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The BigSMILES notation, a concise tool for polymer ensemble representation, is augmented here by introducing

an enhanced version called generative BigSMILES. G-BigSMILES is designed for generative workflows, and is

complemented by tailored software tools for ease of use. This extension integrates additional data, including

reactivity ratios (or connection probabilities among repeat units), molecular weight distributions, and ensemble

size. An algorithm, interpretable as a generative graph is devised that utilizes these data, enabling molecule

generation from defined polymer ensembles. Consequently, the G-BigSMILES notation allows for efficient

specification of complex molecular ensembles via a streamlined line notation, thereby providing

a foundational tool for automated polymeric materials design. In addition, the graph interpretation of the G-

BigSMILES notation sets the stage for robust machine learning methods capable of encapsulating intricate

polymeric ensembles. The combination of G-BigSMILES with advanced machine learning techniques will

facilitate straightforward property determination and in silico polymeric material synthesis automation. This

integration has the potential to significantly accelerate materials design processes and advance the field of

polymer science.
1 Introduction

Polymers consist of thousands of repeating monomers, whose
exact sequence or length poses a signicant challenge to repre-
sentation by traditional line notations. These notations, which
depict each individual atom, such as International Chemical
Identier (InChI),1,2 SELF-referencing embedded string (SELFIES),3

or Simplied Molecular Input Line Entry System (SMILES),4 can
rapidly become excessively lengthy and unwieldy for polymers.
CurlySMILES5 provides a variant of the SMILES notation that aims
to address this challenge by employing a compact representation
for recurring elements. This is achieved through the enclosure of
such elements within curly brackets, giving rise to the notation's
distinctive name.‡ The inherently stochastic nature of polymeric
materials necessitates a description in terms of ensembles of
molecules, as opposed to a single-molecule representation, which
is the approach that has been followed to date in traditional
notations.
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BigSMILES7–9 provides an alternative solution, and relies on
a line notation that is tailored specically for polymeric
systems. This notation captures individual molecular fragments
and their interconnections via bond descriptors, making it
a more appropriate choice for polymer representation. BigS-
MILES has gained acceptance for its user-friendliness and
accessibility to both humans and machines. Its successful
integration into various polymer informatics ecosystems, such
as CRIPT,10 serves as a testament to its usefulness. As shown in
Fig. 2a, BigSMILES extends the functionality of SMILES by
portraying a polymer as a sequence of interconnected mono-
mers. However, it suffers from the fact that it is purely
descriptive and lacks generative capabilities.

In its original form, a single BigSMILES string represents
a subset of the chemical space, which is oen expansive and
inclusive of “improbable polymer molecules”. For instance,
a BigSMILES notation for a random copolymer ensemble
frequently encompasses the homopolymers of its individual
components. However, BigSMILES is not designed to assign
likelihoods to structures within the chemical space, leading to
an equal representation of all possible ensemble realizations,
including those that are highly improbable. This characteristic
restricts the amount of information that BigSMILES can convey
about a polymeric material, which naturally consists of a spec-
trum of more and less probable structures.

The aim of this work is to enhance BigSMILES with
a compact notation that encapsulates the inherent stochasticity
of a polymer ensemble. BigSMILES was chosen as the founda-
tion due to its user-friendly notation, which is comprehensible
Digital Discovery, 2024, 3, 51–61 | 51
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Fig. 1 Schematic representation of the distinction between the original BigSMILES and the enhanced G-BigSMILES notation. While BigSMILES
delineates a subset of the chemical space by describing the participating monomers and their connections, G-BigSMILES refines a subset of this
space and attributes varying likelihoods to potential realizations within an ensemble. This advanced notation notably includes the molecular
weight distribution and provides detailed information regarding the likelihood of specific compositions and sequences. As an illustrative example,
we showcase a PS-PMMA ensemble. In contrast to the original BigSMILES notation, which cannot differentiate molecular weight or blockiness,
G-BigSMILES narrows this example to a random sequence. Please refer to the PS-PMMA example in the ESI† for additional details.
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to both humans and machines. Crucially, our proposed exten-
sion maintains compatibility with the original BigSMILES
notation, allowing for the additional information to be easily
omitted if so desired. In order to assign likelihoods to polymer
ensembles and molecules, information about the molecular
architecture and composition is essential. The enhanced nota-
tion, known as generative BigSMILES, or G-BigSMILES, incor-
porates details such as molecular weight distributions,
reactivity ratios (which are probabilities of repeat unit connec-
tions), and the size of ensemble realizations. Fig. 1 offers
a conceptual illustration of how generative BigSMILES renes
the broader space delineated by original BigSMILES and assigns
likelihoods to individual polymers within the ensemble. Our
ESI† includes multiple case studies that underscore the efficacy
of G-BigSMILES for specication of precise composition
ensembles.

The capability to translate additional information into
concrete realizations of polymer ensembles using a precise
algorithm is crucial, particularly for applications such as auto-
mated computer simulations.11 However, it is important to
recognize that this generation deviates from the chemical
reaction pathway and can only approximate reality with ideal-
ized models. This function enables the generation of initial
conditions for a simulation box directly from a single line
notation input, thereby facilitating automated exploration of
the chemical space in the search for novel polymeric materials.
This process can also be reversed to assign generation proba-
bilities to molecules within a specic ensemble, an essential
52 | Digital Discovery, 2024, 3, 51–61
feature for certain machine learning applications as it allows for
the evaluation of a molecule's likelihood of belonging to a target
ensemble. Both of these algorithms, along with a reference
implementation, are detailed in the subsequent sections.

First, we delve into the extension of the notation, followed by
a comprehensive discussion of the generating algorithm and,
nally, we explore the interpretation of this notation and its
potential applications.
2 Results

The BigSMILES line notation has been formally documented
and published in the scientic literature7 and is currently in
active use within community polymer projects.10 In the present
context, we offer a succinct overview of key elements that are
pertinent to the proposed extension and the generation of
polymers. For a thorough introduction and detailed rationale,
we direct readers to the relevant literature.

A BigSMILES string is essentially a SMILES string in which
atoms, or a series of atoms, can be depicted as stochastic
elements (Fig. 2a). These elements are enclosed within curly
brackets and are comprised of a comma-separated list of repeat
units and end units. A repeat unit is represented by a SMILES
fragment combined with a set of bond descriptors, which clarify
the potential chemical bonding between repeating units. In
contrast, an end unit, distinguished from regular repeat units
by the use of a semi-colon, serves to terminate the molecule by
providing a singular bond descriptor. Bond descriptors can take
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 In panel (a), a simplified representation of poly-(ethylene) is presented, highlighting the stochastic object in grey, open descriptors in blue,
terminal bond descriptors in yellow, monomeric repeat units in green, end groups in hot pink, and SMILES fragments in red. Panel (b) illustrates
the conventional graphical depiction of the corresponding polymer structure (it's notable that the value of n is unspecified in BigSMILES (a)). Panel
(d) introduces G-BigSMILES with the generative extension, featuring a representative single reaction weight denoted in orange, a more detailed
reaction probability shown in purple, a specification of the molecular weight distribution in light pink, and a system molecular weight specifi-
cation in brown. Panel (c) demonstrates a representative molecular representation that is part of the ensemble described in panel (d). A thorough
step-by-step explanation of the generation process for such molecules can be found in Fig. 3. It is important to underscore that the example
BigSMILES notation chosen is not intended to represent chemical realism but is used solely for illustrative purposes.§1
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the form of unidirectional [$] or directional [<], [>] symbols,
thereby enabling connections exclusively between dissimilar
bond descriptors.
2.1 Generative BigSMILES notation

With the generative BigSMILES extension (refer to Fig. 2d), we
enhance the stochastic object and bond descriptors in BigS-
MILES notation by incorporating additional text, enclosed
within jj characters. This extension provides the necessary
information to generate a system of molecules. The j character
was specically chosen for this purpose, as it is not used in the
SMILES and BigSMILES notations, thereby ensuring seamless
compatibility between the notations. By simply eliminating all
characters between the j markers, the G-BigSMILES can be
reverted back to the original BigSMILES notation.

The G-BigSMILES notation contributes the following infor-
mation to a BigSMILES string:

(1) Stochastic objects are expanded to incorporate informa-
tion about their molecular weight distribution (shown in pink
in Fig. 2).

(2) Bond descriptors are enhanced to manage the connection
probabilities within stochastic objects (shown in orange and
purple in Fig. 2).

(3) We introduce a notation that incorporates the quanti-
cation of the number of molecules in an ensemble realization,
depicted in brown in Fig. 2, while also allowing for the speci-
cation of mixtures comprising different molecular species.

In the following sections, we offer a comprehensive intro-
duction to each of these extensions and explain how they enable
the generation of complete molecular systems. Our discussion
covers both the theoretical aspects of the notation and the
generation algorithm, and it refers to a reference implementa-
tion available at https://github.com/InnocentBug/
bigSMILESgen.
2.2 Generation algorithm

The G-BigSMILES notation is inherently linked with its inter-
pretation as an algorithm. It is formulated to enable the
© 2024 The Author(s). Published by the Royal Society of Chemistry
generation of molecular ensembles from this notation. This
section outlines the details of our notation enhancements and
the interpretation processes applied by the generation
algorithm.

Importantly, G-BigSMILES reinstates the comprehensive
structural representation of molecules that is inherent in orig-
inal line notations such as SMILES and InChI. This is achieved
by facilitating the generation of the molecular structures.

2.2.1 Molecular weight distribution. The initial extension
involves the stochastic object in the BigSMILES notation.
Immediately aer the closing curly bracket, we introduce
a keyword specifying the molecular weight distribution and its
parameters. This is visually denoted in light pink in Fig. 2d.

In the reference implementation, we provide support for the
following molecular weight distributions that represent ideali-
zation of realistic distributions.

(1) Schulz–Zimm distribution: represented as
jschulz_zimm(Mw,Mn)j,14 it corresponds to the probability mass
function (PMF)

PMFðMÞ ¼ zzþ1

Gðzþ 1Þ
Mz�1

Mn
z exp

��zM
Mn

�
; (1)

where z = Mn/(Mw − Mn) and G is the gamma function. This
distribution depicts the molecular weight distribution
frequently seen in polydisperse chains.

(2) Flory–Schulz distribution: textually represented as
jory_schulz(a)j,15 this distribution corresponds to the PMF

PMF(Mw) = a2Mw(1 − a)Mw−1, (2)

where a is an empirical parameter. The Flory–Schulz distribu-
tion describes the molecular weight distribution in ideal step-
growth polymerization.

(3) Gaussian distribution: denoted as jgauss(m, s)j, this
distribution is specied by the mean m and standard deviation
s. The probability density function (PDF) is

PDFðMwÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e
�ðMw�mÞ2

2s2 : (3)
Digital Discovery, 2024, 3, 51–61 | 53
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(4) Uniform distribution: denoted as juniform(l, u)j, this
distribution is dened by the lower bound l and upper bound u.
The distribution is constant within the interval [l, u] and zero
outside of it.

(5) Poisson: denoted as jpoisson(N)j, this distribution is
dened by the number average chain length N. The PDF is13

PDFðNiÞ ¼ Ni
N expð�NÞ

Ni!
z expðNi lnðNÞ � lnðGþ 1Þ �NÞ:

(4)

(6) Log-normal distribution: represented textually as
jlog_normal(Mn, Đ)j, the PDF is

PDFðmw;iÞ ¼ 1

mw;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p lnðD- Þp exp

0
BBB@�

�
ln

�
mw;i

Mn

�
þ D-

2

�2

2lnðD- Þ

1
CCCA: (5)

The log-normal distribution models narrow molecular
weight dispersities (Đ ˛ [1, 2]) effectively.16

A user chooses a distribution based on either theoretical
insights into reaction kinetics, e.g. the Schulz–Zimm distribu-
tion for controlled polymerization, or in a manner that aligns
with an experimental molecular weight distribution, thereby
determining parameters for that distribution. Regardless of the
choice, this distribution remains a simplication of reality, and
its effects on relevant properties must be rigorously evaluated.

Generating a molecule from a polymer ensemble with
a specied molecular weight distribution involves a two-step
process. Initially, a random molecular weight, denoted as
Mw0, is drawn from the specied distribution. Then, the
stochastic object is generated iteratively, until the molecular
weight surpasses Mw0. During this process, aer each addition
of a repeat unit, the generated molecule is hypothetically
terminated with the prescribed end groups. If the resulting
molecule exceeds the weight Mw0, the generation is deemed
complete. If not, the termination is reversed and the generation
of repeat units continues. This termination condition is
graphically illustrated in Fig. 3(ii) with a owchart. The ESI†
includes explicit tests that demonstrate the reference imple-
mentation is able to generate ensembles with the expected
molecular weight distributions.

While all extension elements of G-BigSMILES are optional to
conserve the underlying BigSMILES string, specifying a molec-
ular weight distribution is required to generate molecules from
a G-BigSMILES string.

2.2.2 Controlling the generation of stochastic objects. The
next step in the process pertains to the generation control of
molecules encapsulated by stochastic objects. First, we examine
§ The bottlebrush polymer is synthesized through a three-step process. First, vinyl
acetate undergoes RAFT polymerization to produce poly(vinyl acetate).12 In the
second step, poly(vinyl acetate) is hydrolyzed to form poly(vinyl alcohol).12 In
the third step, poly(vinyl alcohol) serves as an initiator for the ring opening
polymerization of ethylene oxide, resulting in the formation of the bottlebrush
polymer.13

54 | Digital Discovery, 2024, 3, 51–61
the initiation of a new stochastic object. We then move to the
termination of the stochastic object, making connections to any
subsequent objects if they are present. Last, we add repeat units
in an iterative manner until the conditions stipulated by the
molecular weight distribution are met. This algorithm is visu-
alized in Fig. 3 as a owchart.

2.2.2.1 Initiating the generation of a new molecule. The
initiation of a stochastic element can take two distinctive
routes, contingent on whether it is preceded by another object
or if it stands as the rst object in the sequence.

When a stochastic object follows another object, the
preceding object represents a segment of the nal molecule and
must have exactly one open bond descriptor. This antecedent
object could be a simple SMILES prex, illustrated in Fig. 3a, or
another stochastic object. In both scenarios, the le terminal
bond descriptor of the stochastic object must not be empty, and
this determines how the prex is continued through the
stochastic object. More details on this generation process are
offered in the upcoming section on repeat unit generation.

Alternatively, when the stochastic object is the rst in the
sequence to be generated, the le terminal bond descriptor is
empty. This case requires the specication of end groups for the
molecule. An end group is selected based on the weight of its
one bond descriptor, in a similar fashion to the repeat unit
generation process, to initiate the generation of a newmolecule.
This selection leaves exactly one open bond descriptor, aer
which the generation of repeat units can commence.

2.2.2.2 Generation of repeat units within a stochastic object.
During the process of generating repeat units, partially con-
structed molecules invariably maintain at least one open bond
descriptor.{

Each bond descriptor within the generative notation carries
a corresponding weight. By default, this weight is set to unity and
explicit designation is omitted in the string, but it can be explicitly
dened in the generative notation using the format [<jweightj]
(accentuated in orange in Fig. 2d). Any positive number can be
designated as the weight. The second step commences when an
open bond descriptor is available, requiring selection of a new
repeat unit and its corresponding reacting bond descriptor. This
selection of the next open bond descriptor is randomly chosen
according to the weight assigned to them. While we assign
weights to the reactions, the compatibility of the BigSMILES
notation for bond descriptors takes precedence over the assigned
weights. This step provides two control procedures. The weights
are specically allocated to bond descriptors, not to the repeating
units (monomers). This technique enables a high degree of
control, even at the level of the individual monomers. For
instance, distinct weights can be assigned within a single mono-
mer using unidirectional bond descriptors, denoted as [$]. This
allows us to nely modulate the distribution of head–tail, head–
head, and tail–tail congurations along the polymer backbone.

In a straightforward scenario, the open bond descriptor of
the already generated molecule is denoted by a weight value
{ It is important to underscore a special case where generation could terminate
prematurely, leading to the absence of open bond descriptors. This scenario
will be discussed in a subsequent section.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 This figure portrays the generation process of a stochastic molecule. (i) Generation of an example molecule, where the latest addition is
highlighted in green, and open bond descriptors are accented in blue. (a) Molecule generation begins with the prefix CCOC(]S)S[$]. (b.1) A
backbone O([<])(C([$])C[$]) repeat unit is attached by selecting one of the available open-bond descriptors [$] based on their weight. With two
open bond descriptors available for the next generation ([$], [<]), one is chosen randomly according to their weight (1, 2). If [$] is selected, the
backbone grows; if [<] is chosen, the bottlebrush's side chain grows instead. (b.i) The propagation continues for multiple steps. Notably, the
bottlebrush arm unit with bond descriptor CCO[<j0 0 0 1 0 2j] selects its next bond descriptor based on the listed weight specified, rather than
the overall weight. Here, a 1 in 3 choice is made to continue the arm's growth, or a 2 in 3 choice is made to terminate the arm with a hydrogen
atom. This serves a dual purpose: it ensures arm units connect only to arm units, and it allows for stochastic termination of the arms. In this
example, some of the bottlebrush arms are already terminated, while others still feature an open bond descriptor. (c) The generation persists until
the desired molecular weight is attained. At this juncture, the backbone is terminated with the suffixed butane end group. (d) The stochastic
object is finalized by terminating all other open bond descriptors (bottlebrush arms) to a stochastic end group, once again based on the weight of
the bond descriptors of the available end groups (hydrogen). The corresponding G-BigSMILES notation, CCOC(]S)S{[$] O([<j3j])(C([$])C[$]), [>]
CCO[<j0 0 0 1 0 2j]; [>][H] [$]}jpoisson(900)j CCCC, is outlined in Fig. 2d. (ii) Flow chart overview of the generation algorithm for stochastic
objects.
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(highlighted in orange in Fig. 2d). The subsequent bond
descriptor is selected from all compatible bond descriptors of
the new repeat units, determined by their respective weights.
For instance, in Fig. 2d, the [<j3j] bond descriptor of the back-
bone repeat unit carries a weight exceeding 1. As a result, the
branch point is frequently given priority to enhance the growth
of the bottlebrush arms over the backbone's growth. This
exemplies how weight adjustment can inuence the frequency
distribution of repeat units in the generated ensemble. The
single weight bond descriptor notation is primarily useful if the
monomer composition is known, but the individual reaction
probabilities are unknown and can be assumed as uniformly
random. The ESI† provides an example, where we verify that the
reference implementation is capable of reproducing the desired
monomer compositions with this notation. If the reaction
probabilities between the different bond descriptors are known,
either experimentally or computationally, the advanced nota-
tion of the subsequent section is preferred.

2.2.2.3 Advanced specication of bond descriptor weights.
While the straightforward weight specication is recommended
for linear polymers and does not require weights for selecting
open bond descriptors in the rst step, complex scenarios
involving random polymers oen need more precise control. In
these cases, the weights provide a simple way to specify the
relative composition of each repeat unit in the polymer.

For more intricate molecules, further control over step two –

the selection of the subsequent reacting partner – is typically
desired. This can be accomplished by specifying the probability
of the reacting bond descriptor using a list of reaction weights r,
formatted as [<jr1 r2 r3r4 .] (emphasized in purple in Fig. 2d).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Each ri can be any positive number, and the length of this list
should match the number of bond descriptors in the stochastic
object, including end groups. Refer to the ESI† for an example of
how to identify which weight corresponds to which bond
descriptor in the stochastic object. The numerical values of ri
denote the weight with which the corresponding bond
descriptor is likely to react next. These weights are not
normalized in the notation, but if normalized by the sum of
pi ¼ ri

P
j
rj, they describe the probability to form a connection

from this bond descriptor to the next bond descriptor in the
molecule. It is important to remember that any ri that would
connect incompatible bond descriptors must always be zero.

The normalization constant, w ¼ P
i
ri, represents the bond

descriptor weight, and governs the probability of selecting open
bond descriptors in the initial reaction step. Using w ¼ P

i
ri as

the weight provides a succinct notation, with the ESI† detailing
the combination of these elements. This approach ensures
exact control over the reaction probability of each bond
descriptor and can replicate experimentally observed reaction
probabilities. Fig. 2d illustrates a bottlebrush polymer with
a backbone unit, a branch point, and an arm repeat unit devi-
ating from the backbone. We elucidate the G-BigSMILES’
mechanism for managing growth of both entities. The ESI†
provides a detailed example for PS-PMMA, which emphasizes
how a single reaction weight controls the PS : PMMA composi-
tion ratio, and the list notation renes the individual PS and
PMMA microblock arrangements.
Digital Discovery, 2024, 3, 51–61 | 55
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The weight of the branch point, denoted as [<j3j], exceeds
that of the bond descriptors (depicted as [$]), which control the
backbone growth. This weight discrepancy ensures that
a branch point is typically followed by an arm extension unit.

The arm extension unit incorporates directional bond
descriptors, such as the second one with assigned weights <j0
0 0 1 0 2j. This provides a rened mechanism to manipulate the
arm's growth. The initial sequence of zeros ensures that the
backbone does not extend from the arms, and the h zero
indicates that the bond descriptor cannot react with itself.k

The rst weight of 1 introduces a 1 in 3 chance for the arm to
be extended by another arm segment. The nal weight of 2
indicates a 2 in 3 probability of terminating the arm by con-
necting it with a stochastic end group (in this case: [H]). This
weight distribution is critical in governing the molecular weight
distribution of the arms, where the molecular weight follows
a geometric distribution with a termination probability, p, of 2/3.

When employing reaction probabilities to control termina-
tion, e.g. assigning non-zero probabilities to end groups, the
molecular weight distribution becomes limited to a geometric
distribution. In the case of this bottle brush example, we control
the molecular weight of the arms using this method. However,
since the backbone bond descriptors do not utilize this
approach, hence the molecular weight of the entire stochastic
object is governed by the specication at the end, which follows
a Poisson distribution. Therefore, it is possible to combine both
termination methods, but caution must be exercised to avoid
prematurely terminating stochastic objects with reaction
weights if it is not desired. If the arms of a bottle brush are
intended to follow a different molecular weight distribution,
this can be achieved through nested stochastic objects. For
a detailed discussion, please refer to the section titled
Limitations.

2.2.2.4 Weight sum and termination controls. The total sum
of the listed weights is three (<j0 0 0 1 0 2j), identical to the
weight of the branch point ([<j3j]). This equality indicates that
extending an existing arm is equally probable as initiating a new
arm from the branch point, though both are more likely than
extending the backbone.

The backbone growth termination is exclusively dictated by
the predetermined molecular weight distribution of the
stochastic element, as there are no compatible stochastic end
groups for the backbone's bond descriptors.

From an algorithmic standpoint, the generation of repeat
units is akin to a Markov process, with each step relying solely
on its predecessor. However, the decision to halt the repeat unit
generation and start termination is guided by the molecular
weight distribution. The size of the already generated molecular
graph signicantly inuences this step, making it non-
Markovian.

2.2.2.5 Initiating stochastic object termination. Once the
generated repeat units within a stochastic object exceed the
targeted molecular weight, the termination process commences
in two stages.
k Aside from the zero weight, the bond descriptors are also incompatible.
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The rst stage encompasses suffix termination, as depicted in
Fig. 3c. If the stochastic object's right bond descriptor is not
empty, it is designed to connect to a subsequent object. To
facilitate this linkage, one of the open bond descriptors
compatible with the right terminal bond descriptor is chosen.
This selection mirrors the process of picking an open bond
descriptor in the rst step of repeat unit generation. The chosen
open bond descriptor is then earmarked for the upcoming suffix
connection, excluding it from the stochastic termination process.

2.2.2.6 Stochastic termination of stochastic object. The
second phase involves stochastic termination, as showcased in
Fig. 3d. All remaining open bond descriptors are coupled with
end groups to nalize the stochastic group. This procedure
resembles repeat unit generation, but with the crucial differ-
ence that only end groups, not repeat units, are appended to the
generated graph.

This step, considered independently, aligns with a Markov
process. However, the decision to transition to the termination
phase hinges on the previously generated molecule. While this
generation scheme shares similarities with Hidden Markov
Models (HMMs),17,18 it does not conform to the HMM category
as the probability of switching between the hidden states
(repeat unit generation and termination) is governed by the
non-Markovian molecular weight distribution.

2.2.3 Indication of ensemble instance size and mixture
notation. In SMILES notation, a dot (.) signies a disconnection
between preceding and following atom symbols, indicating ionic
bonds or simply segregating molecules within a single line.

For computer simulations, it is advantageous to specify not only
a collection of polymer molecules, but also the number of atoms
that each instance of this collection represents. Such information
can be important for determining the number of molecules in
a simulation box. Incorporating these data directly into the line
notation offers two key benets: (a) it enables generation of
a complete simulation box without the need for additional infor-
mation and, (b) it signals the impact of nite-size effects on
associated properties. This functionality extends beyond computer
simulations and, for example, can serve to highlight differences
between single-molecule properties and bulk properties.

We propose an enhancement of the BigSMILES notation that
utilizes the disconnection feature of SMILES notation to signify
the number of molecules in a system representing the
ensemble. In its most basic form, a molecule is suffixed with
a dot (safe in SMILES) and then a specication in the format
jsystem_molecule_weightj. In this context, system_molecule_-
weight is a real number that encapsulates the total molecular
weight of all molecules preceding the dot, that is, the cumula-
tive molecular weights of those molecules. For the generation of
individual molecules (bigsmiles_gen.Molecule in the reference
implementation), specifying the system molecular weight is
optional. However, for a full system description (bigsmi-
les_gen.System), its denition is required for generation.
2.3 Representing molecular mixtures

The extended notation offers the capability to represent not only
a single type of molecule but also mixtures comprising different
© 2024 The Author(s). Published by the Royal Society of Chemistry
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molecule types. This allows for the depiction of diverse
scenarios, such as a mixture of a polymer and its solvent, or
a blend of homo- and diblock copolymers (dbc).

For instance, consider the expression homo_-
bigsmi.jtot_wt_homojdbc_bigsmi.jtot_wt_dbcj. This notation
signies that the combined molecular weight of all homo
polymers is represented by tot_wt_homo. For example, if the
average molecular weight of a homo polymer is 104 g mol−1 and
tot_wt_homo is 105 g mol−1, we would expect an average of 10
homo polymer chains in this ensemble realization. The total
molecular weight of the diblock copolymer follows a similar
treatment, resulting in an ensemble comprising a mixture of
homo polymers and diblock copolymers.

For a more realistic and detailed example, please refer to the
ESI.†
2.4 Determining molecule ensemble probabilities

With the G-BigSMILES notation it is possible to ascertain the
likelihood of a specic molecule being generated by a polymer
ensemble. Utilizing the exact generation scheme of G-
BigSMILES, we can investigate all plausible generation paths
leading to the target molecule. We traverse the molecule,
retracing the generation steps while documenting the associ-
ated probabilities at each juncture. Oen, multiple generation
paths are possible, and only those that lead to the full genera-
tion of the molecule possess a non-zero overall generation
probability. Probabilities along a generation path are multi-
plied, while probabilities of different possible paths are sum-
med up. This results in a single probability representing the
Fig. 4 Reaction graphs for (a) PS-b-PMMA and (b) PS-r-PMMA molecu
repeat or end units. The green elements signify the bond descriptors of
SMILES tokens to their bond descriptors bear the atom index of the bond
transition weights: r denotes the reaction weights between individual b
during suffix termination (Fig. 3c), and t(stochastic) weights correspond
included a random drawing from each ensemble and calculated the gene
we have scaled down themolecular weightsMw andMn relative to realisti
the generative extension, can be identical for both ensembles, as showc
OC [>]}[H]. Nonetheless, due to microphase separation, the diblock copo
to the random copolymer.

© 2024 The Author(s). Published by the Royal Society of Chemistry
likelihood of generating the molecule from the given ensemble.
We note that the computational cost of this algorithm can be
prohibitively high for large, branched molecules.

For stochastic objects, their termination is guided by the
previously discussed molecular weight notation. In recon-
structing the molecular graph, it is essential to compute the
likelihood of terminating generation aer adding a repeat unit.
If a currently generated stochastic object has a molecular weight
M and the ensuing repeat unit has a weight w, the termination
probability, pt, can be determined by integrating the molecular
weight distribution's probability density function (PDF), pmw(x),

over the range M to M + w: pt ¼
ÐMþw
M pmwðxÞdx. Importantly, pt

is independent from the graph traversal probability, and their
product gives the overall generation probability for that
stochastic object. Fig. 4 includes two examples illustrating this
generation probability, termed “p(ensemble)”. The algorithm's
reference implementation is also provided.

The generation probability offers a handy metric to gauge
how well a collection of polymer molecules represents a given
ensemble. It allows for the quantication of how accurately
a simulation box lled with polymers depicts the complete
polymer ensemble. Moreover, within the context of Auto-
Encoders for machine learning, it's essential to evaluate the
similarity between a generated set of molecules and a specied
ensemble. More on this topic is explored in the upcoming
section Machine learning representation.

Given an ensemble characterized by the G-BigSMILES nota-
tion, the ensemble probability serves as a robust metric for
comparingmolecules. However, generation probabilities can vary
lar ensembles. The blue elements represent SMILES tokens linked to
these units, with a label indicating their weight. The edges connecting
descriptor. The edges between bond descriptors carry labels signifying
ond descriptors, t(suffix) weights correspond to the reaction weights
to stochastic termination (Fig. 3d). For illustrative purposes, we have
ration probability (p(ensemble)) for each molecule. To aid visualization,
c ensembles. Importantly, the BigSMILES descriptions, in the absence of
ased by CCOC(]O)C(C)(C){[<] [<]CC([>])c1ccccc1, [<]CC([>])(C)C(]O)
lymer is anticipated to display markedly different properties compared

Digital Discovery, 2024, 3, 51–61 | 57
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substantially between ensembles. For instance, if a molecule is
present in both ensembles A and B, a higher generation proba-
bility in A than in B does not necessarily signify a greater likeli-
hood of the molecule originating from A. This discrepancy might
arise if A contains a singular validmolecule (yielding a generation
probability of 1 for this molecule and 0 for all other molecules),
whereas B supports multiple molecules, thus diluting the
generation probability of any individual molecule. The difference
here lies in the ensemble diversity, not the origin of themolecule.
Therefore, using only generation probabilities to infer the most
likely originating ensemble for a molecule can be deceptive.
2.5 Visualizing polymer ensembles as generation graphs

The algorithmic nature of generative BigSMILES allows the
molecule generation process to be visualized as a graph structure.
Representing BigSMILES as graphs has been previously dis-
cussed in the literature.7,8 Here, a slightly different approach is
taken, which focuses on the capability of the graph to generate
ensemblemolecules, respecting the reaction probabilities. In this
graphical representation, the bond descriptors serve as nodes,
each connected to its correspondingmonomers. The edges of the
graph connect compatible bond descriptors, and their assigned
weights indicate the reaction probabilities during the generation
process. Fig. 4 illustrates such graphs for two distinct G-
BigSMILES notations. These generation graphs are instru-
mental in visually capturing and representing polymer ensem-
bles, providing an intuitive understanding for both human
observers and machine algorithms. The process of analyzing
a generation graph involves tracing the evolution of a molecule.

The initial step involves pinpointing an end-group. This is
achieved by selecting a SMILES fragment, depicted in blue in
Fig. 4, which harbors a single bond descriptor, showcased in
green. This bond descriptor is then tracked to its respective
atom label, indicating the atom within the SMILES string that
connects to the bond descriptor. The path then extends to the
subsequent reaction partner. In cases that involve a prex and
a stochastic object, the connection is labeled t(suffix), and the
associated reaction probability is appended.

Upon identication of the next bond descriptor, we integrate
the corresponding monomer (highlighted in blue) into the
molecule. The bond point is reected in the edges as atom.

Following this, an open bond descriptor is chosen from all
monomers, a decision that is inuenced by the probability
weighted by the factor w. This bond descriptor guides us to the
next reaction partner. Whether we intend to incorporate
another repeat unit (determined by rate r), terminate with
a stochastic end group (denoted by t(stochastic)), or opt for
a suffix termination (represented by t(suffix)), this algorithm
facilitates the generation of the entire molecule.

Furthermore, examining the different weights assigned to
the transitions within the graph can offer insightful under-
standings of the topology. In section Machine learning, we
explain how machines can interpret these graphs to generate
a latent space embedding for polymer ensembles.

It is important to recognize that the graph representation alone
cannot entirely replicate the generation of polymer molecules.
58 | Digital Discovery, 2024, 3, 51–61
The non-Markovian nature of the generation process, which relies
on previously generated fragments, isn't adequately captured in
a static graph and necessitates a separate encoding system.

3 Discussion

In this section, we underscore the multifaceted applications
and benets of using generative BigSMILES notation.

3.1 Generative BigSMILES as a detailed descriptor

While BigSMILES serves as a label for polymeric materials, the
G-BigSMILES enhances this function. It contains detailed
information and provides greater constraints within the
chemical space compared to BigSMILES, enabling more specic
representation and eliminating unintended interpretations.
Therefore, G-BigSMILES could prove instrumental in labeling
materials for databases, such as CRIPT.10

3.2 Streamlining automated workows in simulation and
experimentation

The integration of a one-line notation to trigger automated
workows is paramount. This notation can act as an essential
input for experimental and computational simulation work-
ows. By using G-BigSMILES as an input, these workows can
process and characterize a sample, leading to an automated
acquisition of material properties.

3.2.1 Simulations. Conversely, in simulation workows,
the G-BigSMILES notation can be employed to directly create
molecules for the initial simulation box. It is noteworthy that G-
BigSMILES substantially streamlines the generation of polymer
ensembles within a simulation box, a crucial step in simulation
workows. The notation species the exact composition,
molecular weight distribution, and number of molecules in the
simulation box, eliminating the need for additional external
input or assumptions to execute the automated workow.

Several aspects of the simulation, including forceeld
parameter assignment, equilibration, and characterization, can
already be automated.11,19,20 Existing workows typically require
assumptions about polymer ensembles or additional input
parameters to govern the generation process. G-BigSMILES
notation, however, sidesteps this need, thereby facilitating the
description of amuch wider range of possible polymer ensembles
than those typically implemented. For a description of how reli-
able initial conditions for computer simulations can be generated
product molecules of G-BigSMILES, readers are referred to our
previous publication about automated simulation discovery.11

3.2.2 Experimental. From an experimental standpoint, G-
BigSMILES provides a concise representation that encompasses
the chemical structure, composition, and molecular weight
distribution. This comprehensive information can serve as
a unique identier for the desired output of a chemical reaction.
Additionally, it can be decoded to obtain constituent monomers,
end-groups, molecular distribution data, and bonding descriptor
information. This decoded information is valuable for selecting
appropriate synthetic pathways to streamline automated work-
ows. The generation of an appropriate G-BigSMILES notation
© 2024 The Author(s). Published by the Royal Society of Chemistry
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hinges on the specic polymer type in question. For a standard
single linear polymer, both molecular weight distribution data
and a grasp of reaction kinetics—like rst-order monomer
consumption—are essential to deduce a Poisson distribution.
Moreover, when one has access to additional information, such
as reaction probabilities between varied bond descriptors, either
from empirical ndings or theoretical deliberations, it can be
seamlessly incorporated into G-BigSMILES.
3.3 Machine learning

This improvement bolsters the creation of standardized work-
ows capable of handling a broad variety of potential polymer
ensembles. The use of a one-line notation streamlines auto-
mation and ensures transparency for both humans and
computers. The compatibility of G-BigSMILES notation with
machine learning algorithms turns it into a powerful tool for
future applications.

For example, an active learning agent employing an opti-
mization policy could leverage the results of prior workow
iterations to generate a new polymer ensemble dened by G-
BigSMILES. This newly generated G-BigSMILES can then serve
as input for the next workow iteration.

A signicant merit of this iterative process is its readability
by both humans and machines. Consequently, scientists can
effortlessly supervise the automated workow iterations, thus
offering an efficient method for directing and optimizing
polymer synthesis and characterization processes.

3.3.1 Machine learning representation. Representing
polymeric materials in a latent space for machine learning (ML)
applications is a signicant challenge in the pursuit of auto-
matically optimizing the in silico design of new materials.21 An
ideal representation should capture the diverse and stochastic
nature of polymeric ensembles, exhibit robustness against
small deviations (i.e., a small change in the latent space corre-
sponds to a small change in the described polymer ensemble),
and encode polymer architecture and chemistry in a manner
that enables the prediction of chemical and physical
properties.22

To the best of our knowledge, despite notable progress in
recent years,23–28 none of the current embedding technologies
have fully achieved this goal. While the G-BigSMILES notation
itself does not directly contribute to the development of new
encoding strategies (which is beyond the scope of this manu-
script), we wish to emphasize its potential for future advance-
ments in this eld. The G-BigSMILES notation offers valuable
insights into describing and generating polymer ensembles,
which can inspire novel approaches to encoding and repre-
sentation that may ultimately lead to more effective ML-based
design strategies for polymeric materials.

On the other hand, the BigSMILES notation without the
generative extension can also be used to construct similar
generation graphs, albeit without the inclusion of edge weights
representing reaction probabilities which comes with inherent
limitations.27 The advancement of ML technologies has facili-
tated the processing of such graph structures using graph
neural networks, specically message-passing graph neural
© 2024 The Author(s). Published by the Royal Society of Chemistry
networks.29,30 One common approach to represent such graphs
in a latent space is through the use of Auto-Encoders.31 This
approach has been employed in molecular contexts where the
graph represents individual molecules composed of chemical
fragments.28 These techniques pave the way for potential
applications of graph neural networks in analyzing and
modeling generative G-BigSMILES graphs for polymer
ensembles.

In this context, the reaction graph, as introduced in section
Visualizing polymer ensembles as generation graphs and Fig. 4,
can be encoded using a message-passing graph neural network
acting as an encoder, which maps the graph into a latent space.
From the latent space, a decoder network can then convert it
back into a graph structure. To train this approach, the objec-
tive is to maximize the similarity between the output of the
decoder and the input of the encoder. In this case, the input
corresponds to a polymer ensemble described by G-BigSMILES
and represented as a reaction graph, while the output can be
a generated ensemble of polymer molecules. The generation
probability discussed earlier (see section Determining molecule
ensemble probabilities) can be utilized to maximize the prob-
ability of subsequently generated molecules belonging to the
input ensemble or directly compare the reaction graphs.

The generation graph of G-BigSMILES differs fundamentally
from atom-based graphs used for individual molecule encod-
ing. In atom-based graphs, the count of vertices and edges
grows with molecular size, posing challenges for encoding
larger molecules like polymers. However, the G-BigSMILES
generation graph size is determined by the number of unique
chemical repeat units, not their repetitions in the molecule.
Consequently, G-BigSMILES graphs are notably smaller than
atom-based ones, making the application of established ML
methods more feasible. Since the G-BigSMILES generation
graph greater focus on molecular architecture compared to
chemical details, consequently we expect this approach to be
particularly adept at representing questions from polymer
physics.

This approach has the potential to accurately represent large,
stochastic, and non-trivial polymer ensembles for ML applica-
tions, particularly for polymeric materials where a precise repre-
sentation of polymer chain architectures is crucial for properties
such as viscoelasticity. Adopting a standardized notation, like the
proposed G-BigSMILES, not only facilitates comparisons between
different approaches but also offers a convenient means to
specify a wide range of diverse polymer ensembles. These diverse
ensembles can serve as valuable training data for ML models in
the eld, enhancing their ability to capture the complexity and
intricacies of polymer systems.
3.4 Limitations

The G-BigSMILES notation aims to capture a broad range of
realistic polymer ensembles. However, its simplied nature
imposes limitations; it is not possible to describe all possible
polymer ensembles, and in some cases only approximate
representations are realized. For instance, cross-linked polymer
materials cannot be generated using the G-BigSMILES notation.
Digital Discovery, 2024, 3, 51–61 | 59
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The notation's mechanism of establishing connections between
generating molecules and new repeat or end units does not
account for cross-link connections between open bond
descriptors within the same molecule. This limitation could be
addressed in future revisions by considering spatial proximity
between cross-linkers, which is crucial for cross-link formation
but absent in the current generation process focused solely on
polymer architecture.

G-BigSMILES utilizes idealized models to describe polymer
ensembles. For instance, the molecular weight distributions
applied to stochastic objects reect idealized situations that are
not always consistent with what is observed during experi-
mental characterization. Likewise, the reaction probabilities
used to dene transition probabilities for bond descriptors are
simplications and should be interpreted in the context of their
respective measurement methods.

Crucially, these idealized model parameters are oen asso-
ciated with uncertainties and the specics of their derivation.
Such idealization inevitably impacts the described and gener-
ated polymer ensembles, potentially leading to deviations
between experimental and, for instance, simulation realizations.

This limitation is an intentional design choice aimed at
maintaining the notation's compactness. However, additional
context and metadata, such as parameter uncertainties and
details about parameter determination, should be accompanied
by the line notation.

The CRIPT project is a potential platform for contextualizing
G-BigSMILES.10 Its data model facilitates the specication of
parameter histories and methods of acquisition. Moreover, it
allows for the association of corresponding measurements with
the polymermaterial. This feature can help underscore deviations
and conrmations between the idealized model and the actual
realization, further enriching the analytical process.

Canonization for G-BigSMILES remains a challenge; while
for BigSMILES progress has been made towards canonzation,8

there is no canonized form of G-BigSMILES available at this
time. However, by determining generation probabilities, it
becomes possible to establish similarities between different
ensembles. For instance, if the generation probability of each
molecule generated from ensemble a is identical to that of
ensemble b (cma: pa (ma)= pb (ma)), and the same holds true for
molecules generated from ensemble b (cmb: pa(mb) = pb(mb)),
then both ensembles can be considered identical. The incor-
poration of generation probabilities enables a more nuanced
understanding of the relationship between different polymer
ensembles described by generative G-BigSMILES.

3.4.1 Limitation of the reference implementation. In
addition to the inherent limitations of the G-BigSMILES nota-
tion, there are certain limitations specic to its current imple-
mentation. However, these limitations can be addressed and
improved in future versions. The current implementation has
the following restrictions:

(1) The notation does not support nested stochastic objects,
which poses a challenge in describing bottlebrush polymers
where such nesting is oen encountered. Bottlebrush polymers
can still be described and generated with the current
60 | Digital Discovery, 2024, 3, 51–61
implementation, just the molecular weight distribution is
limited as shown in the earlier example.

(2) Ladder polymer notation is not supported, limiting the
ability to represent this specic class of polymers using G-
BigSMILES.

(3) Each SMILES fragment within the notation must repre-
sent a valid molecule description. This prevents the represen-
tation of complex constructs, such as scenarios where
stochastic elements are present within ring molecules or
stochastic branches.

By addressing these limitations in future iterations, G-
BigSMILES offers the potential to become a highly versatile
and comprehensive tool for description of a wider range of
polymer structures and ensembles.

4 Conclusion

The introduction of the generative BigSMILES, G-BigSMILES,
notation represents a signicant advancement towards the
standardized and concise representation of polymer ensembles.
It offers a systematic and comprehensive framework for
describing polymer architectures, their connectivity, and the
probabilistic pathways of their generation. By incorporating
essential information such as reaction probabilities, monomer
compositions, and molecular weight distributions, the genera-
tive G-BigSMILES notation enables the generation of a wide
range of polymeric ensembles.

G-BigSMILES can be understood as a generative graph
embellished with transition probabilities. This extends the
concept of traditional graph representations by incorporating
molecular weight distributions for stochastic polymers. Such an
interpretation paves the way for the application of machine
learning techniques in embedding stochastic polymer ensem-
bles. This has far-reaching implications for a variety of appli-
cations, such as property prediction and active learning
methods.

Additionally, along with the denition of the G-BigSMILES
notation, we present an algorithm capable of generating poly-
mer ensembles and assigning probabilities to polymers within
the ensemble by reversing the algorithm. We offer both algo-
rithms in a reference implementation for ease of use.

The fusion of the G-BigSMILES notation with recent advances
in machine learning and encoding strategies offers considerable
promise. Importantly, it could streamline material design
processes and facilitate discovery of next-generation polymeric
materials with custom-designed properties.

In conclusion, the G-BigSMILES notation introduced here
represents an improvement in notations for polymer science. Its
application, combined with modern machine learning tech-
niques, contributes to the ongoing development of accelerated
materials design strategies for novel polymeric materials with
improved features and functionality.

Data availability

The code for G-BigSMILES can be found at https://github.com/
InnocentBug/bigSMILESgen. The version of the code employed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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