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sarial networks and diffusion
models in material discovery

Michael Alverson, *ac Sterling G. Baird,a Ryan Murdock,a (Enoch) Sin-Hang Ho,b

Jeremy Johnson b and Taylor D. Sparks a

The idea of materials discovery has excited and perplexed research scientists for centuries. Several different

methods have been employed to find new types of materials, ranging from the arbitrary replacement of

atoms in a crystal structure to advanced machine learning methods for predicting entirely new crystal

structures. In this work, we pursue three primary objectives. (I) Introduce CrysTens, a crystal encoding

that can be used in a wide variety of deep learning generative models. (II) Investigate and analyze the

relative performance of Generative Adversarial Networks (GANs) and Diffusion Models to find an

innovative and effective way of generating theoretical crystal structures that are synthesizable and stable.

(III) Show that the models that have a better “understanding” of the structure of CrysTens produce more

symmetrical and realistic crystals and exhibit a better apprehension of the dataset as a whole. We

accomplish these objectives using over fifty thousand Crystallographic Information Files (CIFs) from

Pearson's Crystal Database.
1 Introduction

Materials discovery is an enormous open problem in the eld of
materials informatics and a wide variety of techniques have
been used to address it. Some methods include large-scale
combinatorial synthesis simulations1,2 to create crystals that
are synthesizable and stable. However, in order for combina-
torial synthesis methods to be successful, thousands ormillions
of compounds must be generated in order to identify useful
candidates. Furthermore, known materials may only account
for a minuscule fraction of the possible number of synthesiz-
able and stable crystals.3 Discovering new structures in an effi-
cient and effective way requires a method of processing
enormous amounts of data, quickly identifying patterns that are
present within the dataset, and extrapolating those patterns
outside of the dataset so that new materials can be discovered.
Generative models have been implemented for a variety of
topics, including composition,4–9 molecules,10–23 and crystal
structures.24–40 In this work, we focus on crystal structure
generative models.

Crystal generative models typically use variational auto-
encoders (VAEs),27,31,35,37,41 generative adversarial networks
(GANs),30,32,37,40,42 genetic algorithms,28 or substitution.29 One
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example of a crystal generative model based on VAEs is the
Fourier-Transformed Crystal Properties (FTCP) representa-
tion.41 The FTCP representation is a crystal representation that
not only incorporated both chemical and structural crystal
properties but was invertible as well (property / chemistry +
structure). When combined with a jointly trained VAE model,
a probabilistic property-structured latent space was obtained
that allowed for the generation of novel crystals with user-
dened properties. Another important work in this area of
study is the Crystal Diffusion Variational Autoencoder
(CDVAE).39 By leveraging a diffusion process that pushes atomic
coordinates to lower energy states and iterates atom types to
satisfy bonding preferences, CDVAE signicantly outperforms
past attempts to perform material generation. Furthermore,
CDVAE was capable of optimizing crystals for a given property
and reconstructing a material from its latent space represen-
tation. Many examples exist for GANs as well. Constrained
crystals deep convolutional generative adversarial network
(CCDC-GAN)32 uses a post-processing ltering criteria to remove
compounds with large formation energies based on a cutoff
threshold. In another example, crystal structure is represented
in a lean fashion by a set of atomic coordinates and unit cell
parameters, with signicantly reduced memory requirements
compared to a voxel-based generative model, iMatGen.35 Physics
Guided Crystal Generative Model (PGCGM)40 expands on
CubicGAN42 while using base site atoms with physics-guided
loss functions. For example, structures with atoms that are
too crowded or too far apart are penalized via two terms in the
loss function. We also note that normalizing ows, another
© 2024 The Author(s). Published by the Royal Society of Chemistry
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promising direction, have been used in some crystal structure
contexts38,43 including an application to molecular crystals.43

In this work, we compare the use of Generative Adversarial
Networks and Diffusion Models in unstructured crystal gener-
ation. We illustrate the shortcomings of GANs in this space and
show that Diffusion Models may offer a very promising alter-
native to previous methods. Furthermore, we introduce a stan-
dardized and image-like crystal embedding representation
(CrysTens) that can be used in a wide array of image generation
models with relative ease and minimal changes.

2 Background

Creating an effective method of materials discovery is an
extraordinarily important issue to address in the realm of
materials science. Efficient materials discovery could revolu-
tionize material science by not only yielding new materials but
also by providing new insights into the different ways that
crystal structures can form. Perhaps the most impactful
outcome would be in the area of inverse design wherein mate-
rials are tailor designed to meet specic property criteria.
Generating new stable crystal structures has proven a stub-
bornly difficult task, let alone to do so with targeted properties.
An outstanding challenge in this area has been the periodic
nature of crystal structures. Only recently were machine
learning crystal representations developed that encode both the
symmetry and composition information contained within the
Crystallographic Information File (CIF).44–47

New machine learning crystal representations that capture
chemistry (composition) and structure (periodicity) are impor-
tant because they then allow us to utilize machine learning
algorithms to identify and exploit patterns in data. Even the
most experienced materials scientist domain expert would be
unable to fully comprehend and leverage all the patterns in
high-dimensional materials data for hundreds of thousands of
crystal structures, and then use the discovered patterns to
generate novel materials. Instead, scientists have relied on very
low-order approximations and simplications for generating
new materials. Or, alternatively, they have relied on screening
down lists of already discovered materials to identify those
candidates that most closely match the desired properties using
empirical relationships or computational materials science
techniques such as molecular dynamics, Density Functional
Theory (DFT), etc. However, given the immense size of the
chemical space that is believed to exist (1060 materials) and our
current microscopic subset of known materials (105–106 mate-
rials),3 it is unlikely that screening efforts alone are sufficient to
nd the new materials necessary to answer society's most
pressing technological needs. Therefore it is abundantly clear
that an intuitive and efficient method is needed to scan over the
vast regions of untapped chemical space and select the group-
ings of materials it deems as stable and synthesizable.

Fortunately, machine learning and more specically deep
learning methods, have emerged as powerful complements to
the human capacity for materials design.48,49 Within the eld of
material discovery, generative machine learning models are
currently being investigated by a wide variety of research
© 2024 The Author(s). Published by the Royal Society of Chemistry
teams.39,44,50,51 Previously, the two most common types of
generative machine learning models were the VAE and GANs.
VAEs attempt to encode a sample of data into a lower dimen-
sional latent space. The encoded samples are then decoded
from latent space into potential new samples. However, VAEs
differ from traditional autoencoders because they are simulta-
neously attempting to structure the latent space according to
a predened probability distribution. This makes VAEs an
exciting candidate for efficient inverse design because materials
that exhibit ideal properties may be located at the intersection
of each property within latent space.52,53

The other common generative machine learning model for
material discovery is GANs. GANs differ from VAEs in several
key ways. First, GANs are composed of two separate neural
network architectures: the generator and the discriminator. The
generator's task is to create realistic samples of whatever data
distribution it is trying to model. In the case of this work, the
generator is attempting to create realistic crystal structures. The
discriminator's job is to differentiate between samples that are
real (taken from the original dataset) or generated. The
discriminator and generator train against each other, continu-
ally improving until training is nished and the generator can
be separated and used to create realistic samples. By using an
adversarial approach, the generator can construct its own
probability distribution of the data instead of requiring a pre-
dened probability distribution like those used within VAEs.
Although the training of GANs is game-theoretic in nature, they
are not guaranteed to converge to a Nash equilibrium54 which
can lead to performance issues. A more advanced variation of
the traditional GAN is included in this work known as the
Wasserstein GAN or WGAN. The differences between WGANs
and GANs are discussed later.55,56

Recently, however, with the success of OpenAI's DallE-2 57

and Google's Imagen,58 Diffusion Models have quickly risen to
achieve state-of-the-art performance for many types of genera-
tive modeling. Diffusion Models are inspired by non-
equilibrium thermodynamics and operate by gradually
destroying input training data by adding Gaussian noise
(forward process) only to learn the transformations necessary to
reconstruct each sample (backward process). By continually
repeating this process, and incrementally adding more noise in
each iteration, fully trained Diffusion Models are able to
completely reconstruct a data sample from nothing more than
noise. Diffusion Models take longer to train than GANs but do
not suffer from many of the same deciencies that GANs do
such as mode collapse and extreme instability.

3 Methods
3.1 CrysTens representation

Past works such as iMatGen35 and CCDCGAN32 focus on mate-
rial generation within specic crystal systems. Our goal is to
have the ability to generate a diverse range of different crystals
and compositions. Since Pearson's Crystal Data (PCD) is not
constrained to a single crystal system we chose it as the primary
dataset of CIFs for this work. PCD contains over 140 000 unique
CIFs, however, to t the size constraints of CrysTens, the crystal
Digital Discovery, 2024, 3, 62–80 | 63
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embedding representation explained below (see Fig. 1 and 2),
we ltered out any CIFs with more than 52 atoms in the basis.
Additionally, we ltered out any erroneous or incomplete CIFs.
Our nal dataset contained 53 856 CIFs. Each CIF is used to
create a CrysTens and these tensors are concatenated together
to form our training set. For additional information about CIFs
please see Appendix A.

Finding a concise, efficient, and structurally informative
representation for each CIF was an important step in the
process of crystal structure generative modeling. Additionally,
we wanted our representation to have image-like characteristics
so that we could take advantage of high-performing image-
generation models without a large amount of refactoring.
Aer many iterations, including just simply listing the crystal
structure parameters in a list, we eventually decided upon
a representation that captured both the intricate parameters of
each crystal as well as their interatomic components. The
Fig. 1 Layer 1 of the crystal representation containing symmetrical
rows and columns for structural information and a pairwise distance
matrix with relative distances between all atoms in the basis.

Fig. 2 Layers 2–4 of the crystal representation containing the same
symmetrical rows and columns for structural information, but also
having a directional graph for each dimension: x, y, and z.

64 | Digital Discovery, 2024, 3, 62–80
representation is a tensor of shape 64 × 64 × 4 and can be
visualized in Fig. 1 and 2. The top twelve rows and lemost
twelve columns are symmetrical and list out all of the CIF-
extracted information of a given crystal. The top (or lemost)
list is the atomic number of each of the atoms present in the
crystal. They are listed from le to right (or top to bottom) until
either y-two spots have been lled or the crystal has run out
of atoms to place. If there is leover space in the representation,
zeros will be lled in for the remainder. Structures with more
than 52 atoms in the basis are excluded. The same process is
repeated for the three fractional coordinates (x, y, and z), the
three lattice parameters (a, b, and c), the three lattice angles (a,
b, and g), and the space group number. Finally, a padding layer
is inserted to separate the CIF-extracted information from the
interatomic portion of the representation. For the rst layer of
the representation, the bottom-right 52 × 52 matrix is used to
encode a pairwise distance matrix that relates each of the atoms
together by their Euclidean distance. Within the latter three
layers of the representation, a distance graph for each of the
dimensions is represented to show the uni-dimensional relative
distance between each atom.

The motivation behind the structure of this representation is
to highlight the major components of crystal structures. There
is a structural component that encodes symmetry, basis, and
lattice information and an interatomic component that encodes
the relative distances between atoms into the representation
itself. With only the interatomic distances of a given crystal, it
would be impossible to reconstruct the atomic numbers, space
group, and various lattice parameters. Likewise, with only the
structural components, it may be challenging for a convolution-
based generative modeling algorithm to encode the relation-
ships between various components which may lead to gener-
ated structures with unreasonable interatomic distances.
Furthermore, there is a high degree of redundancy within our
crystal structure representation by including both a pairwise
distance matrix and unidimensional distance matrices as well
as the repeating of lattice parameters, angles, and the space
group number. The reason for this redundancy is that we would
like to force the model to relate all of these different aspects in
a way that can give rise to a greater ability to recognize and
utilize crystal patterns within the PCD dataset during genera-
tion and a higher degree of noise mitigation during post-
processing when all of these generated values are averaged.
The primary strength of the CrysTens representation is that the
structural aspects of a given crystal are fully encoded by
including both the pairwise distance matrix and the distance
graphs. This is desirable when using convolution-based image-
generation models as they perform best when there is struc-
turally informative data in the representation. Also, this gives
the models that are trained on our representation several ways
in which they can learn the patterns present in a crystal dataset.
The repetition of lattice parameters, lattice angles, and the
space group number present in our crystal representation may
be viewed as a potential drawback as the model is forced to
learn the same information several times, however, we chose to
move forward with this representation as we felt it was the most
natural representation.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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We selected 64 as the length and width of each of our layers
because of the commonly used deep learning heuristic of
selecting powers of two. It could easily have been another value,
however, the focus of this work is to show the structure of the
CrysTens representation rather than the numerical intricacies
or optimization of the representation. Furthermore, since 64
was selected and there are eleven different parameters plus
a padding layer, only crystal structures with 52 atoms or less
were selected for training and analysis. We redundantly
included both the pairwise distance matrix and the three
dimensional graphs to fully capture all of the different struc-
tural aspects of a given crystal structure, however, the repre-
sentation can be changed to t given constraints. We anticipate
that future work could add layers to encode aspects related to
chemistry such as the Oliynyk, magpie, mat2vec vector
constituents in order to ensure realistic atom assignment.
3.2 Crystal reconstruction

Once we have trained a model with the CrysTens representa-
tion, it would be desirable to transform the output of each
model at inference time back into a CIF for visualization and
analysis purposes. The process of transforming back from the
CrysTens representation can also provide insights into the level
of “understanding” of the representation itself that each model
displays. CrysTens representations generated from CIF les are
by denition symmetric, but CrysTens' that are output from
generative models are not necessarily symmetric due to the
stochastic nature of deep learning algorithms. Instead, we
found that even our most symmetrical generated CrysTens' had
a small amount of noise that was mitigated by the redundancy
of our representation.

Given a generated CrysTens, there will be a number of atoms
that it will have predicted to be present in a crystal. We will refer
to this value as A, and 0 < A# 52 due to the nature of the current
CrysTens representation. If the generative model was able to
understand the symmetrical relationship within the CrysTens
representation, then it will have A non-empty columns from le
to right, and A non-empty rows from top to bottom for each of
the four layers. Similarly, the single-valued structure parameters
such as the lattice parameters (a, b, c), the lattice angles (a, b, g),
and the space group number will be repeated 2A times for each
layer, a total of 8A occurrences. These values can be averaged to
nd the value that will ultimately be used when generating the
output CIF. The variance among these repeated values is a good
indicator of whether a given model “understands” the structure
of the representation. If almost all 8A space group numbers are
between 219 and 221, then there is a good chance that the
model intended on a space group number of 220 and knew
where to place these values. Generated CrysTens representa-
tions with small variances between values that are meant to be
the same tended to produce more symmetrical and better-
looking crystals, shown in Results. However, if there is
a space group number spread between 110 and 220 there is
a very good chance that the model is not able to pick up on the
relationship between the different space group rows and
columns, and the quality of the nalized crystal is likely to
© 2024 The Author(s). Published by the Royal Society of Chemistry
reect that. Values that do not represent a single value
throughout the entire CrysTens such as atomic number or
fractional coordinates are instead only repeated a total of 8
times (two times for each layer) because each one corresponds
to a single atom. The same variance check can be performed on
each of these values as well.

However, the single best indicator of model performance
comes from the use of the directional graphs (layers 2–4). Each
spot in the directional graphs represents the relative difference
between two atoms in all three dimensions. Therefore, with the
knowledge of one atom and its relationship to another atom
with the direction graph, the second atom's location can be
deduced. Therefore, if we have 10 atoms predicted in a CrysTens
representation, each with their respective fractional coordinates
and a directional graph relating each of them, we can have 10
“guesses” as to where a given atom is supposed to be in the
crystal (one guess from its own x, y, z coordinates and nine
guesses from the relative distances of other atoms). This
process is highlighted in two dimensions in Fig. 3. If there is
a high degree of consistency between all of the coordinate
predictions, the crystal that is produced tends to be more
symmetrical and realistic. The average of the coordinate
predictions for each atom is ultimately chosen as the point
where a given atom is placed during the CIF reconstruction.
Furthermore, with these reconstructed coordinates, a pairwise
distance matrix can be created and compared to the generated
pairwise distance matrix in layer 1 as an additional metric for
model performance.

We are now le with an averaged value for the lattice
parameters, lattice angles, and the space group number. We
also have an average value for each of the coordinates of a given
atom. In order to produce clean crystals that do not reect the
noise of the generative model, we added a few more post-
processing steps.

As far as the atomic numbers are concerned, we found that
even when there was low variance within the predicted atomic
numbers we could still observe lists of atomic numbers such as
(12.2, 12.6, 12.4, 12.5, 7.7, 7.4, 8.4, 8.5). When rounded to the
nearest atomic number, this list would reect (12, 13, 12, 13, 8, 7,
8, 9)/ (Mg, Al, Mg, Al, O, N, O, F) instead of the list that would
correspond to rule of parsimony: (12, 12, 12, 12, 8, 8, 8, 8)/ (Mg,
Mg, Mg, Mg, O, O, O, O). In order to rectify this inconsistency, we
elected to use K-means clustering for the atomic numbers. For
similar reasons, we chose to use K-means clustering for the
coordinate values of x, y, and z across the different atoms. Now
we could create a list of elements in the CIF as well as another list
corresponding to their atomic positions. Using the averaged
values from above, a Pymatgen lattice object can be constructed
which is then used in conjunction with the element and coor-
dinate lists to create a Pymatgen structure object. The structure
object can be used to create a CIF.

3.2.1 Post-processing summary.
� Generate CrysTens from a model with A non-empty rows/

columns.
� For lattice parameters, lattice angles, and space group

number, average all 8A instances of each and use averages in the
generated CIF.
Digital Discovery, 2024, 3, 62–80 | 65
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Fig. 3 (a) The location of atom 1 is chosen based on its predicted fractional coordinates (x1, y1, and z1). The location of atom 2 is chosen by taking
atom 1's location and adding the relative distance between atom 1 and atom 2, found in layers 2–4 of the CrysTens representation (x1 + D2,x, y1 +
D2,y and z1 + D2,z) The locations of atoms 3 and 4 are found the same way. (b) The location of atom 2 is chosen based on its predicted fractional
coordinates (x2, y2, and z2) and predictions for atoms 1, 3, and 4 are found using layers 2–4 of the CrysTens representation. (c) The samemethod
is applied. (d) The same method is applied. (e) Finally, each of the positions are averaged and the final fractional coordinates are used in the
construction of each CIF.

66 | Digital Discovery, 2024, 3, 62–80 © 2024 The Author(s). Published by the Royal Society of Chemistry
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� For each atomic number assignment, it will be repeated 8
times (2 times per layer). Average these 8 instances for all A
atomic number assignments.

� Perform K-means clustering on averaged atomic number
assignments, setting each to its centroid value and rounding to
the nearest whole number for the nal list of atomic number
assignments.

� For atomic position assignments in each dimension, it will
be repeated 8 times (2 times per layer). Average these 8
instances for all A unidimensional atomic position
assignments.

� Perform the process described in Fig. 3.
� Perform K-means clustering on averaged atomic position

assignments, setting each to its centroid value and rounding to
the nearest whole number for the nal list of atomic position
assignments.

� Construct CIF with lattice parameters, lattice angles, space
group number, atomic number list, and atomic position list.
3.3 Model overviews

3.3.1 Vanilla generative adversarial networks. Generative
Adversarial Networks depend on an adversarial approach to
generate new data. The two neural networks that GANs are
composed of, the generator and the discriminator, work against
each other. The generator attempts to generate realistic data and
the discriminator attempts to differentiate between generated
and real data. In order for the discriminator to predict whether
a given sample is real or fake, a sigmoid activation function is
used. When a prediction is above or equal to 0.5 on the sigmoid
function, the sample is labeled as real, and if the prediction is
below 0.5, the sample is labeled as fake or generated. The more
sure the discriminator is of its prediction, the more it will tend to
predict closer to 1 or 0 as opposed to around 0.5.

The major shortcoming associated with the sigmoid activa-
tion function directly corresponds to the difficulty of the tasks
assigned to the two neural networks. It is far easier to classify if
a given sample is real or fake than it is to generate an entirely new
sample. During the initial training epochs, before the generator
has had any time to calculate the weights necessary for accurate
sample generation, it will produce samples that are very obvi-
ously fake. When the discriminator has to decide between
something that is clearly real and something that is obviously
fake, it will start performing very well and will begin predicting
with higher condence (a value closer to either 1 or 0).

When plotted on a sigmoid activation function, low con-
dence predictions correspond to a large gradient (closer to 0.5)
while high condence predictions correspond to a progressively
diminishing gradient (closer to 1 or 0). A prediction plotted
within the large gradient zone of a sigmoid activation function
corresponds with more-useful information being given back to
the generator about how to improve its weights. Inversely,
a prediction plotted within the diminishing gradient zone will
provide the generator with less-useful information. The more
condent the discriminator becomes with its predictions, the
more the gradient and the usability of the information coming
from the discriminator will be decreased (vanishing gradient
© 2024 The Author(s). Published by the Royal Society of Chemistry
problem). This leads to a repeating cycle where the discrimi-
nator continually improves and the performance of the gener-
ator ultimately stagnates.

3.3.2 Wasserstein generative adversarial networks. To
rectify the issue mentioned in the previous section, researchers
have implemented a technique that takes advantage of the
Earth Mover's Distance (EMD). EMD is a method of under-
standing the dissimilarity between two multidimensional sets
of data samples. In our case, the two data sets are the real
CrysTens' constructed from PCD and the samples produced by
the generator. The theoretical “distance” between the two sets
of data samples can be used to construct a loss function called
the Wasserstein Loss, and the GANs that take advantage of this
are known as Wasserstein GANs (WGANs). Using Wasserstein
Loss, WGANs no longer need to predict if a sample is real or fake
based on a probability between 0 and 1. Rather, the mathe-
matics of the EMD equation allows WGANs to instead predict
the “realness” of a sample. The discriminator is replaced with
a critic function by changing the last layer from a sigmoid
activation function to a linear activation function. This adjust-
ment to the training scheme of the GAN recties the problem
discussed earlier because the linear activation function has the
same slope no matter what x-value is used.

Since the slope of the line is constant with respect to the
relative performance between the critic and the generator (there
is no low-gradient zone), the critic will never cease to grant the
generator with useful data in terms of how to adjust its weights
in order to produce more realistic samples.

3.3.3 Diffusion models. Unlike GANs, Diffusion Models do
not depend on adversarial processes to generate outputs.
Diffusion Models generate data based on non-equilibrium
thermodynamics. Diffusion Models are composed of two sepa-
rate stages: the forward and reverse diffusion processes. The
forward diffusion process is responsible for the addition of
Gaussian noise to a given sample while the backward diffusion
process is the reconstruction of a sample from a noisier sample.
Diffusion Models operate on a series of time steps, from 1 to t,
where an increased time step indicates another addition of
Gaussian noise. This process is treated as a Markov chain,
where the sample at time step t only depends on the sample
from time step t − 1. The forward process is xed, however, the
model attempts to learn the necessary operations to perform on
a given sample at time step t to reconstruct the sample at t − 1.
Once training is complete, the model should be able to generate
a sample similar to those within the original distribution from
complete Gaussian noise. While GANs may suffer from mode
collapse and instability during training, Diffusion Models allow
for stable training of large models on diverse data.59 While
sampling from Diffusion Models requires many more forward
passes when compared to GANs single-pass during inference,
this allows for renement of outputs and is not a major draw-
back for this particular use.60,61

4 Results

Several models from each category (Vanilla GANs, WGANs, and
Diffusion Models) were trained using the CrysTens
Digital Discovery, 2024, 3, 62–80 | 67
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Table 1 Comparison between GANs, WGANs, and Diffusion Models
on CrysTens lattice parameters, lattice angles, space group, and
fractional coordinate variancea

Model sParameter
2 sAngle

2 sSpacegroup
2 sFractionalcoordinates

2

GAN 582.23 1338.11 6322.1 5.57 × 10−2

WGAN 31.18 695.03 3024.27 5.9 × 10−2

Diffusion 3.5 × 10−1 8.46 × 10−1 4.56 4.36 × 10−4

a One-thousand CrysTens representations were generated and the
variance was averaged over all of them.

Table 2 Comparison between GANs, WGANs, and Diffusion Models
on CrysTens coordinate agreement and pairwise distance matrix
differencec

Model DCoordinate/atom
a S(DPairwise)/atom

b

GAN 9.62 × 10−2 3.84
WGAN 1.37 × 10−2 2.49
Diffusion 5.51 × 10−4 4.73 × 10−1

a The difference between the “absolute” x, y, and z values predicted and
the “relative” position predicted by the direction graph. b The sum of
the difference between the reconstructed pairwise distance matrix (by
the nal coordinates) and the generated pairwise distance matrix in
layer 1 of CrysTens. c One-thousand CrysTens representations were
generated and the values was averaged over all of them.

Fig. 4 The distribution proportion for the parameters a, b, and c for the

68 | Digital Discovery, 2024, 3, 62–80

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 4
:4

3:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
representations in an attempt to understand which deep
learning method should be explored further for material
discovery. The models were evaluated on several different
metrics and we found a strong correlation between a general
“understanding” of our representation and the output CIFs that
were received. The GAN and WGAN used were custom
convolution-based models. The Diffusion Model is the model
found at https://github.com/lucidrains/imagen-pytorch. The
details and hyperparameters of each model can be found in
Appendix B.

Table 1 is used to show the ability of each model to capture
the symmetrical characteristics of the CrysTens' structure. The
average variance among each repeated parameter, angle,
space group number, and fractional coordinates in the Crys-
Tens representation for one thousand generated CIFs was
calculated. Table 2 shows the average agreement between
absolute and relative coordinates in a given CrysTens as to
where to place each atom, as well as the average difference
between the reconstructed pairwise distance matrix and the
generated pairwise distance matrix for one thousand gener-
ated CIFs.

Furthermore, we wanted to investigate how well each model
modeled the PCD dataset as a whole. To do this, the distribution
real CIFs vs. the generated CIFs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The distribution proportion for the angles a, b, and g for the real CIFs vs. the generated CIFs.

Fig. 6 The distribution proportion for the space group numbers and atomic numbers.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 62–80 | 69
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Fig. 7 The distribution of CGCNN predicted values for the real CIFs and the CIFs generated by each of the models.

Fig. 8 The distribution of M3GNet-predicted energy above convex
hull for the CIFs generated by each of the models.
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proportions of the parameters, angles, space group number,
and atomic numbers were found for the 53 856 CIFs in our
dataset. The same distribution proportions were calculated for
the set of one thousand generated CIFs generated by each
model and the Kolmogorov–Smirnov (K–S) statistic was calcu-
lated for comparison between the distributions of real and
generated parameters. Similar distributions will have a low K–S
statistic (Fig. 4–6).

To investigate whether the correlation between CrysTens
symmetry and CIF quality was reected on an external metric,
we used the Crystal Graph Convolutional Neural Network
(CGCNN) to calculate the distribution of predicted formation
energy, nal energy, band gap, bulk moduli, shear moduli,
Fermi energy, and Poisson ratio for the real CIFs as well as the
generated CIFs for each model (Fig. 7).62 The K–S statistic is
calculated for comparison between the distributions of real and
generated predicted properties. This metric explores a model's
quantitative ability to create CIFs that adhere to the real CIF
property distributions without ever being exposed to CGCNN
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 CIFs generated from the Vanilla Generative Adversarial Network Model.
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predictions during training. We recognize that CGCNN serves
as an imperfect surrogate model because it was trained on
a different dataset. Because of this, the CIF distributions will
© 2024 The Author(s). Published by the Royal Society of Chemistry
not match reality exactly, however, this metric provides proxy
model performance indicators nonetheless. We also evaluated
the CIFs based on their predicted energy above convex hull. In
Digital Discovery, 2024, 3, 62–80 | 71
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Fig. 10 CIFs generated from the Wasserstein Generative Adversarial Network Model.
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order to do this, we used M3GNet to predict the formation
energy of a given crystal and compared it to the convex hull of its
crystal system, which was created by PyMatGen (Fig. 8). M3GNet
is a materials graph neural network that incorporates three-
body interactions.63 The energy above convex hull calculation
code is found in https://github.com/michaeldalverson/
72 | Digital Discovery, 2024, 3, 62–80
CrysTens. Finally, several generated CIFs from each model are
shown to showcase the visual differences in the generated
crystal quality (Fig. 9–11). The produced CrysTens' used for
evaluation, used 3-means clustering for the atomic numbers
and 6-means clustering for the potential distinct x, y, and z
coordinates (see Post-processing summary). Manually
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 CIFs generated from the Diffusion Model.
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selecting the K value before generating one thousand CIFs from
each model does damage the overall performance of each
model. This constraint was applied to each model however, and
thus a comparison between each model with this limitation is
valid.
© 2024 The Author(s). Published by the Royal Society of Chemistry
5 Discussion

The Diffusion Model outperformed Vanilla GAN and WGAN by
several orders of magnitude in minimizing variance across
lattice parameters, lattice angles, space group number, and
Digital Discovery, 2024, 3, 62–80 | 73
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Fig. 12 The distribution of formation energy, as predicted by M3GNet
for the CIFs generated by the Diffusion Model.
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fractional coordinates as well as the agreement between abso-
lute and relative fractional coordinates and the pairwise
distance matrix difference metric. The Vanilla GAN was orders
of magnitude worse than both theWGAN and DiffusionModels.
We hypothesized that low variances across parameters, angles,
space group number, and fractional coordinates and low
differences between relative and absolute fractional coordinates
would correspond to better performance in other metrics as
well. With this hypothesis, we were expecting to see the Diffu-
sion Models create CIFs that shared a higher degree of simi-
larity with the real PCD distribution than theWGAN and GAN as
well as produce higher quality CIFs.

When the distribution of lattice parameters, lattice angles,
space group numbers, and atomic numbers of each model was
checked against the values in the real distribution, we found
that once again, our Diffusion Model performed best. In all
areas, Diffusion Models performed exceedingly well, even
capturing the peaks in the distribution of space group and
atomic numbers (see Fig. 6), WGANs were not able to do this
and Vanilla GAN distributions were even worse with indications
of severe mode collapse.

Using pre-trained CGCNN models, several material proper-
ties were predicted for each CIF. The distribution of each pre-
dicted property for each model was compared against the
distribution of that property across real CIFs. The violin plots
qualitatively show the comparison between the generated and
real CIF distributions. By looking at the shape of the violin plots
with respect to that of the real distribution and the K–S statis-
tics, it can be seen that both Diffusion Models andWGANs were
capable of approximating the real distribution of each predicted
property to an adequate degree, while GANs struggled, once
again showing the mode collapse that occurred. In every case,
Diffusion Models produced a CIF distribution that had a lower
K–S statistic than both GANs and WGANs, implying a more
similar distribution to the real CIFs in PCD. When investigating
the M3GNet predicted energy above convex hull, we found that
Diffusion Models and WGANs both performed far better than
GANs. Diffusion Models, on average, produced CIFs that had
a lower energy above convex hull than WGANs.

Finally, a set of CIFs was shown for each model. The CIFs
generated by the Vanilla GAN represented exactly what was
exhibited in the parameter and CGCNN prediction distributions.
All of the CIFs found had very similar parameters and space group
numbers. There was an extremely low degree of symmetry and
general realness. Furthermore, the bounding boxes outlined by
the lattice parameters were enormous in every CIF that we
observed. The lack of “understanding” of CrysTens that the Vanilla
GAN showed reected in the CIFs it was capable of producing.

The CIFs produced by our WGAN were a positive shi in the
correct direction. There was far more variability in the lattice
parameters, lattice angles, space groups, and elements present
when CIFs were generated. There are echoes of symmetrical
components visible within the CIFs, however, symmetry would
not be a word used to describe these CIFs. There is clearly room
for improvement for the CIFs generated from our WGAN.

The CIFs generated by our Diffusion Models not only have
a diverse set of lattice parameters, lattice angles, space group
74 | Digital Discovery, 2024, 3, 62–80
numbers, and elements present, but they are symmetrical and
realistic looking. Although the CIFs produced are not perfect,
there is a clear distinction between the CIFs produced by our
Diffusion Model and our WGAN.
6 Further validation

Given the success of our Diffusion Model on our metrics, we
attempted to validate some of the CIFs generated by our
Diffusion Model. M3GNet can be used as an additional
predictor of formation energy for all of the CIFs generated by
the Diffusion Model (Fig. 12).63

Among the top 35 CIFs with the lowest M3GNet-predicted
formation energy, we selected 6 of them to be rigorously
analyzed using Vienna Ab Initio Simulation Package (VASP). To
prepare the 6 CIFs, slight manual tuning was applied aer post-
processing to maximize the likelihood that the structure would
be realistic and stable. The manual tuning consisted of
rounding fractional coordinates to more probable locations
such as (0.011, 0.502, 0.009) / (0.0, 0.5, 0.0), and correcting
potentially erroneous atomic number assignments as a result of
the rounding within post-processing (36:Kr / 37:Rb). In order
to evaluate the stability of the 6 selected CIFs, we performed
a series of 4 successive relaxation calculations for each crystal
structure. Running multiple relaxation calculations using
a conjugate gradient algorithm helps ensure the ions have
converged to their instantaneous ground state in the primitive
unit cell. We used the Perdew–Burke–Ernzerhof exchange–
correlation functional modied for solids, a break condition of
10−5 eV for the ionic relaxation loop, and a smearing width of
0.1 eV. Atomic pseudopotentials developed by G. Kresse and
Peter Blöchl were used.64,65 All the calculations were performed
with a cutoff energy of 400 eV for the plane-wave basis set, the k-
point grid as 3 × 3 × 3,66 and each relaxation calculation typi-
cally included about 20 self-consistent eld (SCF) iterations to
reach the energy cut-off value. We calculate the free energy for
the pre-relaxed CIFs and for the relaxed structures, and we
calculate the external pressure aer each of the relaxation
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 VASP calculated free energy and external pressure for 6 CIFs produced by the Diffusion Model.
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calculations to evaluate their stability. The calculated free
energy for the pre-relaxed structures (E0), aer the 4th relaxation
(E4) and the external pressure on the unit cell in kb aer the 1st
(P1) and 4th (P4) relaxation are shown below (Fig. 13).

As expected, all the free energies are lower and the external
pressure values are closer to zero for the 4th relaxation, which
indicates the VASP optimized the CIFs into even more stable
structures. However, it is observed that the 6 CIFs exhibited low
free energy and external pressure on the unit cell even from the
pre-relaxation and 1st optimization. This is especially apparent
for the NaF and SnYF3 structures, which E0 and E4 are very close
and the external pressure values aer the 1st optimization are
© 2024 The Author(s). Published by the Royal Society of Chemistry
very close to 0 kb. These are strong indications of the stability of
the produced CIFs.
7 Conclusion

In order to perform efficient material discovery via deep
learning, it is important to nd a representation that is capable
of capturing all aspects of a given crystal structure. CrysTens
encodes all of the pertinent values of a structure such as lattice
parameters, lattice angles, and space group numbers as well as
an interatomic component that is composed of a pairwise
distance matrix and a dimensional graph for each dimension.
Digital Discovery, 2024, 3, 62–80 | 75
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The image-like nature of CrysTens allows for easy placement in
image-generation models. The redundant aspects of CrysTens
not only allow generative models many opportunities to miti-
gate noise when generating a crystal but it can also provide
a way for measuring the performance of a given model. The
variance of generated lattice parameters, lattice angles, space
groups, and fractional coordinates is correlated with a model's
ability to produce realistic and symmetrical crystals that have
parameters similar to those found in the real distribution and
even match the real distribution of CGCNN predicted values.
We found that Vanilla GANs struggled in this space, oen
falling victim to training instability and mode collapse that
ultimately lead to poor generated CIF quality. Many of these
problems were rectied with the implementation of EMD and
Wasserstein loss, creating a WGAN. However, although WGANs
did not struggle with the same training instability and mode
collapse that Vanilla GANs did, they failed to consistently
produce symmetrical crystals. We found that Diffusion Models
performed the best in this space. They performed the best in all
of our metrics and consistently produced the most realistic-
looking and symmetrical CIFs. The enhanced performance of
Diffusion Models over GANs holds true in the image synthesis
domain as well.59 The use of Diffusion Models is extremely
promising in the eld of materials informatics and the
improvement of such models may not only provide an efficient
method of materials discovery but could revolutionize inverse
design as well.
8 Future works

The performance of Diffusion Models in the materials discovery
space creates a lot of opportunity for future works. Themethod of
Diffusion Model generation we used in our work is known as
unconditional generation. Conditional generation is the method
that was responsible for all of the text-to-image breakthroughs
that underpin powerful tools such as DallE-2 57 and Imagen.58 It
is possible to apply conditional generation to our work, as
chemical formula-to-crystal generation. This could work by
taking any chemical formula from PCD such as Ca3AlB2[OH]15[-
H2O]11 and transforming it into a natural language analog such
as “three calcium atoms, one aluminum atom, two boron atoms,
een hydroxide (one oxygen atom, one hydrogen atom) mole-
cules, eleven water (one oxygen atom, two hydrogen atoms)
molecules.” Extrapolated further into the realm of complex
natural language we may be able to condition our Diffusion
Models on statements such as “an oxide with offset layers of
corner shared AlO6 octahedra with rare-earth lled interstitials,”
which would allow for complex and diverse crystal generation.
Another area worth exploring is classier/regression guidance of
Diffusion Models. Guidance allows Diffusion Models to take
advantage of the outputs of a classier or regressor to guide the
reverse-diffusion process to ideal regression/classication
outputs. This would make inverse design possible if the
guiding model predicts material properties. These directions,
along with increasing the complexity of our Diffusion Models,
76 | Digital Discovery, 2024, 3, 62–80
adding chemical descriptors as additional layers to CrysTens,
and working towards an invariance satisfying version of Crys-
Tens will be our next steps in this space.
9 Limitations

This work serves as a comparative analysis between GANs,
WGANs, andDiffusionModels in crystal structure generation and
illustrates the potential for Diffusion Models in the space of
materials discovery. However, more analysis is needed to fully
verify our Diffusion Model crystal generation methods. A
comparison between our Diffusion Model methods and state-of-
the-art material generators with CrysTens, as well as their native
crystal representations, is required to wholly demonstrate the
performance of our Diffusion Models. Additional rigorous DFT
calculations of each of the produced crystals are needed as well.
Furthermore, there are areas within the crystal generation
process that still require (at times manual) tuning to correct
errors that are accumulated during post-processing. This is
especially true during the selection of K during K-means clus-
tering for atomic numbers and atomic positions. This post-
processing step damages the material generation pipeline as
a whole because it forces crystals to conform to the given number
of atomic numbers or positions even if the intended generated
crystal contains different parameters. In order to fully understand
the use of Diffusion Models in this space, it would be worthwhile
to completely automate the material generation process.
Appendices
Appendix A: CIF details

CIFs contain a simple body of text that entirely capture the
fundamental chemistry and structure of a crystal structure.
Soware such as VESTA takes CIFs as input and outputs useful
and aesthetically pleasing crystal visualizations that can aid in
crystal chemistry research and education. In order for VESTA to
create such visualizations, there are several key attributes that
are needed within CIFs.67 First, the lattice parameters and their
angles with respect to one another are needed to establish the
periodicity inherent in crystalline lattices. These lattice
parameters also create the three-dimensional “bounding box”
for the repeating unit cell and are generally represented with the
variables a, b, and c with lattice angles a, b, and g. Following the
lattice information, the space group number is used to indicate
which space group a particular crystal structure belongs to. The
space group essentially encapsulates the symmetry properties of
a given crystal structure or put more formally the space groups
summarize the total number of three-dimensional patterns that
are found in crystal structures.68 The nal information is the
basis describing the arrangement of atoms associated with each
lattice point. The basis allows us to distinguish different crystal
structures having unique chemistries and atomic positions
while retaining identical symmetry. The basis and the symmetry
operations are combined to generate the exact atomic positions
for all atoms within the unit cell.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 A CIF represented as a Pymatgen structure object.

Fig. 14 (left) A VESTA visualization of NaCl (right) a VESTA visualization
of W6S8(PC18H15)6(C6H6).67
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With all of the crystal information organized within a CIF
text le, VESTA is able to create visualizations as seen in Fig. 14
that assist materials scientists in determining the structural
components of a given crystal. Pymatgen, a materials infor-
matics Python library, was used to extract relevant information
from each CIF during CrysTens construction using a Python
programming interface and the Pymatgen Structure object (see
Fig. 15).69

Appendix B: model details

All of the code used for training the models can be found at
https://github.com/michaeldalverson/CrysTens.

B.1 Vanilla GAN. The Vanilla GAN was created using Ten-
sorFlow. It was trained for 100 epochs with a learning rate of 1×
10−5 for both the discriminator and the generator. The latent
dimension of the generator was 128. The loss function for the
discriminator was binary cross-entropy. Both the discriminator
and the generator contained a mixture of three-dimensional
convolutional (transposed in the case of the generator) and
dense layers. ReLU was used as the intermediate activation
function in the generator and Leaky ReLU was used in the
discriminator. Both neural networks used batch normalization.

B.2 Wasserstein GAN. The Wasserstein GAN was created
using TensorFlow. It was trained for 100 epochs with a learning
rate of 1 × 10−4 for both the critic and the generator. The loss
function used was the Wasserstein loss. Gradient penalty was
© 2024 The Author(s). Published by the Royal Society of Chemistry
also used (to stabilize training) with a coefficient of l = 10. Both
the critic and the generator contained a mixture of three-
dimensional convolutional (transposed in the case of the
generator) and dense layers. The critic was trained 5 times as
much as the generator. Leaky ReLU is used for both the critic
and the discriminator and a mixture of layer normalization and
batch normalization was used.

B.3 Diffusion model. The Diffusion Model was created using
Imagen-Pytorch. The model was comprised of two Unets, which
form the basis for the denoising diffusion probabilistic models.

Each Unet has 256 base channels. The rst Unet created
a “low-resolution” version of the CrysTens that was size 32 × 32
× 4. The second Unet, took the output of the rst Unet and
created the actual CrysTens of size 64 × 64 × 4. Each Unet was
trained separately for 250 000 optimization steps with batch size
4. The original code is found at https://github.com/lucidrains/
imagen-pytorch.
Data availability

The dataset used was Pearson's Crystal Data. All code and data
can be found at https://github.com/michaeldalverson/
CrysTens.
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