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l property prediction using domain
adaptation based machine learning†

Jeffrey Hu,a David Liu,b Nihang Fua and Rongzhi Dong *a

Materials property prediction models are usually evaluated using random splitting of datasets into training and

test datasets, which not only leads to over-estimated performance due to inherent redundancy, typically

existent in material datasets, but also deviate from the common practice of materials scientists: they are

usually interested in predicting properties for a known subset of related out-of-distribution (OOD) materials

rather than universally distributed samples. Feeding such target material formulae/structures to the machine

learning models should improve the prediction performance while most current machine learning (ML)

models neglect this information. Here we propose to use domain adaptation (DA) to enhance current ML

models for property prediction and evaluate their performance improvements in a set of five realistic

application scenarios. Our systematic benchmark studies show that there exist DA models that can

significantly improve the OOD test set prediction performance while standard ML models and most of the

other DA techniques cannot improve or even deteriorate the performance. Our benchmark datasets and

DA code can be freely accessed at https://github.com/Little-Cheryl/MatDA.
1 Introduction

Nowadays, machine learning (ML) models are being widely
used in materials property prediction for discovering novel
materials such as super-hard materials,1,2 wide band gap
materials,3 and energy materials.4 A large number of innova-
tions have been proposed to improve the ML performance for
materials property prediction, including more expressive
descriptors,5 better deep learning models (IRNET),6 graph
neural networks that better capture interatomic interactions,7–10

data augmentation,11 multi-delity datasets that combine
computational and experimental data,12 active learning,3,13 and
transfer learning.14 These models and algorithms have signi-
cantly improved prediction performance over the past few years.
However, it has been found that existing ML algorithms have
low generalization performance for test samples with different
data distributions, and their prediction performance is oen
over-estimated due to the high dataset redundancy15 as many
materials are accumulated as a result of a tinkering material
discovery process over history. Previously the ML-based mate-
rial property prediction performances were all evaluated by
randomly splitting the whole dataset into training and testing
sets. The resulting test set does not share a high degree of
homogeneity in terms of composition, structure, or properties,
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but is randomly distributed in the whole dataset space. This
practice does not reect the realistic application scenario for
these ML models when they are more likely to be applied to
predict the properties for a set of similar materials that have
a different distribution from the training set, and are located in
the sparse chemical space with few known materials, or tend to
have extreme property values. Moreover, current ML and deep
learning models do not consider the target material informa-
tion in the training of the ML models while in practice the
compositions or structures of interest are already known and
can be incorporated into ML model training to improve the
prediction performance. In real cases, researchers are usually
interested in a small number of outlier or out-of-distribution
(OOD) materials with different data distributions and with
similarities in composition, structure, or properties to maxi-
mize a specic function.

There are several related works with regard to OOD predic-
tion problems in materials science. Several studies have found
that the inherent high redundancy of materials dataset and the
random train-test splitting-based evaluation methods have led
to over-estimation of ML performance for material property
prediction.16,17 It has also been found that regular ML models
usually have low generalization performance for OOD
samples.18,19 For example, Li et al.19 found that ML models
trained on Materials Project 2018 can have signicantly
degraded performance on new materials in Materials Project
2021 due to the distribution shi. In the eld of machine
learning, OOD generalization due to distribution shi between
the source domain and target domain has been intensively
investigated recently within the context of transfer learning,20
© 2024 The Author(s). Published by the Royal Society of Chemistry
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domain generalization,21,22 causal learning,23 and domain
adaptation.24 In particular, domain adaptation (DA) methods
have been widely used in computer vision, medical imaging,
and natural language understanding for improving OOD
prediction with great success.25–27 Based on whether the model
is trained with labels of some test set samples, DA methods can
be classied into unsupervised DAs (only Xt, the input infor-
mation of the test samples are used) and supervised DAs (both
Xt and a few Yt test samples are used). Based on the working
principles, DAs can be divided into feature-based, instance-
based, and transfer-learning methods.28

Despite the obvious advantage of considering target set
distribution for ML model training, currently, there are only
a few DA applications in science domains, including those in
the bioinformatics,29 health informatics,30 and chemistry.31,32 In
the materials science eld, Goetz et al. applied unsupervised DA
in microstructure recognition.33 To our best knowledge, there
are no such DA applications to solve OOD problems inmaterials
property prediction, which has its own unique feature charac-
teristics, domain shi relationships, and domain generaliza-
tion patterns, so specialized DA methods are needed to further
improve the ML performance.

This paper aims to investigate practically realistic ML
models for materials property prediction focusing on predicting
properties of minority/outlier material clusters that have
different distributions with the training set, all of which have
the key symptom of OOD machine learning. We then propose
and evaluate three categories of domain adaptationmethods for
solving this problem, including feature-based, instance-based,
and parameter-based algorithms. Our extensive benchmark
experiments over ve OOD test sets categories brought key
insights in applying domain adaptation to improved materials
property prediction.

Our contributions are summarized as follows:
�We proposed a set of benchmark realistic material property

prediction problems, which share the characteristic of predict-
ing the property of a set of OOD samples.
Fig. 1 Architecture of our DA-basedmaterial property prediction pipeline
different train-test-split methods to get five subsets for each dataset bas
apply DA algorithms on these datasets for property prediction and class

© 2024 The Author(s). Published by the Royal Society of Chemistry
� We suggested incorporating the test sample input
(composition or structure) into the ML model training process
to improve the prediction performance.

� We applied and evaluated a series of existing domain
adaptation models to the composition and structure based
materials property prediction and found key insights as regards
how to achieve better OOD prediction performance using suit-
able DAs.
2 Method
2.1 OOD benchmark problems and datasets

Fig. 1 shows the framework of our pipeline for DA-based
material property prediction. We downloaded two datasets
(matbench_expt_gap and matbench_glass) from the Mat-
bench34 site including one classication problem for glass
materials, and one regression problem related to band gap
prediction. The classication task aims to determine the full
bulk metallic glass formation ability for the given composition.
And the regression task is to predict the experimental band gap
from compositions.

Instead of evaluating the ML models using standard train-
test random splitting or the k-fold cross-validation (also based
on random splitting), we propose ve realistic material property
prediction scenarios, in which the researchers are usually
interested in properties of minority or sparse materials. For
each raw dataset (band gap or glass), we dene ve ways to
determine which samples from the sparse composition or
property space will be selected as the target test samples. The
detailed introduction of each scenario is introduced in section
2.1.1. Aer target set generation, we then apply DA algorithms
to these bandgap and glass subsets for property prediction and
classication, respectively. The DA methods used for each task
in introduced later in section 2.3.

The raw dataset details are shown in Table 1. We use
composition-based Materials Agnostic Platform for Informatics
and Exploration (Magpie) feature35 as input representation.Magpie
. For two datasets downloaded fromMatbench34 site, we first apply five
ed on five different application scenarios in material science. And then
ification, respectively.

Digital Discovery, 2024, 3, 300–312 | 301

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00162h


Table 1 Raw datasets

Dataset Task type Feature Sample no Performance metric

Glass Classication Composition/magpie 5680 Balanced accuracy
Bandgap Regression Composition/magpie 4604 MAE
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features are calculated based on the properties of the atoms in
compositions. These properties include stoichiometric properties
(depending only on the ratios between elements), element prop-
erties (atomic number, atomic radius, melting temperature, etc.),
electronic structure properties (valence electron number of s, p, d,
and f layers), and ionic compound characteristics.

2.1.1 Target set generations. In most real scenarios,
researchers know their target materials of interest and usually
have no related labeled samples, which corresponds to the case
of unsupervised DA. In this work, we focus on the case that the
target set has no labeled samples. We have then proposed the
following target set generation methods to emulate the real
cases for material property prediction.

2.1.1.1 Leave-one-cluster-out (LOCO). This method was sug-
gested byMeredig et al.16 in their evaluation of the generalization
performance of ML models for material property prediction. We
rst cluster the whole dataset using Magpie features into 50
clusters and then we use each of the clusters as the test sets in
turn to evaluate the model performance. Even though it
improves the commonly used random splitting method to avoid
performance over-estimation, it still counts all samples
(including those located in highly dense redundant areas). So it
is subject to the over-estimation issue to a certain degree.

2.1.1.2 Single-point targets with lowest composition density
(SparseXSingle). In this method, we rst convert all dataset
compositions into the 132-dimension Magpie feature space and
then we apply the t-distributed Stochastic Neighbor Embedding
(t-SNE)36 based dimension reduction to reduce it to 2D space.
The t-SNE model is designed with a random state equal to 42
and with 2 components. We then employ kernel density esti-
mation to calculate the density for each data point and pick the
top 500 least dense samples and we apply K-means clustering to
convert it into 50 clusters. Aerward, we then pick one sample
out of each cluster, obtaining 50 target samples as our test set.

2.1.1.3 Single-point targets with lowest property density
(SparseYSingle). In this method, we rst sort the samples by
their y values (label) calculate the density for each data point's y
value, and then pick the top 500 least dense samples and apply
K-means clustering to convert them into 50 clusters. We then
pick one sample out of each cluster, obtaining 50 target samples
as our test set.

2.1.1.4 Cluster targets with lowest composition density (Spar-
seXCluster). This sparse cluster target set generation method is
similar to the above-mentioned SparseXSingle method except
that aer K-means clustering, instead of picking one sample, we
further pick N nearest neighbors for each picked sample to form
a target cluster. The neighbor-picking process is conducted so
that no sample can be selected into multiple target clusters. The
neighbors are dened based on the Euclidean distance of
302 | Digital Discovery, 2024, 3, 300–312
Magpie features. In total, we have 50 clusters each with 11
samples in general.

2.1.1.5 Cluster targets with lowest property density (Spar-
seYCluster). This sparse cluster target set generation method is
similar to the above-mentioned SparseYSingle method except
that aer K-means clustering, instead of picking one sample, we
further pick N nearest neighbors for each picked sample to form
a target cluster. The neighbor-picking process is conducted so
that no sample can be selected into multiple target clusters. The
neighbors are dened based on the Euclidean distance of
Magpie features. In total, we have 50 clusters each with 11
samples in general.

The distribution of the whole band gap datasets and their
different target sets are shown in Fig. 2. We can nd that real-
istic target sets are more located in sparse areas while
commonly used random splitting tends to be located in dense
areas with the same distribution as the training set. The
random splitting (as shown in Fig. 2(a)) allows the test samples
within one fold (represented as dots of a single color) to be
scattered into multiple clusters and mixed with training
samples. This characteristic mixing makes it easy for a machine
learning model to predict the properties of these test samples
based on the neighborhood samples. In realistic material
prediction scenarios, as captured by our proposed different data
splitting methods shown in Fig. 2(b)–(f), the query/test samples
are located in sparse areas with few neighbor training samples
(a typical feature of out-of-distribution machine learning
problems). This makes interpolation-based machine learning
models have much worse prediction performance, which we
aim to address with domain adaptation algorithms.

In total, we have 10 datasets for DA algorithm evaluations,
including bandgap-LOCO, bandgap-SparseXSingle, bandgap-
SparseXCluster, bandgap-SparseYSingle, and bandgap-
SparseYCluster for regression and glass-LOCO, glass-
SparseXSingle, glass-SparseXCluster, glass-SparseYSingle, and
glass-SparseYCluster for classication. The number of samples
for each cluster of these datasets is shown in Supplementary
Table S1.†
2.2 Base algorithms for composition and structure-based
materials property prediction

We use the Random Forest (RF) as the baseline algorithm for
domain adaptation evaluation unless specied separately. RF is
a strong ML model that can provide a reliable base model for us
to build domain adaptation algorithms. The baseline RF model
is trained only using the training set and then tested on the test
set. For the composition-based property prediction problem
(glass classication and band gap prediction in Table 1), we use
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Distribution of standard cross-validation (CV) test set and five OOD test sets using different target generation methods for the band gap
dataset. Each color represents one single fold. (a) 50-fold CV (with random splitting) of the whole band gap dataset with 4604 samples rep-
resented by cross symbols with 50 different colors. (b) Leave-one-cluster-out target (LOCO) clusters. (c) 50 test samples in SparseXSingle are
represented by cross symbols with 50 different colors, and grey points represent the remaining samples. (d) 50 test samples in SparseYSingle
represented by cross symbols with 50 different colors, and grey points represent the remaining samples. (e) 50 test clusters in SparseXCluster are
represented by cross symbols with 50 different colors, and grey points represent the remaining samples. (f) 50 test clusters in SparseYCluster
represented by cross symbols with 50 different colors, and grey points represent the remaining samples.
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the Magpie features as input representation. For domain
adaptation, we take advantage of the powerful DA package
Adapt,28 which has implemented more than 30 DA algorithms.
These DA algorithms are then applied to the baseline RF model.

For comparison with the DAs with the state-of-the-art algo-
rithms, as reported in the Matbench leaderboard, we evaluate
a simple transfer-learning based DA algorithm. For a given
target set, we rst train a Roost37 model using all the training
samples. We then select 500 samples similar to the target
sample(s) and use them to ne-tune the trained Roost model.
The Roost algorithm is an ML approach specically designed
for material property prediction based on material composi-
tion. It utilizes a graph neural network framework to learn
relationships between material compositions and their corre-
sponding properties. To compare with the performance of
traditional strong models, we choose ModNet38 algorithm and
evaluate its performance on our realistic benchmark datasets
and compare with other DA-RF machine learning models.
2.3 Domain adaptation algorithms

In many real-world scenarios, machine learning models oen
suffer from a performance drop when applied to new, unseen
© 2024 The Author(s). Published by the Royal Society of Chemistry
data that comes from a distribution different than the training
data. This is known as the domain shi problem. Domain
adaptation techniques aim to reduce or eliminate this perfor-
mance degradation by leveraging the knowledge learned from
the source and target domain to adapt and generalize well to the
target domain. The main idea of domain adaptation is to
address the challenge of transferring knowledge learned from
a source domain to a target domain when the source and target
domains may have different distributions or feature represen-
tations. In other words, domain adaptation aims to make
a model trained on one dataset (source domain) perform well
on another dataset with different characteristics (target
domain) without requiring a large amount of labeled data from
the target domain by exploiting, e.g., the sample distribution of
the target domain.

There are three major categories of domain adaptation
algorithms including feature-based, instance-based, and
parameter-based methods. Fig. 3(a) shows the out-of-domain
prediction problem and the key ideas of three main categories
of DA methods.

2.3.1 Feature-based DA methods. The feature-based
domain adaptation algorithm operates based on the research
of common features of a source and target domain. This
Digital Discovery, 2024, 3, 300–312 | 303
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Fig. 3 Domain adaptation based machine learning for out-of-distribution material property prediction. (a) OOD prediction problem: model
trained with source domain samples is to be used to predict test samples in different target domains; (b) feature-based DAsmap samples of both
source and target domains to a unified representation; (c) instance-based DA methods put higher weights on training samples closer to the test
samples; (d) parameter or transfer-learning based DAs fine-tune a pre-trained model with a small number of labeled target domain samples.
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machine learning technique aims to learn a feature represen-
tation that is domain-invariant or transferable. An encoded
feature space is created to correct the distributions between the
source and target domains. The task on the source and target
domain is then learned (aligning feature distributions) in the
encoded feature space which permits the generalization of
target domains even with limited labeled data. Due to the
feature-based domain adaptation's ability to process data
quickly and efficiently, this technique encompasses a number
of advantages including the ability to utilize labeled source data
(even when data is scarce), reduced annotation effort, exibility
(able to align feature representations of source and target
domains with different data distributions), improved general-
ization to a target domain, and overall improved model
performance.

We have tested the following feature-based DA methods for
the problem:

� Frustratingly easy domain adaptation (PRED).39

� Feature Augmentation (FA).40

� Correlation Alignment (CORAL).41

� Subspace Alignment (SA).42

� Transfer Component Analysis (TCA).43

� Feature Selection with MMD (FMMD).44
304 | Digital Discovery, 2024, 3, 300–312
Out of the six feature-based DA methods, only the PRED and
FA algorithms are supervised DA methods. For band gap
regression, we used all the above DA methods except FMMD,
which took too long to run for this dataset. For the glass clas-
sication problem, we used all methods.

2.3.2 Instance-based DA methods. While feature-based
domain adaptation aligns with feature representations,
instance-based domain adaptation focuses on the transfer of
labeled instances from the source domain to the target domain.
The core principle of instance-based domain adaptation is to
adjust the weight (by multiplying the losses of individual
training instances by a positive weight) of labeled training data
to correct the differences between source and target distribu-
tions. The weight-adjusted training instances are then directly
used to learn the task.

We have applied the following instance-based DA algorithms
in this study:

� Weighting Adversarial Neural Network (WANN).45

� Kernel Mean Matching (KMM).46

� Relative Unconstrained Least-Squares Importance Fitting
(RULSIF).47

� Unconstrained Least-Squares Importance Fitting (ULSIF).48

� Nearest Neighbors Weighting (NNW).49

� BalancedWeighting (BW).50
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Out of the six instance-based DA methods, BW and WANN
are supervised algorithms while others are unsupervised ones.
For the band gap regression problem, we use all the above
except ULSIF. For the glass classication problem, we have
evaluated all the above DA models.

2.3.3 Parameter-based DA methods. In parameter-based
DA methods, the parameters of one or a few pre-trained
models trained with the source data are adapted to build
a ne-tuned model for the task on the target domain. This is
a typical scenario of transfer learning. We have evaluated the
following parameter-based DA algorithms for the band gap
prediction and glass classication problems.

� Regular Transfer with Linear Regression
(RegularTransferLR).51

� Regular Transfer with Neural Network
(RegularTransferNN).51

� Linear Interpolation between SrcOnly and TgtOnly
(LinInt).40

� TransferTreeClassifer.52

� Regular Transfer for Linear Classication
(RegularTransferLC).51

� Transfer AdaBoost for Regression (TrAdaBoostR2).53

� Transfer AdaBoost for Classication (TrAdaBoost).54

All these parameter-based methods are supervised DA
methods that need target annotated samples to ne-tune the
model. For the band gap regression problem, we evaluated all
the above methods except TrAdaBoost, TransferTreeClassifer,
and RegularTransferLC. For the glass classication problem, we
evaluated TransferTreeClassier, RegularTransferLC, Regular-
TransferNN, TrAdaBoost, and LinInt.

2.4 Evaluation criteria

We use the following performance metrics for evaluating data-
set redundancy's impact on model performance, including
Mean Absolute Error (MAE), and Balanced Accuracy:

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij (1)
Fig. 4 Performance of supervised DAmodels and unsupervised DAmode
the bandgap-LOCO dataset. (a) Supervised DA versus Random Forest. O
versus Random Forest.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Balanced Accuracy ¼ 1

2

�
True Positive

True Positiveþ False Negative

þ True Negative

True Negativeþ False Positive

�
(2)

where yi represents the observed or true values, and ŷi repre-
sents the predicted values, y� represents the mean of the
observed values. The summation symbol

P
is used to calculate

the sum of values, and n represents the number of data points
in the dataset.
3 Results and discussion
3.1 DA for leave-one-cluster-out (LOCO) targets

Compared to the random train-test splitting or the cross-
validation, the LOCO targets tend to have different distribu-
tions compared to the training sets (See Fig. 2(f)), which leads to
increased challenges for the regular machine learning models.
Here we evaluate whether different types of domain adaptation
methods can be used to improve the generalization perfor-
mance of the baseline models in the case of a distribution shi.
Without special notation, we use the Random Forest algorithm
as the baseline model upon which the DA models are applied.

Fig. 4(a) shows the results of the supervised DA methods for
band gap prediction. We nd that the MAE of the supervised DA
methods generally increases, delineating that the models'
performance becomes worse. Out of 8 supervised DA methods,
only the BW and TrAdaBoostR2 have slightly improved with
BW's MAE reduced from 0.477 to 0.454 eV and TrAdaBoostR2's
MAE reduced from 0.477 to 0.458 eV. In contrast, the methods
WANN, RegularTransferLR, and LinInt show signicant
decreases in performance compared to the baselines. We nd
that all feature-based DA methods including LinInt, PRED, and
FA experienced some decrease in performance.

Fig. 4(b) reects similar results shown in Fig. 4(a) with only
two unsupervised DA methods with slightly improved perfor-
mance, including KMM (MAE reduced from 0.555 eV to 0.524
eV) and RULSIF (MAE reduced from 0.4768 eV to 0.4756 eV).
KMM and RULSIF are both instance-based DA models while all
ls compared with the baseline MLmodels for band gap prediction over
nly three labeled target samples are used for DA. (b) Unsupervised DAs

Digital Discovery, 2024, 3, 300–312 | 305

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00162h


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
6/

20
25

 1
:4

9:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the feature-based models decrease in performance (CORAL, SA,
TCA, FMMD).

Overall, the best performance is achieved by the supervised
DA method BW with the lowest MAE of 0.454 eV, a 4.8% MAE
reduction from the baseline. Here we only use three labeled
samples in the target cluster for domain adaptation. When we
increase this number to 50% of the test clusters, the BW's MAE
can be further reduced to 0.43 eV while TrAdaBoostR2's MAE
can be reduced to 0.426 eV. We also compare the RF-based BW
performance with those of the two state-of-the-art neural
network models for this composition-based band gap predic-
tion problem. First, we nd that the ModNet, which is reported
to achieve an MAE of 0.3327 eV for the 5-fold cross-validation
over the original band gap dataset, only achieves an MAE of
0.8592 eV, a dramatic decrease in its performance, showing its
low capability to handle domain shi. In contrast, the Roost37

model achieves an MAE of 0.3710 for our Bandgap-LOCO
dataset, outperforms ModNet and all other domain adapta-
tion algorithms evaluated so far which are based on random
forest or simple neural networks. We further evaluate the
unsupervised transfer-learning over the Roost model by ne-
tuning the pre-trained model using 500 training samples that
are most similar to the test samples. The nal MAE is 0.369,
a slightly improved result. This demonstrates the importance of
the base model for the domain adaptation method.

Fig. 5(a) shows the results of the supervised DA methods for
glass classication. The average balanced accuracy of the
supervised DA methods overall decreases, meaning the models'
performance was reduced. Of the 9 supervised DA methods,
only BW–an instance-based DA method–improved with an
accuracy increasing from 0.652 to 0.704. All other DA methods
decreased in performance except for RegularTrasnferNN, whose
accuracy remained the same compared to the baseline
algorithm.

Fig. 5(b) shows the average balanced accuracy of unsuper-
vised DA methods (red) versus baseline (blue). Out of the eight
unsupervised DA methods, only the KMM shows improvement
with its average balanced accuracy increased from 0.652 to
0.704. KMM works by correcting sample bias by minimizing the
difference between the means of the source and target domains
using the MaximumMean Discrepancy (MMD) in a reproducing
Fig. 5 Performance of DA models for glass classification using DA meth
methods. (b) Unsupervised DA methods.

306 | Digital Discovery, 2024, 3, 300–312
kernel Hilbert space (RKHS). All other unsupervised DA
methods decrease in their performance compared to the base-
line. We also compared how the number of labeled ne-tuning
samples from the target domain affects the DA performance
(Supplementary Table S2†). We nd that when we increase the
ne-tuning samples from three to 50% of the target set, all the
DA classication performances improve signicantly. This
indicates the importance of acquiring more labeled properties
for the target domain whenever possible.
3.2 DA for single-point targets in sparse X and sparse Y areas

The single-point sparse X and sparse Y test sets are unique in
the sense that there is only one sample in the test set, while all
remaining samples are used as training samples. This makes it
impossible to apply supervised DA algorithms. Here we evaluate
how well the unsupervised DA methods can improve the
prediction performance by considering the composition of the
single test sample.

Fig. 6(a) shows the performance of DA methods compared to
their baseline for the single sparse X test sets. Out of the seven
DA methods, three of them achieve better performance (lower
MAEs) including KMM, RULSIF, and FMMD. The largest
improvement is by RULSIF which reduces the MAE (0.555 eV) of
the baseline RF algorithm to 0.399 eV, a 28% reduction of the
prediction error. In contrast, FMMD and KMM reduce the errors
by 8.4% and 5.7% respectively. This result demonstrates the
huge potential of DA methods in single-point prediction prob-
lems. We also compare the RULSIF's performance over this test
set with those of Roost and ModNet and nd that it even
signicantly outperforms Roost with an MAE of 0.483 eV and
ModNet with an MAE of 0.436 eV.

We further evaluate the DA performances over the single
sparse Y test sets with 50 targets as shown in Fig. 6(b). Here only
two instance-based DA methods KMM and NNW achieve higher
performance than the baseline with an MAE of 0.611 eV and
0.567 eV respectively. All the feature-based DAmethods have led
to deteriorated performance. Particularly, CORAL, SA, and TCA
have signicantly higher MAEs compared to the baseline. It is
interesting to see that the RULSIF does not work as well as it
does for the sparse X test sets.
ods evaluated over the glass-LOCO target clusters. (a) Supervised DA

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Performance of unsupervised DA models for band gap prediction evaluated over the 50 single target samples in sparse input (X) and
sparse output (Y) areas. (a) Performance of DAs over sparse X test samples. (b) Performance of DAs over sparse Y test samples.

Table 2 Performance of unsupervised DAs over the glass classification problem

Dataset Algorithm KMM NNW RULSIF CORAL SA TCA FMMD

Single X test sets Baseline 0.75 0.75 0.75 0.75 0.75 0.75 0.75
DA 0.76 0.74 0.72 0.34 0.34 0.66 0.72

Single Y test sets Baseline 0.72 0.72 0.72 0.72 0.72 0.72 0.72
DA 0.7 0.84 0.76 0.44 0.44 0.58 0.7
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We then evaluate the DA performances over the Single-X and
Single-Y glass datasets (Table 2). First, we nd that these two
datasets are challenging for the DA methods. For the Single X
test sets, only the KMM algorithm has a slight 1.3% improve-
ment in terms of balanced accuracy. All the other DA methods
have either the same or much worse accuracy, especially for the
three feature-based DAs such as CORAL, SA, and TCA. For the
Singe-Y test sets, the instance-based DA methods NNW and
RULSIF improve the baseline performance by 16.7% and 5.6%
respectively, indicating the potential of DA algorithms for out-
of-domain material property prediction.
3.3 DA for band gap SparseX and SparseY cluster targets

Test sets of the SparseXCluster and SparseYCluster datasets are
constructed by rst selecting 50 seed samples with the highest
sparsity in the composition (Magpie) or property space, then
selecting 10 out of those samples that are most similar to the
seed sample. The selected samples are used to evaluate whether
an ML model can predict the properties without using closest
neighbors.

Fig. 7(a) and (b) show the performance of supervised and
unsupervised DAs over the band gap SparseXCluster dataset.
Out of the seven supervised DAs (Fig. 7(a)), three of the DA
algorithms have improved performances over their base algo-
rithms. Those DA algorithms are BW, RegularTransferNN, and
TrAdaBoostR2 among which the TrAdaBoostR2 achieves the
lowest MAE of 0.516 eV. Out of the seven unsupervised DA
methods (Fig. 7(b)), only one algorithm–RULSIF–has a signi-
cant performance improvement over its base RF algorithm with
an MAE of 0.468 eV. This is impressive as it beats all the
supervised DAs. However, this performance is not as good as the
© 2024 The Author(s). Published by the Royal Society of Chemistry
MAE (0.421 eV) of the basic Roost algorithm, showing the power
of the neural network model of the Roost. RULSIF's perfor-
mance, however, is much better than that of the ModNet, which
only achieves an MAE of 0.788 eV, a signicant degradation
from its 0.331 eV for the 5-fold random cross-validation
performance as reported in the Matbench.

Fig. 7(c) and (d) show the performance of supervised and
unsupervised DAs over the band gap SparseYCluster dataset.
Out of the seven supervised DAs (Fig. 7(c)), BW and TrAda-
BoostR2 are the only two algorithms to have improved perfor-
mance over their base algorithms, with TrAdaBoostR2 achieving
the lowest MAE of 0.461 eV. Out of the seven unsupervised DA
methods (Fig. 7(d)), only one algorithm, RULSIF, has improved
performance over the base RF algorithm by 18.7% with an MAE
of 0.417 eV compared to 0.513 eV of the base model. This is
impressive as it beats all the supervised DAs and is as good as
the MAE (0.419 eV) of the Roost algorithm. RULSIF's perfor-
mance is also much better than that of the ModNet which only
achieves an MAE of 0.824 eV. Overall, we nd that the unsu-
pervised RULSIF has demonstrated strong performance for
these two challenging test datasets. As an instance-based
method for domain adaptation, RULSIF works by correcting
the difference between input distributions of source and target
domains by nding a source instance reweighting which
minimizes the relative Pearson divergence between source and
target distributions. Pearson divergence, also known as Pear-
son's chi-squared divergence, is a measure of the difference
between two probability distributions. It is oen used in
statistics and information theory to quantify how one distri-
bution differs from another. Pearson divergence is particularly
useful when comparing two discrete probability distributions.
Digital Discovery, 2024, 3, 300–312 | 307
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Fig. 7 DA performance for the SparseX and SparseY test clusters derived from the band gap dataset. (a) Supervised DAs for the Sparse X clusters;
(b) supervised DAs for the Sparse X clusters; (c) supervised DAs for the Sparse Y clusters; (d) unsupervised DAs for the Sparse Y clusters.
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3.4 DA for glass SparseXCluster and SparseYCluster datasets

Fig. 8(a) and (b) show the performance of supervised DAs and
unsupervised DAs over the glass SparseXCluster dataset. Out of
the seven supervised DAs (Fig. 8(a)), only the BW algorithm has
improved accuracy over their base algorithms with a balanced
accuracy of 79.1%. Out of the seven unsupervised DA methods
(Fig. 8(b)), only one algorithm, NNW, has the performance
improvement over its base RF algorithm with an accuracy of
72.9%. When compared to BW, NNW's performance is signi-
cantly lower. We also found that BW has outperformed Roost
for this dataset, which has an accuracy of 77.60%, and ModNet
which achieves an accuracy of 60%, much lower than the 96%
for the same glass dataset but with 5-fold random cross-
validation.

Fig. 8(c) and (d) shows the performance of supervised DAs and
unsupervised DAs over the glass SparseYCluster dataset. Out of
the seven supervised DAs (Fig. 8(c)), only BW again has improved
the performance of their base algorithms with an accuracy of
80.2%. Out of the seven unsupervised DA methods (Fig. 8(d)),
only one algorithm, NNW, has improved performance over its
base RF algorithm with an accuracy of 75.1%, which is not as the
best supervised DA algorithm BW. We also found that the BW's
performance is better than the Roost algorithm, which achieves
an accuracy of 75.5%. When we further ne-tune the pre-trained
Roost model with the 500 most similar training samples to the
target set, its performance increases to 77.9%, which is still
below BW's accuracy. This demonstrates the big potential of DA
308 | Digital Discovery, 2024, 3, 300–312
algorithms for these raw sample property predictions. We also
ran ModNet over this dataset and found it can only achieve an
accuracy of 51%. Compared to its 96% reported on the Mat-
bench, this is a signicant degradation, which implies the huge
risk of using these models to predict properties for minority or
new materials that are located in different areas of the compo-
sition or property space.
3.5 Discussion

Usually, in realistic materials property prediction, the target
compositions or structures are already known, which can be
used to guide the ML model training. Moreover, researchers are
usually more interested in the properties of novel materials with
unusual compositions or properties, leading to a typical out-of-
distribution machine learning problem. Here we formulate ve
OOD material property prediction benchmark datasets for both
regression and classication problems and conducted extensive
experiments to evaluate how existing well-established domain
adaptation methods work in the materials science context. It is
found that standard ML models tend to have severely degraded
performance for such OOD test sets. While most existing DA
models cannot improve the performance of their base model,
a few DA algorithms such as BW and RULSIF that capture the
true domain shi relationship can achieve much better results
compared to the baseline and outperform other state-of-the-art
neural network models such as ModNet, demonstrating the
huge potential of DA in material property prediction.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 DA performance for the SparseX and SparseY test clusters derived from the glass dataset. (a) Supervised DAs for the Sparse X clusters; (b)
unsupervised DAs for the Sparse X clusters; (c) supervised DAs for the Sparse Y clusters; (d) unsupervised DAs for the Sparse Y clusters.
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To investigate further DAs for the OOD material property
prediction problem, we summarize the best algorithms for
each of the 10 datasets evaluated in this study along with their
performance scores and standard deviation (Table 3). First, for
the ve OOD test sets of band gap prediction, the neural
network based Roost algorithm is the best according to its
average MAEs over 50 clusters. RULSIF, an instance-based
unsupervised DA achieved the best performance for two of
the ve OOD test sets, which is impressive as its base model is
a random forest rather than a neural network. As Borisov et al.55

introduced, decision tree ensemble-based machine learning
methods outperform deep neural network-based methods for
heterogeneous tabular data. Another observation is that the
standard deviations of all the highest-performing algorithms
are relatively high, which could be due to the challenges of this
band gap test sets, out of which several clusters are very diffi-
cult to predict accurately (Supplementary Fig. S1†). For the
Table 3 Best algorithms and corresponding MAE/balanced accuracy an

Dataset

Bandgap

Best algorithm MAE (eV) Std

LOCO Roost 0.371 0.26
SparseXCluster Roost 0.421 0.41
SparseYCluster RULSIF 0.417 0.31
SparseXSingle RULSIF 0.399 0.43
SparseYSingle Roost 0.495 0.76

© 2024 The Author(s). Published by the Royal Society of Chemistry
SparseXSingle and SparseYSingle datasets, as we choose only
one sample from each cluster, these samples are very different
from each other. Thus the bigger std on both SparseXSingle
and SparseYSingle datasets indicates that the model may have
good performance on some clusters and bad performance on
others. However, the std value on the three cluster datasets
(LOCO, SparseXCluster, SparseYCluster) is relatively smaller,
because our model can learn from more samples. This is very
different from standard K-fold cross-validation experiments or
random train-test splitting tests, which tend to have i.i.d test
distributions and thus very low-performance variation across
different folds. This calls for special attention to practical
material property prediction as regards the predicted property
values and techniques such as uncertainty quantication56 may
be introduced to estimate the condence of the result. For the
glass datasets, it is found that four DA methods achieve the
best classication performance: three of them are done by BW
d standard deviation (std) for each of the ten OOD test datasets

Glass

Best algorithm Balanced accuracy Std

0 BW 0.704 0.141
4 BW 0.791 0.209
4 BW 0.802 0.187
3 Roost 0.840 0.373
7 NNW 0.840 0.367

Digital Discovery, 2024, 3, 300–312 | 309
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and one by NNW, both of which are instance-based DA
methods.

In this study, the three best-performance DAs are all
instance-based methods, indicating their advantages for OOD
material property prediction. However, this does not mean that
feature-based or transfer-learning based DA models have less
potential. More likely, the reason for their low performances is
due to their design is currently developed based on assump-
tions of domain shis in computer vision, medical imaging,
and related eld. In contrast, the domain-shi relationship of
material properties has unique regularities that the current
feature-based DAs cannot model and exploit. The low perfor-
mance of the transfer-learning (parameter-based) DAs is prob-
ably due to the base model we used here are default primitive
neural network with just one hidden layer. More powerful
network models similar to Roost or ModNet may be used as the
pre-trained model to improve their OOD performance.

While here we only focus on composition-based material
property prediction, domain adaptation methods can be easily
transferred to structure-basedMLModels for materials property
prediction. This can be done, e.g., by rst training a regular
graph neural network model and then using the trained
network backbone before the fully connected layer as the
feature extractor to convert all structures into latent features for
both training and testing samples. We can then apply the DA
algorithms to the derived dataset. The pre-trained model based
transfer learning can also be used here.

4 Conclusion

In real-world materials discovery, researchers already know the
target material compositions or structures for which they want
to predict their properties. It is desirable to exploit such infor-
mation to train better ML models for material property
prediction in such scenarios. In addition, material scientists
usually are more interested in materials with new/rare proper-
ties in uncharted design spaces. Here we propose a set of ve
realistic materials property prediction benchmark problems, in
which the test samples are located in sparse composition or
property space. We then evaluated the performance of different
domain adaptation enhanced machine learning algorithms for
the band gap prediction and the glass classication problems.

Our experiments show that out-of-distribution materials
property prediction poses great challenges for regular machine
learning algorithms including state-of-the-art algorithms such
as ModNet. Out of the three categories of DA methods that we
evaluated, the feature-based DAs and the parameter-based DAs
(transfer-learning or ne-tuning) do not show an improved
performance overall. The reason is twofold: for feature-based
DAs, it is probably due to the source–target domain relation-
ships in our materials datasets being different from those in the
original DA papers. For the parameter-based DA methods, it
may be due to the incompetency of the default base neural
network models. Out of all instance-based DAmethods, the best
DAs are usually supervised DAs. For both categories of DA
methods, it seems we have to develop material data-oriented
features and transfer-learning DA algorithms that can capture
310 | Digital Discovery, 2024, 3, 300–312
the underlying domain shi relationships. For example, for
both the bandgap-LOCO and glass-LOCO test sets, the instance-
based supervised BW achieves the best performance despite
only using three labeled test samples. Our results also show the
importance of the base model for the DA method: for the
bandgap-LOCO, the neural network based Roost model without
ne-tuning is better than all RF-based DA methods.

In this work, we have only covered the traditional machine
learning models and some simple neural network models with
DA for realistic materials property prediction. It is known that
many state-of-the-art algorithms for the Matbench are based on
deep neural networks. Most of the evaluated DAmethods do not
apply to those complex neural network models except the
transfer learning based approaches. We are condent that
domain adaptation for material problems has an abundance of
potential to signicantly improve machine learning perfor-
mance and are fully condent that it will provide a promising
research direction.
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