, the eld of Chemical Infor-
matics has developed a multitude of methods and practices,
which can be used to address problems in the eld of carbon
capture.15 Access to good quality research data and methods is
critical to the fast progress of a eld, as demonstrated by
© 2024 The Author(s). Published by the Royal Society of Chemistry
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examples such as those in solid state materials design16 that
have beneted from open innovation and widely shared data
sets.

To inform this study and demonstrate the usefulness of
computational approaches to this eld, we have identied 167
unique amine and N-heterocyclic molecules which have been
reported in the literature17–25 in relation to a range of carbon
capture performance metrics. We have extracted string repre-
sentations for these molecules from PubChem26 and Chem-
Spider,27 using chemical name and/or SMILES searches through
the web portals and APIs, in order to perform an analysis of the
chemical space of carbon capture amines and N-heterocyclic
molecules. In addition, we have created a new data set of 98
amine and N-heterocyclic molecules. For this set we have per-
formed new experiment to determine the molecules absorption
capacity as an aqueous solution of 30% w/w (g solvent per g
solution). We have used a consistent set of experimental
measures, making the new data set highly valuable for training
Machine Learning (ML) models upon. All data sets generated in
this work can be found in ESI† and on GitHub at https://
github.com/Jammyzx1/Carbon-capture-ngerprint-generation.

In this work, we therefore make the following contributions:
(1) A new data set of 167 molecular structures from pre-

existing literature, which identies small molecules that have
been experimentally tested for carbon capture capability. We
name this data set ccs-lit-167.

(2) We use ccs-lit-167, coupled with a set of commercially
available amine and N-heterocyclic molecules from ZINC (zinc-
20938), in Section 3.1 to analyse the chemical space of amines
and generate a new molecular representation named the CCS
ngerprint.

(3) We measure an own experimental data set, which to the
best of our knowledge, is the largest data set of single experi-
mental source measurements for absorption capacity in the
carbon capture solvents literature. This set contains 98 mole-
cules. We name this dataset ccs-98. It is applied in Section 3.2 to
build and test high throughput screening models for carbon
capture molecules.
2 Methods

There are a variety of methods and data sets deployed and
created in this work. To clarify where data is input, data sets are
created and how these data sets are used Fig. 1 provides a high
level view.
2.1 Data collection and curation

Initially, we reviewed the literature searching for experimental
absorption capacity measurements. It became clear that there
were potentially issues comparing data over multiple experi-
mental techniques and conditions and that the eld lacked
common data standards for carbon capture solvents research.
Unlike counterparts in the solid state, such as Metal Organic
Frameworks (MOFs), for which extensive crystal structure
databases have been provided,28–30 carbon capture solvents is
a relatively data poor eld. This in many ways is likely related to
© 2024 The Author(s). Published by the Royal Society of Chemistry
the eld's success in being one of the rst commercially applied
carbon capture technologies. As a result, data may oen be
considered too sensitive to be released. This is especially true of
formulations and blended solvents.

This situation is historically reminiscent of elds such as
pharmaceuticals, which, in some cases, have seen benets from
opening larger internal data sets from commercial organiza-
tions in recent years.31 These benets are both scientic (faster
development of new ideas)32 and also economic.33 Woele
et al.34 provides an example case study on how a community
accelerated the development of a route to enanitopure Prazi-
quantel. The authors of this manuscript have demonstrated the
use of open data sets towards predictingmolecular andmaterial
properties such as water solubility and partition coefficients
previously.35–37

Opening data in the carbon capture solvents eld could
enable a proliferation of data driven modelling. The establish-
ment of common standards upon which to relay data and fairly
compare methods is however an important prerequisite. In this
regard, a conversation should be encouraged across the
community to aid in establishing such standards. In this work
we provide:

(1) IUPAC chemical names
(2) SMILES strings
(3) InChI strings
(4) Experimental values and units
(5) Solution concentrations
(6) Soware version numbers
(7) Description of the experimental procedures
We suggest these items for inclusion as a minimum starting

point for data sets in the carbon capture solvents eld. As the
data here is still small we share data as csv les, however,
a more robust online repository would be more suitable in the
longer term.

The ability to fairly perform comparisons can drive rapid
advancement of computational screening. This will help to
bring research in this area in line with solid state carbon
capture which sees wide spread computational modelling.38,39

Similar arguments have been proposed and discussed in other
related elds, for example environmental toxicity and formu-
lation chemistry.40,41 In order to demonstrate the value of
consistent data, we have gathered our own data using a single
experimental method. We gathered 98 data points in total.
These molecules were chosen as they represent a sub-set of
previously explored molecules and unexplored molecules to the
best of our knowledge. The unexplored molecules were chosen
based upon expert input and computational similarity
screening. The similarity screening was carried out against the
zinc-20938 data set of 20938 purchasable amines and N-
heterocyclic molecules from the ZINC database. We used the
ccs-lit-167 chemical structures as queries to search for similar
molecules within a sub-set of purchasable small molecules from
the ZINC database.42 Similarity molecules were identied by
extended Murko scaffold matching and Tanimoto similarity
searching applying a 0.7 similarity threshold. A nal set of 98
purchasable molecules was then selected from the similarity
Digital Discovery, 2024, 3, 528–543 | 529
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Fig. 1 Outline of themethods used in this work. This is a high level outline detailing: (A) the input data and experiments; (B) processing of the data
leading the generation of three data sets and their usage; (C) machine learning. The online databases in section A, were accessed via there web
interfaces and APIs to extract molecular data. This work was performed throughout 2021. Section C is given in more detail in Fig. 2.
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screening based on purchasableity constraints and expert
input. We refered to this nal data set as ccs-98.

For each of the ccs-98 molecules we extracted the identiers
and 2D structures of the molecules from ZINC. We proceeded to
search the PubChem26 and ChemSpider27 databases for entries
of these molecules and extracting further identiers such that
all molecules were specied by: IUPAC name, InChI, InChIKey
and SMILES. In some cases an entry could not be found and we
manually determined the name and generated the SMILES
string, from which, we generated the InChI and InChIKey using
RDKit43 (version 2022.03.2). These representations are the most
commonly used and are easily parsed by standard chemical
informatics tool kits such as RDKit and OpenBabel.44 This
information is provided in the ESI.†

2.1.1 Experimental data set generation. The in-house
experiments were performed using the following methods.
Aqueous amine and N-heterocyclic solutions were tested for
CO2 absorption using a simple, in-house testing apparatus
based on infrared absorbance. A gas stream of CO2/N2 was
bubbled into nominally 200 mL carbon capture solution and the
exhaust gas analyzed for CO2 at the 4.3 mm absorption band. A
3.9 mm reference band was used to account for slight attenua-
tion due to humidity and signal dri. The absorption signal was
calibrated against atmosphere (taken to be 414 ppm), 9.96% v/v
CO2/balance nitrogen (hereaer referred to as 10%v/v), and
530 | Digital Discovery, 2024, 3, 528–543
pure CO2 as a function of ow rate, q = 10 sccm. The carbon
capture solutions were held at 40 °C, chosen to t typical
industrial absorption operating temperature.45 Signals were
transformed from optical transmission into volume fraction
CO2 absorbed using a calibrated Modied Beer–Lambert
equation. The measurement principle is that CO2 lost in the
exhaust stream must be absorbed in the carbon capture solu-
tion; quantication of the gas content as a function of time and
integration affords the total CO2 absorbed and capture capacity,
a (mol CO2 per mol N).

Monoethanolamine (MEA), 30% w/w aqueous, was used as
a calibrant as it has a well-established capture capacity of a =

0.50mol CO2 per mol N.17 The estimated apparatus delay time is
0.16 min, and control experiments with pure water show
a background absorption of ∼20 mmol CO2.

A range of capacity units are used in the literature. The most

common are:
molesðCO2Þ

molesðN atomsÞ ;
molesðCO2Þ

molesðamine moleculeÞ and

gðCO2Þ
gðamine moleculeÞ. Another unit which we encountered

several times was
gðCO2Þ

LðsolutionÞ. The latter unit requires knowl-

edge of density to accurately convert, as the solution includes
the solvent volume as well as the active capture molecule(s)

volume. We have used the unit
molesðCO2Þ

molesðN atomsÞ for our
© 2024 The Author(s). Published by the Royal Society of Chemistry
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absorption capacities and provide conversion factors in the ESI
eqn (1).†

2.2 Infrastructure

In this work we used cloud based computing as this offers us
exibility to scale the resources to our needs. This cluster con-
sisted of eight nodes, each with 8 virtual CPUs and 32 GB of
RAM. This allowed us to quickly provision infrastructure to run
our modeling.41,46,47 The computational time for each step of
this work varies with the features and the ML algorithms used.
The majority of time is typically spent on training over the cross
validation steps. The feature generation steps must be compu-
tationally efficient to enable high throughput screening. The
features used here are faster to generate than the time taken to
train a model.

2.3 Computational modelling

In this work we have applied a range of methods to explore the
properties of the proposed solvents. These methods broadly fall
into the category of data driven chemical informatics, including
chemical graph analysis, sub-structure searching and machine
learning.15 To our knowledge, the application of chemical space
analysis and the subsequent bespoke ngerprinting is a novel
contribution to this eld and present a new analysis of the
molecules most commonly used for carbon capture solvents.

2.3.1 Substructure searching and topological data analysis.
In the rst part of this work, we analyze the structures of the
molecules which have been considered as possible carbon
capture solvents in the ccs-lit-167 data set. We then compared
these molecules with commercially available amines and N-
heterocyclic molecules in the zinc-20938 data set. The purpose
of this analysis is to identify chemical functionality strongly
associated with carbon capture performance and to highlight
potentially under-explored, yet synthetically accessible, regions
of the amine and N-heterocyclic chemical space.

We begin by analyzing the molecular graphs of the mole-
cules. Firstly, we provide a summary of common sub-structures
found in the zinc-20938 and ccs-lit-167 data sets and compare
the relative abundance of some of these common sub-
structures. The relative abundance is plotted in Fig. 6. The
sub-structures displayed in Fig. 6 make up the new CCS
ngerprint representation.

A molecular similarity analysis follows the sub-structure
analysis. Molecular similarity is commonly applied in chem-
ical informatics typically applying a distance metrics to a vector
representation of two molecules. A graph representing the
entire chemical similarity space formed by zinc-20938 and ccs-
lit-167 data sets is presented in Fig. 5.

Further, analyze the chemical space with Topological Data
Analysis (TDA) to produce a skeletonized representation of the
chemical space viaMapper TDA, which is displayed in Fig. 7.48–59

Mapper TDA is a technique to visualise the topology of high-
dimensional data, such as point clouds. The construction is
related to the concepts of a Reeb graph and pullback covers.50,57

Mapper TDA tracks the evolution of the level sets of a real-
valued function associated with the data points, known as the
© 2024 The Author(s). Published by the Royal Society of Chemistry
lter function. The lter function can be selected to reect some
geometric properties of the points in the data set, such as
eccentricity (position relative to the center of the data) or local
density. The range of lter function values is split into over-
lapping intervals, also referred to as level sets. Mapper TDA
tracks evolution of these level sets. For each interval, the cor-
responding subset of the data points is clustered. Finally,
a graph is constructed where each node represents a cluster and
two nodes are linked if the corresponding clusters overlap. Two
Mapper TDA clusters can overlap because the lter function
intervals are allowed to overlap. Further, it is customary to
associate some attributes, such as lter function values or some
scalar properties, with the nodes and visualize them as colors.
The number of data points in the cluster is oen visualized as
the node size. The output of Mapper TDA is highly dependent
on the choice of hyper-parameters. A comprehensive analysis of
Mapper TDA parameters can be quite involved and equivalent to
a standalone computational task.53

2.3.2 Machine learning and model evaluation. In the
second part of this work we describe a workow for the classi-
cation of carbon capture molecules using several learning
algorithms. The machine learning models include the Logistic
Regression Classier,60–62 Ada Boost Classier63,64 and Gaussian
Process Classier65 as implemented in Scikit-learn66 (version
1.0.2). These models were chosen as they are: (1) suitable for the
relatively small data set sizes, (2) computationally efficient and
(3) have shown good performance on other chemical property
tasks.67–70 We envision the classiers as a rst step towards high
throughput virtual screening of carbon capture molecules. In
many cases classication may be sufficient in order to prioritise
and decide upon whether a molecule will go on to further more
elaborate screening.

Gaussian processes have been used in chemical modelling in
many instances.67,71–73 These are a stochastic process, which
perform Bayesian inference over a space of functions that map
a representation to a probability space, for the class of a mole-
cule. A prior is used to dene a probability distribution over
functions. As data is provided to train the model, the distribu-
tion of functions, which most suitably represent the data, is
updated leading to the posterior probability distribution. For
classication, a logit function is used to output class probabil-
ities. More details are give in chapter 3 of Williams et al.65

Ada Boost, as implied by the name, is a boosting algorithm
that combines multiple weak classiers to increase the accu-
racy. In our case we use decision trees as our weak learners. The
Ada Boost method works by initializing all training data with
equal weights. Aer the rst classier is trained, examples
which are incorrectly classied by the rst classier are given
a higher weighting. The process is repeated for N weak learners.

Finally, Logistic Regression in its most basic form uses
a logistic function to model a binary dependent variable. This is
done using a standard linear regressionmodel which is mapped
through a logistic function to give probabilities. Each molecule
is assigned a probability for class 0 and 1 with a sum of one.

All models are assessed in terms of multiple performance
metrics: accuracy, sensitivity, specicity, Receiver Operating
Characteristics (ROC) curves and74 Matthews Correlation
Digital Discovery, 2024, 3, 528–543 | 531
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Coefficient (MCC).75,76 These metrics can all be formulated
mathematically from a confusion matrix, which identies the
correct predictions, True Positives (TP) and True Negatives (TN),
along its main diagonal and the two types of error associated
with binary classication (classication where the model
chooses between two possible outcomes), False Positive (FP)
and False Negative (FN), in the off diagonal elements. The
equations used for these metrics are given in the ESI eqn
(2)–(7).†

Briey, these metrics comprise the most commonly applied
metrics for classication problems and well characterise the
performance of our methods. Accuracy is likely the most
common classication metric.76 It is a ratio of the number of
correct predictions over the total number of predictions. This
leads to a ratio describing the fraction of predictions which are
correctly classied in the set. This simple metric is a valuable
high level overview of the performance of a classier. The
sensitivity and specicity each focus on the models ability to
correctly predict the positive or negative class respectively.
These metrics provide a greater insight into the potential errors
and biases of the models. The ROC curves describe the model
performance over decision thresholds with a FN rate on the x
axis and TP rate on the y axis. These thresholds can be
considered as balancing the positive and negative predictions,
i.e. lowering the threshold will increase the number of positive
predictions, which is the sum of true positive and false positive
predictions. The Area Under the Curve (AUC) for a ROC curve is
Fig. 2 Workflow to make classification predictions of each molecule
in the ccs-98 data set. This workflow generates random splits of the
data for training and testing building a model for each of the external
k-folds.

532 | Digital Discovery, 2024, 3, 528–543
the integral of the area under the ROC curve and provides
a single value metric for this trade off. The MCC metric is
a powerful summary metric which ranges from −1 to +1
describing the skill of the classier to predict positive cases as
positive and negative cases as negative even when the classes
are imbalanced.76

2.3.3 Computational workow. The workow to generate
these models is given in Fig. 2. The workow contains two k-fold
Cross Validations (CV) one nested within the other. The external
CV holds a portion of the data set out as a test set whilst
providing all other points as training data. The internal CV uses
the training points from the external CV to optimize the hyper-
parameters by splitting the data into train and validate sets. A
classier is trained for each external k-fold.77 This means that
the predictions are made for all 98 molecules over our external
k-fold without biasing the models. The k-fold data splits are
made by random sampling. We have chosen this method as it
enables us to optimally use the small data set we have been able
to gather from the literature.77

To describe these molecules, we used three methods. The
rst are standard chemical informatics descriptors, generated
through the Mordred descriptor calculator,78 which produces
over 1800 features of molecular characteristics. From the 1800
descriptors calculated, we identied the ones that correlate
signicantly with the properties of interest using the Spearman
correlation coefficient between each Mordred descriptor and
the respective property of interest.

Another way to describe molecules is via molecular nger-
prints. Molecular ngerprints are vectors that encode structural
information about a molecule. Commonly, this information is
stored as binary digits representing presence and absence of
a structural feature. There are different types of ngerprints
available such as Morgan ngerprints,79 MACCS ngerprints80

or MinHashed Atom Pair (MAP) ngerprints.81 In this work we
have used the commonly applied MACCS ngerprints.

Additionally, we have dened our own structure based
ngerprint (CCS ngerprint) following consideration of the
literature and our own chemical space analysis. The latest
version of the source code for generating these ngerprints and
the ccs-98 data set can be found https://github.com/Jammyzx1/
Carbon-capture-ngerprint-generation and archived under
https://zenodo.org/record/8304466. Documentation for the
code can be found at https://jammyzx1.github.io/Carbon-
capture-ngerprint-generation/. This ngerprint is a xed
length (72 elements) with each element representing
a chemical group or groups. These chemical groups comprise
those commonly seen in carbon capture solvents and those
found more broadly across amine and N-heterocyclic chemical
space. We discuss the details of this in the Section 3.1.1.

3 Results and discussion
3.1 Chemical space analysis of carbon capture amines and
N-heterocyclic molecules

First, we explore and compare the structures of the amines and
N-heterocyclic molecules in the ccs-lit-167 data set and zinc-
20938 data sets.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Primary and secondary amine general reaction scheme.

Fig. 4 Tertiary amine general reaction scheme.

Fig. 5 Force directed graph of the amine chemical space. The high-
lighted nodes aremolecules which have been reported in the literature
as trialled for carbon capture capability previously. The cyan nodes are
commercially available amines which to the best of our knowledge
have not been tested for carbon capture capability.
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Several authors have reported chemical sub-structures which
inuence carbon capture capabilities.10,17–19 In particular, Singh
et al.18,19 developed structure activity relationships based on
chemical functionalities. Their work studies the effects of many
chemical functionalities on carbon capture loading and
develops design considerations for carbon capture molecules.
These included alkyl chain lengths and functional group sepa-
ration, measured in number of carbon atoms. Additionally,
consideration of ring substituent and their positions was
provided in a later publication.19 Work by Papadopoulos et al.10

provided a computational design system. This work also iden-
tied a small number of chemical structures which were useful
as descriptors for their models. Work by Puxty et al.17 reports the
position of OH moieties relative to the amine nitrogen to be
important. Steric hindrance§ (presence of physically volumi-
nous moieties in close proximity to a site of interest) around the
amine nitrogen is another chemical feature reported to be of
importance. It has been shown for example, that steric
hindrance can change the reaction route of primary and
secondary amines towards that of tertiary amines. This is an
important observation owing to the differing atom efficiency
between the two routes. Primary and secondary amines have
been shown to react with CO2 through a pathway requiring
a second molecule to complete the reaction, see Fig. 3. The
second molecule may be water in some cases or a second
primary or secondary amine. Tertiary amines have been shown
to react in a one to one fashion with CO2 effectively acting as
a catalyst see Fig. 4.12,17,83,84

3.1.1 CCS ngerprint. We have taken the above consider-
ations a step further, dening the CCS chemical ngerprint
based upon observations from other authors10,17–19 and our own
analysis. Our analysis identied common organic chemistry
functionalities in commercial amines and N-heterocyclic
molecules: such as benzene rings, ve member carbon rings,
nitrogen containing heterocycles and halogen groups, which
differ markedly in abundance between the zinc-20938 and ccs-
lit-167 data sets. The CCS ngerprint we dene combines the
SMARTS denitions for common chemical sub-structures in
§ Steric hindrance emerged out of chemical intuition. Providing a physical basis
for this concept is an important research topic (see for example Gallegos
et al.82). Here, chemical intuition is enough to design of the ngerprint reported
in Section 3.1.1.

© 2024 The Author(s). Published by the Royal Society of Chemistry
molecules tested for carbon capture and wider commercial
amines and N-heterocyclic molecules. Fig. 6 shows the relative
abundance of the CCS ngerprint's sub-structures in the ccs-lit-
167 and zinc-20938 data sets.

Each bit in the CCS ngerprint is dened by a SMARTS
string. Substructure searching for these SMARTS patterns over
a molecule is carried out in parallel (over molecules) using
DASK85 (version 2022.02.0) and RDKit43 (version 2022.03.2) to
generate the ngerprint vector(s). The source code also enables
others to dene there own structure based binary ngerprint
using SMARTS86 for any application. As a result others can easily
build on this initial version.

The inclusion, of chemical functionalities more prominent
in the ccs-lit-167 set compared to the zinc-20938 set and vice
versa, was done to enable the ngerprint to capture the differ-
entiation between the two groups. The sub-structure searching
is done in a xed order dened by the order of the SMARTS
strings, in order to give a consistent signal from the CCS
ngerprint. The ngerprint denition in terms of the order and
SMARTS patterns used for substructure matching are included
in the ESI.† Each of the SMARTS patterns denes one bit in our
ngerprint. In total there are 72 elements and hence 72 sub-
structure searches per molecule. In order to make this compu-
tationally reasonable in terms of cost we have found parallel-
izing over batches of 1000 molecules to be effective.

The list of carbon capture molecules collected in this work is
not exhaustive, but is a representative sample of the published
carbon capture solvent molecules which have been openly re-
ported. As a result the aim is to provide an analysis which
highlights the most explored regions of the carbon capture
Digital Discovery, 2024, 3, 528–543 | 533
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Fig. 6 Fingerprint comparison over two data sets ccs-lit-167 and zinc-20938. All bits are found in the larger data set at least once except
ammonia, however their occurrencemay be rare enough that it is not clearly visible on the normalized x-axis. Where this occurs we have decided
to include the bit as it has been noted in other literature sources as potentially important.
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solvent chemical space and point out synthetically accessible
areas which may be under explored. Fig. 6 displays a histogram
with the normalized count of occurrences of the given sub-
structures across molecules in the ccs-lit-167 (blue) and zinc-
20938 (red) sets. Clearly there is a substantial difference in
the size of these data sets, hence the normalization allows one
to consider relative abundance rather than absolute counts. The
gure demonstrates that the CCS ngerprint captures several
chemical sub-structures which are proportionately over and
under expressed in the ccs-lit-167 set compared with the back-
ground zinc-20938 commercial set, suggesting these function-
alities presence or absence are important when considering
carbon capture applications.

From Fig. 6 it is clear that the ccs-lit-167 data set includes
molecules which contain a sub-set of chemical moieties from
the CCS ngerprint at a proportionately high rate than the zinc-
20938 data set. For example, in the alkanolamines substruc-
tures in the centre of the y-axis. This subset may be somewhat
534 | Digital Discovery, 2024, 3, 528–543
expected given the wide spread use of MEA and related mole-
cules. It is also clear that structures such as carbonyls, halo-
carbons and aromatic groups are found at a proportionately
lower rate in the ccs-lit-167 data set compared with the zinc-
20938 data set. We note that substances such as benzylamine
have been used as promoters within formulated blends rather
than capture solvents themselves. Such molecules are not
captured in this analysis.87,88 This analysis suggests there is
likely a dened chemical sub-space of amine and N-heterocyclic
molecules which is more likely to be associated with molecules
suitable for carbon capture.

3.1.2 Molecular similarity. Fig. 5 displays the chemical
space graphically and follows the protocol described in some of
the author's previous work.89 This gure is generated using the
zinc-20938 and ccs-lit-167 data sets. In this gure eachmolecule
is represented as a node in the graph and the most similar
(Tanimoto similarity scores of $0.7 using Morgan ngerprints
with a radius of 2 and 2048 bits) are connected. The graph
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Mapper graph of the combined data set of zinc-20938 and ccs-
lit-167. Eccentricity of amines and N-heterocyclic molecules in the
combined data set is used as the filter during Mapper construction.
Node size is proportional to the number of molecules associated with
the node. Thickness of a link between two nodes is proportional to the
number of molecules that are associated with both nodes. Panel (A):
color encodes mean eccentricity (distance from the centre) of the
molecules associated with the node. Panel (B): color encodes mean
anomaly score (Isolation Forest – how structurally dissimilar the
molecules of the node are compared to the data set) of the molecules
associated with the node. Panel (C): fraction of molecules from the
ccs-lit-167 data set among the molecules associated with the node in
total.
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topology is generated through the Fruchterman–Reingold force-
directed algorithm90 using Python's NetworkX package (v.2.6.3).
This algorithm treats the nodes as a set of spring connected
particles and simulates the graphs topology to a quasi-
equilibrium state. In this case the springs were weighted by
the Tanimoto similarity score, making those more similar node
relatively more attractive to one another. The highlighted nodes
are molecules which have been reported in the literature as
trialled for carbon capture capability previously.

The gure is displaying a 2D representation of the chemical
space based on commonly applied molecular similarity (Tani-
moto similarity $0.7). We interpret the gure as follows:

� The highly connected core region contains molecules over
the zinc-20938 and ccs-lit-167 data sets with highly conserved
structural features dening them as highly similar.

�We note that there are almost no carbon capture molecules
highlighted in this core region. This suggests the most common
core structural motifs in the zinc-20938 set are rare in the ccs-lit-
167 set.

� The ccs-lit-167 molecules do tend to have connections
showing that they are typically not isolated in this chemical
space the highly connected core demonstrating the molecules.

Taken together this analysis demonstrates that the ccs-lit-
167 set are not evenly distributed in the chemical similarity
space displayed in Fig. 5. As the carbon capture molecules tend
to exist outside of the highly connected core region they can be
considered relatively dissimilar to many of the commercial
amines within the zinc-20938 set but not totally isolated.
Generally the reported carbon capture molecules appear to
inhabit sub-sections of the chemical space, this may suggest
there is room for innovation in some of the unreported/
unexplored regions. Additional related analysis for carbon
capture solvent molecules is provided in Elmegreen et al. 2023.91

3.1.3 Topological data analysis. To elucidate this sub-space
more clearly we have applied TDA. TDA has been shown to
provide valuable insights in other areas of chemistry.92 A
© 2024 The Author(s). Published by the Royal Society of Chemistry
skeletonized representation of the set of the topological data
associated with zinc-20938 and ccs-lit-167 data sets described
above is shown in Fig. 7. Mapper TDA is applied to the molec-
ular point cloud in the space of the CCS structural ngerprints
equipped with pair-wise dice distances. During Mapper
construction, we chose eccentricity of themolecules in the point
cloud as the lter function. Here, eccentricity refers to the
position of the molecule relative to the “center” of the point
cloud; it increases further from the center towards the outskirts.
The range of the eccentricity values was split into 40 intervals
with 50% overlap between intervals. This produced 40 level sets
of molecules which were clustered with agglomerative clus-
tering on the pre-computed matrix of dice distances. Fig. 7
therefore provides an alternative abstract 2D visualization of the
chemical space of the zinc-20938 and ccs-lit-167 data sets. Each
node in the gure represents clusters similar molecules. The
graphs are coloured by properties to show trends across the
space.

Fig. 7A shows the produced Mapper graph where nodes
represent clusters within level sets, nodes are linked if respec-
tive clusters have common members, color encodes the lter
function (eccentricity), and the node size encodes the number
of amines in the respective cluster. Fig. 7B and C maintain the
layout of the graph in Fig. 7A and the encoding of the number of
amines in a cluster by the node size. Fig. 7B shows the anomaly
scores of the molecules in the data set evaluated using the
Isolation Forest algorithm, averaged over clusters, and encoded
as the node color. High positive values of the anomaly score
indicate inliers, decreasing values indicate higher level of
abnormality, and negative values indicate outliers. Fig. 7C uses
color to encode the fraction of the carbon capture amines in
each cluster. We note that the highest content of carbon capture
amines in the Mapper clusters does not exceed 20%.

Comparison of Fig. 7A and C suggests that carbon capture
molecules are not present in the lemost (most central) nodes.
This nding can be interpreted as a sign of under-utilization of
the space. One possible reason could be a bias of the majority of
amines and N-heterocyclic molecules towards biochemical/
medicinal applications leading to specicity in the structures
towards such applications. Comparison of Fig. 7B and C shows
that carbon capture amines and N-heterocyclic molecules are
not outliers, as the only cluster with the average anomaly score
characteristic of outliers has zero fraction of carbon capture
amines. Carbon capture amines are not the most “normal”
amines either as the average anomaly scores of the clusters rich
in carbon capture amines are shied towards zero.

Considering all aspects of this analysis it appears that the
carbon capture amines considered here are representatives of
a sub-space in amine and N-heterocyclic molecule chemistry.
Many of the zinc-20938 molecules are likely to have been
developed for diverse industrial applications and as such many
will be unsuitable, in terms of cost, quantity and structure, for
carbon capture. The analysis does suggest though that there is
considerable unexplored, or at least unreported, areas of amine
and N-heterocyclic molecule chemical space which may hold
novel candidates for carbon capture.
Digital Discovery, 2024, 3, 528–543 | 535
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Fig. 8 Confusionmatrices and ROC curves for the balanced data against absorption capacity classification using the Mordred chemical features.
Confusion matrices calculated over all external folds.
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3.2 Carbon capture absorption capacity classication

In this section we outline our absorption capacity classica-
tions. We begin generating QSAR models for the classication
of molecules based on absorption capacity. We complete this
work by evaluating our models and considering the impact of
our predictions.

We report the results for the classication models generated
with MACCS ngerprints, CCS ngerprints and Mordred
descriptors against absorption capacity in units of (molCO2

molN−1).
There are 98 molecules in our absorption capacity data set

denoted as ccs-98, classied to binary groups. Class 1 represents
higher values and class 0 represents lower values of absorption
capacity. The molecules are classied based upon the nitrogen
centric organic functionalities they contain. Both primary and
secondary amines are thought to react with CO2 through
a mechanism requiring two amine molecules to complete the
reaction. Therefore, a primary or secondary amine has a theo-
retical absorption capacity of 0.5 per primary or secondary
amine group. Tertiary amines are thought to react in a one to
onemechanism therefore have a theoretical absorption capacity
of 1.0 per tertiary amine group. We classify molecules by
summing up these expected contributions per amine group. For
sp2 nitrogens in rings the pKa tends to be lower than for amines
therefore it is likely a much less active functionality. sp2 nitro-
gens in rings are the only containing functionality in the
molecules the molecule is assigned a theoretical capacity of 0.5,
however, if the molecule contains one or more amines then the
theoretical capacity is set to the values associated with the
amines. Functions to generate these classes are provided in the
536 | Digital Discovery, 2024, 3, 528–543
CCS ngerprint library https://github.com/Jammyzx1/Carbon-
capture-ngerprint-generation. Where mixtures of primary or
secondary with tertiary amines arise we apply a weighting
based upon the number of tertiary amine groups, as both of
the proposed amine reaction routes are possible and can be
competitive in terms of the kinetics. We therefore down scale
the tertiary contributions to 0.5. If the approximate expected
value for absorption capacity is below the experimental
absorption capacity then class 0 is assigned to the molecule.
If the experimental absorption capacity is greater than or
equal to the approximate expected value then class 1 is
assigned to the molecule. From the ccs-98 data set 71 mole-
cules are class 0, and 27 molecules are class 1.

The two classes are highly imbalanced. To achieve better
performance in the models, we generate additional sampling
points for the minority class using the Synthetic Minority Over-
Sampling Technique (SMOTE)93 for non-categorical features
and Synthetic Minority Over-sampling Technique for Nominal
(SMOTEN)93 for categorical features. This is implemented in the
imbalanced learn Python package (version 0.9.0). In both cases,
these methods select the ve nearest minority class neighbours
in feature space to the kth example minority point, choose at
random one of the ve and generate a synthetic sample point
along the connecting line between the example point and the
random neighbour. Note that the methods have no information
about the majority class.

SMOTE provide a better balance between the classes, hence
improving the learning of a decision boundary. We apply the
SMOTE algorithms to each training set in the k-fold cross vali-
dation independently to avoid data leakage from the test sets.
We note that pre-computing the SMOTE synthetic points prior
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Classifier metrics for balanced data for absorption capacity
with models built from Mordred features. MCC is the Matthew's
correlation coefficient

Algorithm Accuracy Sensitivity Specicity MCC

Gaussian process 0.73 0.30 0.90 0.25
Logistic regression 0.81 0.63 0.87 0.51
Adaboost 0.74 0.48 0.85 0.34
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to train test splits in the k-fold cross validation can lead to
notable data leakage and over optimistic metrics for the model
performance. We explored the impact of this in our work and
found that on the headline accuracy metrics data leakage could
provide approximately an 7–8% over estimate in a models
predictive accuracy. This experiment was performed by gener-
ating the SMOTE examples prior to running the 10 fold-CV and
calculating the equivalent metrics to those reported later in the
manuscript. Here we present how Gaussian Process, Logistic
Regression and Ada Boost methods perform on the SMOTE
balanced ccs-98 data set.

3.2.1 Mordred descriptors as features. For each molecule,
we generate over 1500 descriptors using Mordred.78 The list of
Mordred descriptors can be found at ref. 94. From these
descriptors, we are only interested in those that have a notable
correlation with absorption capacity. We thus set a Spearman
correlation cutoff of 0.5 and further analysed these features for
signicance using a two-tailed p-test95 over 5000 random sample
permutations using the Spearman correlation coefficient as the
test statistic, leaving 35 features which have a signicant p-value
at 95%. The list of features which correlate are given in the ESI.†
Following feature generation, we apply one-hot encoding for
categorical features and min–max scaling for continuous
Fig. 9 Confusion matrices and ROC curves for the balanced data again
Confusion matrices calculated over all external folds.

© 2024 The Author(s). Published by the Royal Society of Chemistry
features. There were 6 features considered as categorical out of
the 35 (nBondsM, nBondsKD, C1SP2, HybRatio, FCSP3, ETA_-
beta_ns). Categorical in this case includes features with specic
increments such as counts. Following one hot encoding the
feature set extends to 84 as every unique value of the categorical
features becomes a binary feature array. Scikit-learn96 was
employed to perform one hot encoding and min–max scaling.66

3.2.2 Molecular ngerprints as features. As discussed
above we have developed a new ngerprint, CCS ngerprint, for
carbon capture solvents based upon the chemical space analysis
in Section 3.1. The CCS ngerprints are composed of 72 binary
features. The features are not pre-processed in any other way.
The SMARTS denitions are provided in ESI† and the library
can be seen at https://github.com/Jammyzx1/Carbon-capture-
ngerprint-generation. The use of such ngerprints can
enhance the interpretability of models in terms of the
chemical structures and their correlation with the properties
of interest.

Additionally, we compared our CCS ngerprint with the well
established MACCS keys.97,98 The MACCS keys are composed of
166 binary bits which also represent the presence and absence
of chemical features. MACCS keys have been widely used,
especially in the pharmaceutical industry. The bits represent
a wide sub-set of chemical space.

3.2.3 Results for Mordred descriptors. We begin our
modelling of absorption capacity using the Mordred descriptors
as features to represent the molecules. Fig. 8 and Table 1
provide a summary of the performance of the three models
generated from Logistic Regression, Ada Boost and Gaussian
Process classication methods.

From the results in Fig. 8 and Table 1 the models have a fair
predictive accuracy between 0.73 and 0.81. The Gaussian
Process and Ada Boost methods have broadly performed
st absorption capacity classification using the MACCS keys as features.

Digital Discovery, 2024, 3, 528–543 | 537
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Table 2 Classifier metrics for balanced data for absorption capacity
with models built from MACCS fingerprint features. MCC is the
Matthew's correlation coefficient

Algorithm Accuracy Sensitivity Specicity MCC

Gaussian process 0.78 0.48 0.89 0.40
Logistic regression 0.83 0.63 0.90 0.55
Adaboost 0.78 0.56 0.86 0.43

Table 3 Classifier metrics for balanced data for absorption capacity
with models built from CCS fingerprint features. MCC is the Matthew's
correlation coefficient

Algorithm Accuracy Sensitivity Specicity MCC

Gaussian process 0.82 0.67 0.87 0.54
Logistic regression 0.84 0.70 0.89 0.59
Adaboost 0.83 0.70 0.87 0.57
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similarly in terms of accuracy, but the Logistic Regression
method has a notable improvement with an accuracy over 0.80.
However, for all three model there are notable differences in the
sensitivity and specicity. The Gaussian Process and Ada Boost
models both struggle similarly in terms of sensitivity. This is
demonstrated clearly in Fig. 8A and C. Plot A shows roughly the
same number of true positives and false positives predictions
coupled with a larger number of false negatives predictions
whilst plot C shows a near even spread over true positives, false
positives and false negatives. This suggests the models are very
poor in terms of predicting the positive class. The Logistic
Regression model shows improvement beyond Gaussian
Process and Ada Boost with respect to sensitivity, with notably
higher true positives prediction proportion. All models show
much better performance in terms of predicting true negatives.
The MCC values highlight this imbalanced predictive accuracy
with fairly low values; noting that values of 0.0 for MCC corre-
spond to random, these predictions are showing limited
improvement above this.

3.2.4 Results for MACCS ngerprints. Turning to the
MACCS ngerprint representation, Fig. 9 and Table 2 provide
a summary of the models performance.
Fig. 10 Confusion matrices and ROC curves for the balanced data aga
matrices calculated over all external folds.

538 | Digital Discovery, 2024, 3, 528–543
Using the MACCS ngerprints, and considering the metrics
in Fig. 9 and Table 2 all three models again make a reasonable
prediction of the molecules class considering the accuracy
metric that ranges between 0.78 and 0.83. As for the Mordred
descriptors, delving a bit deeper using the sensitivity and
specicity metrics we nd that predictions of the positive class
are poorer that for the negative class. Again we the Logistic
Regression model out performing the other two, however, there
is a notable improvement in the prediction of the positive class
for the Gaussian Process and Ada Boost models. The specicity
has remained at a similar level of accuracy compared to the
Mordred models. We note that the MCC scores have improved
overall representing the better balance over the three model in
predicting both classes.

3.2.5 Results for CCS ngerprints. The last representation
is that of our CCS ngerprint; Fig. 10 and Table 3 provide the
summary results for the three models trained on this
representation.

From Fig. 10 and Table 3 it appears that all three models
make good predictions of the molecules classes. The accuracy of
all models is greater than 0.8, with the accuracy range of 0.82–
0.84. In the Logistic Regression and Ada Boost models we note
inst absorption capacity using CCS fingerprints as features. Confusion

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a much improved sensitivity of 0.70 shown diagrammatically in
Fig. 10 where we can now see the majority of positive class
molecules are predicted correctly by all three models. There is
a slight improvement in the specicity also over the three
models compared to the models using Mordred or MACCS
representations. Overall the MCC scores are now all over 0.5
showing the more balanced predictive accuracy.

Comparing the models on their summary metrics we see that
in general Fig. 8–10 and Tables 1–3 suggest that classication of
molecules using shallow learning algorithms for absorption
capacity is a difficult task. Across the models presented we have
used several molecular representations. The Mordred descrip-
tors are composed of a range of well known 2D molecular
descriptors encoding information of electronic state, graph
topologies and molecular properties. We found 35 had
a notable correlation with absorption capacity but this vector
extended to 84 when one-hot encoding was applied. This means
a notable part of the representation contains a null represen-
tation. It is possible that with a larger data set the most
explanatory features could be more readily identied and the
models improved. The current models struggle particularly to
correctly separate molecules into the promising class, with
Fig. 11 Feature importance metrics using Logistic Regression over all fea
importance. Sub-figure (A) is for Logistic Regression using the Mordred
fingerprints and sub-figure (C) is for Logistic Regression using the CCS fi

© 2024 The Author(s). Published by the Royal Society of Chemistry
a fairly balanced error rate across false positives and false
negatives predictions.

The MACCS ngerprints are a standard ngerprint repre-
sentation which has been employed many times in materials
modelling. To our knowledge, it has not been applied previously
to predicting absorption capacity. In this work we see that the
MACCS ngerprint performs reasonably as a representation but
struggles with the classication of molecules in the promising
class. This is clearly shown in the sensitivity and specicity
values. The MACCS ngerprints are the largest representation
used in this work at 164 elements each, with every element
requiring a sub-structure match to build the representation.
This can be a relatively computationally expensive task.

Having considered these two standard representationmethods,
we developed our own ngerprint, inspired by theMACCS scheme,
which encoded the sub-structures noted by the carbon capture
community to correlate with carbon capture performance. We also
wished to generate a more condensed representation which with
equivalent soware implementation could reasonably be expected
to be generated with fewer sub-structure matches. From this we
developed the CCS ngerprint. The models generated above show
the result is promising. All of the models built using the CCS
ture sets. The mean regression coefficients are plotted as measures of
feature set, sub-figure (B) is for Logistic Regression using the MACCS
ngerprints.
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ngerprint perform with an accuracy higher than the standard
features together with much improved predictive accuracy for the
positive class, of approximately 70%. The models using the CCS
ngerprintmaintain high predictive accuracy for the negative class
inline with the values seen from the standard features of 0.85–0.90.
Owing to the improved predictive performance of the positive class
these models also achieve the highest MCC scores demonstrating
a more balanced predictive capability over the classes.

The best overall positive class predictor comes from the use of
the CCS ngerprint features using the Logistic Regression classi-
er with 0.89 promising class correctly predicted 0.89 negative
class correctly predicted and an overall accuracy of 0.84. The
Logistic Regression models across all feature sets have tended to
provide the most promising predictive accuracy over the classes.
All models show a reasonable capability to predict the molecules
which are unlikely to be promising in terms of capacity, which for
HTVS may still be a useful and computationally inexpensive lter.
The use of the CCS ngerprint provides improved predictions of
the positive class suggesting it could be useful in HTVS in terms of
prioritisation of laboratory testing.
3.3 Feature importance

We have performed feature importance analysis using the
Logistic Regression classiers over the difference feature sets.
The importance of a feature is reected by the magnitude of the
linear regression coefficients in the models. We show in Fig. 11
the mean feature importance over the 10 cross validation.

Whilst being careful not to over interpret Fig. 11, as they are
based on no underlying fundamental physics or chemical
theory, we can see some trends in the feature which are
important. Looking at sub-Fig. 11A, using Mordred descriptors
we note number of auto-correlation feature have large magni-
tude coefficients. These auto-correlation coefficients relate to
valence electrons and charges suggesting the model is largely
relying on fairly simplistic representations of the electronic
structure of the molecule. These models may be improved with
a better description of the electronic structure.

For the MACCS keys feature importance in Fig. 11B we also
see the nitrogen environment as being important. For example
bit numbers 70, 80 and 84 all relating to the presence or sepa-
ration between nitrogen atoms in a molecule. The largest
positive Logistic Regression coefficient belongs to bit 109 which
represents the presence and absence of a CH2–O which could
match to an alcohol functionality.

Fig. 11C displays Logistic Regression coefficients of large
magnitudes for the CCS ngerprint on features related to the
nitrogen environment, separating distances between amine and
alcohol groups and chain lengths together with whether
a molecule contains multiple amine functionalities. These are
structural features which have been highlight by others as
correlating with absorption capacity.

We provide in the ESI† a SHAP99 analysis of each of these
models over 10 cross validation for the 20 most important
features as determine by SHAP. This analysis was performed on
a subset of the each folds test data. This analysis shows similar
trends to the feature importance.
540 | Digital Discovery, 2024, 3, 528–543
4 Conclusions

This work proposes a new molecular representation, CCS
ngerprint and data set ccs-98, both of which are available at
https://github.com/Jammyzx1/Carbon-capture-ngerprint-
generation. An analysis of the chemical space of amines and N-
heterocyclic molecules is provided against a background of
commercially available amines and N-heterocyclic molecules.
This analysis shows that carbon capture solvent molecules
inhabit a sub-space, but are not outliers in their structure
compared to the wide set of commercially available amines and
N-heterocyclic molecules. This is promising as it suggests that
there may be other commercially available molecules suitable
for carbon capture without expensive new synthesis pathways
being required. It also highlights chemical functional groups
which in the ccs-lit-167 data set differ in relative abundance
compared to commercial amines and N-heterocyclic molecules
in the zinc-20938 data set. It remains unclear whether these
differences are due to a lack of reporting on carbon capture
capabilities for molecules containing these functionalities or
due to these chemical functionalities having a consistent
detrimental impact on carbon capture performance. This is an
area for further exploration which could have a notable impact
on the eld by improving knowledge, data availability and thus
modelling validation capabilities.

We used this chemical space analysis to dene a novel
ngerprint for the modelling of amine molecules used in
carbon capture. This ngerprint has been shown to be an
effective featurization method for QSAR modelling and a way to
analyze the chemical space. We have also tested the use of
commonly applied featurization methods through the Mordred
engine and MACCS ngerprints. The QSAR models built in this
work show that QSAR prediction for absorption capacity is
challenging with the limited available data. Some of our model
show promise for high throughput virtual screening of carbon
capture amines in the future. The use of the CCS ngerprint
gave the most accurate classication models for each class. The
CCS ngerprint also showed the most balanced model in terms
of predictive accuracy for each class.

One of the biggest challenges to this work is relative lack of
open available data in this eld. This leads to small-data issues
and limits the potential use of more complex modelling.
Opening data in machine readable formats (such as csv, json,
paraquat and HDF5 les for example) will enable computa-
tional scientist to better explore this area. A community
conversation on data standards is encouraged to enable fair
comparisons across data sources and models. As policy shis
towards a net zero carbon world and carbon capture, usage and
storage is deployed, the release of more data in the open liter-
ature related to these technologies will become more vital. This
data can be enhanced with computation to help in the search
for more efficient solvents, and carbon capture materials more
generally, as we have demonstrated in this work.

The overlap of computational and experimental work is
a powerful combination. Computation can rapidly screen and
rank materials. Discovering more efficient materials for carbon
© 2024 The Author(s). Published by the Royal Society of Chemistry
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capture is a goal that is required to avoid the more catastrophic
effects of climate change. To mitigate the effects of climate
change is likely to require great urgency in collaborating at scale
across the world to accelerate the development and under-
standing of the most promising net zero technologies.

Data availability

The code supporting this paper and datasets (ccs-98, ccs-lit-167,
zinc-20938) are on GitHub and archived on Zenodo. https://
github.com/Jammyzx1/Carbon-capture-ngerprint-generation
for the carbon capture ngerprint generation, archived at
https://zenodo.org/record/8304466. https://github.com/
aviucipcigan/ccus_amine_prediction_workow for the amine
prediction workow, archived at https://zenodo.org/records/
10213104.
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71 V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins,
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