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ng approach toward generating
the focused molecule library targeting CAG repeat
DNA†

Qingwen Chen, a Takeshi Yamada, ‡a Asako Murata, §a Ayako Sugai,a

Yasuyuki Matsushita b and Kazuhiko Nakatani *a
This study reports a machine learning-based classification approach

with surface plasmon resonance (SPR) labeled data to generate

a focusedmolecule library targeting CAG repeat DNA. By using an SPR

screening and a machine learning classification model, we can

improve the identification process of elucidating new hit compounds

for the next round of wet lab experiments. The reported model

increased the probability of hits from 5.2% to 20.6% in a focused

molecule library with 92.9% correct hit classification (recall) and 99.3%

precision for the non-hit class.
In drug discovery, there has been a surge of interest in small
molecules targeting DNAs and RNAs. These small molecules
could be drug leads and molecular probes to study the patho-
logical process of various diseases,1–5 for example, the trinu-
cleotide repeat disorders6 caused by the aberrant expansion of
5′-CNG-3′ (where N = A, C, G, or T).7,8 Our laboratory developed
various small molecule ligands targeting those trinucleotide
repeat sequences.9 Among them, naphthyridine-azaquinolone
(NA, the chemical structure is in Fig. S1, ESI†) strongly bound
to the CAG repeat DNA.10 In 2020, we reported that NA induced
CAG repeat contraction in Huntington's disease (HD) patient
cells and an HD mice model.11 Although these results strongly
motivated further exploratory studies of small molecules
binding to CAG repeat DNA, developing such small molecule
ligands by molecular design has been challenging due to the
signicant conformational variations of both ligands and the
targets.12
dustrial Research), Osaka University, 8-1

l: nakatani@sanken.osaka-u.ac.jp

and Technology, Osaka University, 1-5

yasumat@ist.osaka-u.ac.jp

tion (ESI) available. See DOI:

Drug Discovery Center, Tokyo Medical
unkyo-ku, Tokyo 113-8519, Japan.

rial Sciences, Faculty of Engineering
oen, Kasuga, Fukuoka 816-8580, Japan.

the Royal Society of Chemistry
Screening would be another promising approach to nding
small molecule candidates. Many screening methods have been
reported for small molecules binding to specic structural
motifs in nucleic acids.13 We have studied a screening method
using uorescent indicator displacement14 and surface plas-
mon resonance (SPR).15 Generally, the number of hits (small
molecules binding to the targets) in a molecule library is much
less than non-hits (Fig. 1A). Therefore, screening a large-scale
library is cost-ineffective.

A focused molecule library is a smaller library that contains
a higher ratio of potential hits. It would signicantly reduce
screening time, cost, and labor in screening if it could be
generated with high credibility. Here, we report a machine
learning (ML) assisted protocol of a focused molecule library
Fig. 1 Approach to create a focused molecule library by SPR assay via
machine learning. (A) Illustration of the ratio of unknown hits to non-
hits in a standard molecule library; (B) partial SPR sensorgram of hits
and non-hits. The binding signal of hits could be observed during the
ligand's association and dissociation. According to the SPR profile,
binary labels are given to each sample; (C) tree-based classification
models will be used in the prediction; (D) an illustration of a focused
molecule library indicated by the bold circle. The hits ratio is much
higher than a standard molecule library shown in (A).
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Fig. 2 (A) An illustration of the confusion matrix. Each row of the
matrix represents the instances in an actual class (true value), and each
column represents the instances in a predicted class (predicted value).
TP, FN, FP, TN: true positive, false negative, false positive, true negative.
(B) The confusion matrix of the binary classification in the initial trial.
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targeting CAG repeat DNA by combining the SPR assay and
machine learning classication (Fig. 1). SPR assay provides
high-quality binding data and can be useful to generate ground
truth labels in an ML task. Fig. 1B shows three typical SPR
signals of the ligand's interaction with immobilized targets.
Aer the labeling, those labeled samples will be used to train
a classication model (Fig. 1C) and generate a focused molecule
library, as shown in Fig. 1D. The method in detail could be
found in MATERIALS AND METHODS, machine learning in the
ESI.†

ML-based computational methods are revolutionizing drug
discovery in diverse applications. Alphafold,16 a prime example,
excels in predicting protein folding with high precision, thereby
expanding the range of potential protein studies. Another
success case is in retrosynthesis,17,18 aiding the efficient
synthesis of complex natural products and important
compounds. Moreover, ML is instrumental in the drug
discovery screening phase, such as pharmacophore-based ML
virtual screening,19 which pinpoints potential drugs by
analyzing molecular substructures, premised on the idea that
similar structures could have similar properties.20 Deep
learning is powerful in analyzing molecular complexities
through its advanced neural network layers,21,22 while it gener-
ally needs more data to optimize the model efficiently23 and
a hard “black box” problem.24 Thus, the classic ML algorithms
are preferred in our study with a medium size dataset. In
addition, insufficient high-quality experimental data and label
imbalance could dramatically decrease prediction accuracy
when deploying ML. In this paper, we develop an ML-based
approach to obtain a fair prediction in screening by miti-
gating these two common issues.

First, a molecule library containing 2000 compounds was
screened by SPR assay to collect high-quality data and identify
their ground truth labels. In the SPR assay, 5′-biotinylated
d(CAG)40 DNA was immobilized on a streptavidin (SA) sensor
chip. Then, each compound was injected at 50 mM onto the
sensor chip to study the interaction with d(CAG)40 DNAs. The
hit compounds were selected based on their response values
within a specic range of sensorgrams obtained from each
compound. Among the 2000 compounds screened, 104 with an
RU value of basically 20 or higher were identied as hits, and
the remaining 1896 compounds as non-hits, most of which
showed nearly zero RU values (Fig. S2, ESI†). Separately, the
binding proles of these hit compounds were visually
conrmed. The proportion of hits and non-hits in the dataset
was approximately 1 : 19, and the hit ratio was 5.2%. Then,
molecular descriptors25 were generated by transforming the
chemical structures to numerical values using Dragon 7.0
soware26 for each molecule. The 5270 descriptors classied
into 30 categories (shown in Table S1, ESI†) were computed,
including atom types, functional groups, geometrical descrip-
tions, and properties.

A random forest (abbreviated as RF for clarity in the later
sentence) algorithm,27 one of the supervised learning methods,
was used in this study. The RF algorithm consists of several
weak (simple) classiers to improve the prediction by the
ensemble. It has been shown to work well with a limited
244 | Digital Discovery, 2024, 3, 243–248
amount of training data in a classication task.28 We used the
RF algorithm implemented in the scikit-learn package (version:
1.1.1);29 the hyperparameters “num_tree” of 300 and “max_-
depth” of 300 were used in the classication. A comparative
tree-based algorithm, XGBoost30 (implemented using Scikit-
learn 1.1.1 and xgboost 1.6.2), was conducted to evaluate its
performance against the RF algorithm.

All 2000 samples were used in the initial trial with a train–
test ratio of 8 : 2 (1600 : 400, Fig. S3, ESI†). There were 76 hits
and 1524 non-hits in the training dataset (Fig. S3A, ESI†). As
a result, only 3 hits were correctly predicted (true positive: TP) by
the trained model from the entire 28 hits in the testing dataset
(Fig. 2B and S3C†), the recall (eqn (1)) of the hit class was 0.11
(3/(3 + 25)) with a precision (eqn (2)) of 0.75 (3/(3 + 1)) (Table
S2†), which showed a tendency to predict most hits as non-hits.
One plausible reason was that the feature of the major non-hit
class was overlearned because the proportion of theminority hit
class in the training dataset was only 4.8% (76/1600), which was
severely imbalanced (Fig. S3A, ESI†).

Recall ¼ TP

TPþ FN
(1)

Precision ¼ TP

TPþ FP
(2)

F1 ¼ 2� recall� precision

recallþ precision
(3)

Accuracy ðACCÞ ¼ TPþ TN

TPþ TNþ FPþ FN
(4)

To achieve higher prediction performance of the trained
model, we applied down-sampling to remove partial samples in
the majority of non-hit classes in the training dataset for
a better data balance. The number of dropped non-hits was
studied by changing the values to 1200, 1300, 1400, 1450, 1475,
and 1485, as shown in Table S3 in the ESI.† We used the recall
and precision values as the primary and secondary indices to
evaluate the model. The accuracy (ACC, eqn (4)) is commonly
used for evaluating models, but it may need to be revised for
imbalanced datasets. A high-quality, focused molecule library
should minimize false negative (FN) values while maximizing
recall (Fig. 2 as shown above). In other words, it should
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The scores for the binary classification of Fig. 3B

Classication scores of hits Recall Precision F1

Random forest Averagea 0.75 0.15 0.26
Highestb 0.86 0.21 0.33

XGBoost Averagea 0.76 0.16 0.26
Highestb 0.93 0.21 0.34

a Average scores obtained from 100 recorded prediction scores where
the non-hits removed in each replicate experiment differed. The ve
top and bottom values were excluded from the calculation. b Highest
scores obtained from 100 recorded prediction scores where the non-
hits removed in each replicate experiment differed.
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accurately identify as many hits as possible while minimizing
the number of misses. Besides, F1 values (eqn (3)) were used to
analyze the precision and recall trade-offs. Aer the training
with 6 different hit/non-hit proportions, entry 4 (76 hits and 74
non-hits as shown in Fig. 3A, le) was the most relevant result
considering the average recall of 0.75 (highest 0.86) and F1
value of 0.16 (highest 0.21) (Tables 1 and S3, entry 4 in the ESI†).
The chemical structures of 20 predicted hits (TP) searched by
the highest precision in one prediction case were placed in
Appendix A in the ESI.† The average values were calculated by
removing the ve top and bottom values from 100 independent
experiments, where a certain number of non-hits from the
training dataset were randomly removed. While we modied
the balance of hits and non-hits in the training data set, the
original imbalanced testing dataset with 28 hits and 372 non-
hits was used as a screening library (Fig. 3A). The results
shown in entries 5 and 6 have higher average recall of 0.89 and
0.94, while the precision worsens. The confusion matrices in
Fig. 3B illustrate the predicted and true values' counts in
a random forest model for entry 4. The two matrices represent
the classication that gave the highest recall and precision of
the hit class, respectively. Under these optimal conditions
found for the RF model, an XGBoost model applied to the same
training and testing dataset provided almost the same scores in
the average, but a better result in the highest recall of 0.93 (cf.
0.86 for the RF classier) (Fig. 3C and Table 1).

A receiver operating characteristic (ROC) plot is used to
visualize the true positive rate against the false positive rate at
various thresholds for classier performance monitoring. A
higher-performance model will reect the curves far from the
Fig. 3 (A) The training (left) data proportion with the down-sampling adju
proportion without adjustment; model performance by the receiver ope
confusion matrix on the testing dataset. The confusion matrix with the
precision (right) of the (B) RF classifier and (C) XGBoost classifier. Accordin
ratio could improve from 5.2% (104/2000 compounds from SPR data) to

© 2024 The Author(s). Published by the Royal Society of Chemistry
diagonal line towards the top le, where the area under the
curve (AUC) approaches 1. The ROC curves in our study for the
hit class are shown in Fig. 3B and C, where in an RFmodel there
is a notable upward bulge towards the le with an average AUC
value of 0.81 (the results of the other 5 proportions are shown in
Fig. S4A–F, ESI†). An XGBoost model shows a slightly better
average AUC value of 0.84. These evaluations suggest that both
RF and XGBoost models were trained and could outperform
a random guess in terms of their predictive capabilities.

The over-sampling was attempted in the RF forest model,
which is another sampling method and offsets the limitation of
features lost during down-sampling. The idea of over-sampling
is to balance the minority class proportion using synthetic or
resampled data. Here SMOTE-NC (SMOTE: Synthetic Minority
Over-sampling Technique; NC: Nominal and Continuous)31 was
applied to augment the training dataset's categorical and
continuous data. SMOTE31 utilizes the k-nearest neighbour
stment shown in Table S3, entry 4 in the ESI;† the testing (bottom) data
rating characteristic (ROC) curve with 3-fold cross-validation and the
highest recall (left), according to this highest recall and the highest
g to the highest recall recorded with the XGBoost classifier, the true hit
20.6% (26/126) in the hit class.

Digital Discovery, 2024, 3, 243–248 | 245
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Fig. 4 The 20 highest SHAP-based feature rankings; each SHAP value
shown in the figure is the sum of 100 independent experiments with
the hit/non-hit ratio of 76 : 74 shown in Fig. 3A.

Fig. 5 Two-dimensional UMAP visualization of 2000 molecules with
the top 20 features obtained from the RF model. Red and blue dots
represent 104 hits and 1896 non-hits, respectively.
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algorithm in data generation, and SMOTE-NC resamples the
categorical data instead of making new data (Appendix B, ESI†
shows the list of categorical features in this study). Like the
previous experiment, we conducted 100 independent experi-
ments in dropping 1200, 1300, and 1400 non-hits to nd the
best result, using the RF classicationmodel. As shown in Table
S4 and Fig. S5,† even though there were no discernibly
improved results on the combination of oversampling in
training, entry 2 shows a relatively high precision of predictive
hits of 0.37 when the recall is 0.71 (Fig. S5B,† highest precision).

Next, we tried to clarify the essential features of hits in our
model by computing the importance of each molecular
descriptor. The contribution of each descriptor could be
measured by the SHapley Additive exPlanations (SHAP)32 value
and the Gini index from the RF algorithm.33 SHAP is a useful
measure to provide model explainability based on cooperative
game theory, which considers the inuence of different feature
combinations. Fig. 4 shows the top 20 features that have the
highest SHAP values. The SHAP value was implemented by the
SHAP package (version: 0.41.0). And we further computed the
sum of those SHAP values from 100 independent predictions on
the optimal hit/non-hit numbers of 76 : 74. As a result, several
kinds of molecular descriptors frequently appeared on top of
the ranking: walk and path counts (piPC05-10),34 where
descriptor piPC09 ranked top. The descriptor piPC09 is
a molecular geometrical feature belonging to the second level of
general descriptor categories and graph theory/topological
indices.24 It describes the molecule size and shape, with the
information on bond order. The “09” indicates the values given
by the path at the length of 9. In general, a molecule with a high
path count of 9 is likely to be complex and large, with many
branches and cycles in its structure. In our classication results,
the predicted hits tend to have intensive distribution on higher
piPC06/08/09 feature values, as shown in the beeswarm plot in
Fig. S6B, ESI† (the beeswarm plot could illustrate the distribu-
tion of each feature and sample; more details can be found in
246 | Digital Discovery, 2024, 3, 243–248
the ESI†). In conclusion, molecules targeting CAG repeat DNA
tend to be larger and more complex. In addition, 3D MoRSE
(Mor15e/i/p/s/u and Mor12i/m/p/v),35 connectivity indices36

(X5Av) and Burden eigenvalues37 (SpDiam_B(e/i) and
SpMin_Bh(v)) was also found in higher importance ranking. For
a quantitative support of those top-ranked features, the Gini
index is used, which measures feature importance according to
the purity of split subsets and is different from the SHAP value
(Fig. S7, ESI†). Those features overlap in both rankings, indi-
cating that molecule size, molecular complexity, symmetry, and
polarity are essential in classifying hit molecules targeting CAG
trinucleotide repeats. Some properties selected to compare the
two classes by a boxplot can be found in Fig. S10 and S11 in the
ESI.†

To gain a deeper understanding of how these features impact
the classication process, we trained the RF model without the
top 10 and 20 features among a total of 5270 on the same testing
dataset for comparison. The classication scores of the hit class
in Table S5† showed slight decreases in all indices, suggesting
that these top-ranked features inuence themodel performance
only weakly. Considering the complexity and the number of
features we used for the classication, we speculated that the
information encapsulated by the removed top-ranked features
might be redundant and can be captured by a combination of
the remaining features.

Finally, we used UMAP (Uniform Manifold Approximation
and Projection)38 for dimensionality reduction to illustrate
a spatial distribution of hit compounds with the top 20 features,
where the hit compounds are represented as red dots, showing
that hit compounds were somewhat clustered towards the right
side, but the observed pattern did not show a distinct separa-
tion of the clusters of the hit from the non-hit compounds.
These results supported the observation that the impact of the
removal of top-ranked features was not signicant in our
studies, and that there are possibilities to improve classication
by adjusting the labelling method and including some new
molecular features. The current labelling method is only
focused on the response strength and, therefore, we may fail to
capture other important features, such as the signal shape
representing the binding thermodynamics and kinetics. The
© 2024 The Author(s). Published by the Royal Society of Chemistry
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exploration of new molecular features would be of particular
interest, although such features may depend on the target
(Fig. 5).

In summary, we evaluated an ML-based approach to
generate a focused library for small molecules targeting CAG
repeat DNA from a limited and severely imbalanced SPR assay
labeled dataset. In this study, we compared two widely used
tree-based classication models: random forest and XGBoost. A
slightly better performance was obtained for XGBoost, showing
a recovery of 92.9% (26/28) of hits, while 73.1% (272/372) of
non-hits were correctly identied as true negatives. This result
makes it possible to efficiently remove the predicted negative
samples from wet experiments in future applications. The
highest precision of excluded negative samples in our trial was
99.3% (272/274). Theoretically, it is possible to enhance the
probability of hits from 5.2% (104/2000 compounds by SPR
experiments) in an original molecule library to 20.6% (26/126
compounds) in the hit class obtained in XGBoost classica-
tion, which represents the focused library. This report serves as
a preliminary investigation, paving the way for future research
to delve deeper into the characteristics of hit features. It also
aims to enhance model development for in silico drug discovery
and hit identication, offering a foundation for the next studies
in this eld.
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follows: https://github.com/chen26sanken/Machine-learning-
approach-toward-generating-the-focused-molecule-library-
targeting-CAG-repeat-DNA.
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36 M. Randić, J. Am. Chem. Soc., 1975, 97, 6609.
37 F. Burden, J. Chem. Inf. Comput. Sci., 1989, 29, 225–227.
38 L. McInnes, J. Healy and J. Melville, J. Open Source Sow.,

2018, 3, 861.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00160a

	A machine learning approach toward generating the focused molecule library targeting CAG repeat DNAElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00160a
	A machine learning approach toward generating the focused molecule library targeting CAG repeat DNAElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00160a
	A machine learning approach toward generating the focused molecule library targeting CAG repeat DNAElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00160a
	A machine learning approach toward generating the focused molecule library targeting CAG repeat DNAElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00160a


