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e importance of individual
samples and their effects on materials data using
explainable artificial intelligence†

Tommy Liu, *a Zhi Yang Thob and Amanda S. Barnard a

Explaining the influence of data instances (materials) to predictions such as structure/property relationships

inmaterials informatics can complement structural feature importance profiling, and guide data generation,

cleaning, and verification. In this paper we combine explainable artificial intelligence (XAI) and influence

statistics to value the contribution of individual materials to the prediction of diffusion energy barriers in

dilute solvents, the formation energy of perovskites, and the glass transition temperature of metallic

glasses. In each case, we identify that materials with certain chemical elements negatively impact the

performance of machine learning models and warrant removal, while others contribute differently to the

prediction errors and warrant further investigation. Our general approach can be applied to any

structured materials dataset to provide a similar forensic analysis.
1 Introduction

With the evolution of machine learning techniques and
increasing computational power, new ways to explore and
analyse data have become available across the sciences. Mate-
rials informatics seeks to apply these techniques to the physical
and chemical sciences, supported by the rapid increase in
experimental and simulation data. Powerful models are
becoming more widespread for tasks such as material
discovery, screening and design, and the formulation of
structure/property relationships that drive innovation. In each
case, the analysis of data at the intersection of statistical,
computing, and domain knowledge introduces many opportu-
nities that could not have been considered in the past.

The concept of tting a (mathematical) model to data has
been of interest to statisticians for generations. Breiman1 dis-
cussed the differences between what are known as the infor-
mation (or inference) and prediction tasks when ttingmodels to
data. The primary purpose of the information task is to extract
the relationships between the independent and dependent
variables and the phenomena that inuence these outcomes.
Alternatively, the prediction task is concerned with predicting
future outcomes based on observed characteristics. These
related problems have diverged signicantly and it can be
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–435
argued that much of modern machine learning has been borne
from the prediction task.2

At its core, statistics seeks to make the information
regarding a phenomenon understandable to humans, since it
is concerned with the underlying information of the data-
generating process. In contrast, machine learning develop-
ment has become increasingly complex with what are known
as ‘black-box’ models where there is little to no human
understanding of the underlying mechanisms3 in order to
produce the most accurate predictions. This produces issues
in the adoption of many classes of machine learning tech-
niques, particularly in the sciences where it is highly desirable
to understand the mechanisms behind the prediction and
phenomena as a whole. Understanding how and why a model
predicts an outcome can inspire research directions and
inform investment decisions, in addition to the value inherent
in the actual prediction. As a result, the eld of eXplainable
Articial Intelligence (XAI) is growing and seeks to provide
understanding and interpretations of how models carry out
predictive tasks and are particularly useful to science and
engineering.4 Since interpretability has traditionally been
within the purview of statistics, it is desirable to view problems
from both the statistical and XAI viewpoints to combine their
insights.

One emerging subeld in data analytics and XAI is to
determine whether particular data samples are inuential,
outliers, anomalous, prototypical, archetypal, or normal.5–8 Just
as certain characteristics of a material are more important to its
properties than others, so too some of the materials themselves
are more important to the prediction of those properties. This is
relevant to the tasks of data cleaning, but can also provide
insights into the relevant data generation process, inform
© 2024 The Author(s). Published by the Royal Society of Chemistry
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further treatments in the collection of data, and verify the
correctness of the modelling approach used.

This task is particularly challenging since these types of data
must oen be analysed on a case-by-case basis to determine
their effects on the data analysis task and quantify abnormali-
ties. Case-by-case analysis oen reduces the possibility of
objective comparison, and transferring knowledge gained by
studying one material or application to another, unless
a systematic framework can be established. If one structural
characteristic emerges as frequently important, or one material
as consistently problematic, this alone can guide future
research. Among these anticipating material (instance) inu-
ence can inform early-stage investment decisions.

The eld of inuence statistics is primarily concerned with
determining the relative effects that instances have upon
a (regression) model.9,10 Notions of inuence such as Cooks'
distance and Difference in Fits (DFFITs) have been deployed
across a wide array of scientic domains and provide a good
baseline for the study of instance effects.11,12 Inuence anal-
ysis is related to outlier detection where instances that do not
conform to some standard are identied or removed from the
dataset. This is an issue of data quality, as opposed to
avoiding certain materials, but there is considerable overlap
in the aims of inuence statistics and data mining tasks. Both
are concerned with the properties and behaviours of
instances in the presence of the model, instead of the train-
test-validation methodology commonly seen in machine
learning today. This contrasts with domain-driven
approaches to identifying instances of interest, where select-
ing particular data to analyse or gather lies with individual
researchers' domain knowledge, and is subject to consider-
able bias.13 Removing instances based on domain knowledge
may be pragmatic, such as avoiding toxic or expensive mate-
rials, but is also subjective.

In this paper, we apply statistical analyses and modern XAI-
driven insights to identify the most interesting or useful data
instances in three well-knownmaterials informatics challenges.
Since collecting materials data can be a costly and time-
consuming exercise, we demonstrate how XAI can be used to
value the contribution of individual materials to structure/
property relationships and assist in planning new research.
Our approach is general and based on open soware that can be
easily applied to structured (tabular) materials datasets
regardless of physicochemical characteristics or functional
properties. Using this approach researchers can evaluate the
return on investment when choosing whichmaterials to include
in a given study, or produce further avenues to investigate
regarding the relationships between various materials.

2 Methodology

We begin with the linear regression class of models, which are
well-studied and used for the prediction and inference tasks in
both statistics and machine learning. Given data xi ˛ R

1×k, X =

{x1, x2, ., xn} ˛ R
n×k and labels y = {y1, y2, ., yi} ˛ R

n then
a linear regression model F(xi)= yi seeks to predict the response
variable and takes on the form:
© 2024 The Author(s). Published by the Royal Society of Chemistry
F(xi) = bxi + a (1)

where b ˛ R
k×1 is a set of weights that maps the independent

features in xi to yi. In this case, the independent variables are
the structural features, and the response variables are the target
property labels. The individual rows of the data matrix xi ˛ R

1×k

are oen referred to as the instances (or data samples), while
each column of the data X of size R

n×1 are referred to as the
features. The model predictions produced F(xi) ˛ F(X) denoted ŷ
˛ Ŷ are known as the predicted or tted values.

Linear regression models have seen signicant use in all
areas of the sciences, and are highly interpretable.14,15 It is
immediately clear how the features of the data are combined to
produce the nal output prediction (target labels), simply by
multiplying the weights b by the values in the variable xi. Two
well-known regression diagnostics of model t are the (stand-
ardised) residuals + QQ plots, along with the adjusted coeffi-
cient of determination, R2, which is dened as the percentage of
the variability in the data that is explained by the model given by
eqn (2) where �y is the average of all the model predictions.

R2 ¼ 1�
P
i

ðyi � ŷiÞ2P
i

ðyi � yÞ2 (2)

A QQ-plot contains the actual residual yi − ŷi of a model
against the ‘ideal’ expected residuals at each quantile; the
deviation of the residuals against the ideal (shown by the
diagonal line) identies how well the model is performing. The
R2 and QQ-plot approach evaluate how well a model has t some
seen data to evaluate the inference task. In contrast, machine
learning seeks to evaluate how well a model performs based on
unseen data. Oen we see the application of a loss term such as
the Root-Mean-Square-Error (RMSE) (eqn (3)). It is common to
split the data available (such as with a 70–30) ratio into the
‘training’ and ‘testing’ sets. The model is then tted to the
training set and RMSE is evaluated over the testing set.

RMSE ðf ; X ; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i

ðf ðxiÞ � yiÞ2
s

(3)

To reduce the effects of random chance, the training and
testing process are repeated over multiple trials and averaged.
K-Fold cross-validation applies this process to K disjoint splits
of the training and testing sets2 and is common practice in
many machine learning applications.16

Choosing a good linear model involves signicant data
wrangling and transformations since the linear regression
parameters are determined only by the data values. In a typical
regression modelling setting it would be common to see feature
selection strategies such as the least absolute shrinkage and
selection operator (LASSO)17 and data transformations that
introduce interaction terms. Once a model has been t to the
data then further analysis can be carried out. In this work, we
will make use of common statistical selection strategies
including the backwards, forwards, and LASSO selection
Digital Discovery, 2024, 3, 422–435 | 423
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strategies to produce well-tting linear models and focus on the
inuence statistics of the models.

The quality of a model t with respect to individual instances
has been a well-studied topic in statistics and machine
learning.2,9,10 The Cooks' distance and Differences in Fits
(DFFITs) measure how much the model, or observed t of the
model, changes when an individual sample is removed from the
observations. These methods are typically characterised by the
hat matrix h which is not well-dened for more complex
regression models and therefore cannot be extended to
different classes of models such as random forests.1 The Cook's
distance Di for a given observation i is given in eqn (4) where s2

is the mean squared error of the regression model:9

Di ¼ ei
2

ks2

"
hii

ð1� hiiÞ2
#
: (4)

where hii is the ith diagonal element of the hat matrix which
maps the response values x onto the predicted values ŷ, this
value is also commonly known as the leverage quantity, and ei=
F(xi) − yi is the residual of the ith term of the model. The Cook's
distance then is a combination of how much an instance lies
away from other samples from the leverage quantity and the
distance the predicted value lies from what the model expects.
This can be thought of as an estimate of the ability of an
instance to affect the model (leverage term) multiplied by an
estimate of how much effect it did have on the model (residual
term).

This notion of inuence is typically used to detect outliers in
statistics, by identifying instances (or data samples) that have
Cook's distances that are relatively larger than the others.
However, they are informative in themselves and identify types
of data that have large effects on the model. Inuence functions
extend the notion of these changes in model parameters and
can be applied to a large family of models, in particular, those
with twice differentiable loss functions18 and have seen signif-
icant impact in machine learning tasks. The formulation of
inuence functions approximates the change in the model if an
instance were to be present or absent from the training data. In
many cases, the inuence of particular samples is equivalent to
what is known as leave-one-out cross-validation (LOOCV) in
machine learning.19 The LOOCV chooses the k in cross-
validation to be equal to n so that only one sample at a time
is le out to be the testing set.

However, these methods only consider a single model or
subset of data, but the interactions between instances across
subsets also tell us valuable information. Data valuation tech-
niques such as Data Shapley (DS) seek to determine the ‘value’
of a sample across many subsets weighted by the Shapley
equation (eqn (5)) which is a concept from cooperative game
theory:

fi ¼
X

S3Fnfig

jSj!ðjF j � jSj � 1Þ!
jF j! ½vðSWfigÞ � vðSÞ�: (5)

The SV value equation (eqn (5)) tells us how much an indi-
vidual actor i from within a group i ˛ F has upon the outcome of
424 | Digital Discovery, 2024, 3, 422–435
a cooperative game v($). An example of this may choose each
actor i to be a given material and the nal game is the combined
output of a model which takes the materials in as predictors.
Shapley values are computed by taking the weighted overage
over all possible subsets that do not contain i and comparing
the marginal effect that including i in the game will have as
measured by v(S W {i}) − v(S). In the context of DS, the game is
determined to be the model prediction error (loss term) and
each actor i is the instance to be included in training the model
which is used to evaluate for v($).

Typically, the DS value tells us which instances are most
responsible for making the predictions of the model more
accurate. This can inform us what types of new instances we
should generate or sample to produce better models. For
example, we can identify sources of noise or comparatively
higher quality data instances of data,20 or simply the instances
more relevant to the phenomena of interest.

The information provided by methods such as Cooks'
distance only suggests the effect of instances on the model or
parameters. This impact may not be uniform across the data
space or subsets of the data so Shapley-based methods can
further our understanding of these relationships. This is critical
since most materials data is oen imbalanced, and contains
outliers, in addition to particular materials that are undesirable
due to being dangerous, toxic, or very expensive. If particular
data is identied to have negative effects on the model based on
data interactions (i.e. pair-wise effects), it may be desirable to
identify them for further treatment, removal, or tting to
another model for that data space. Alternatively, if we were to
buy more consumables or instruments, or dedicate more time
and effort to improve model performance, this approach would
help us do it more effectively.

One of the core concepts around using Shapley values is the
additive property, where the sum of the Shapley values of each
individual sample i sums to the value of the set, that isPn
i¼1

fi ¼ vðXÞ. For example, in the data Shapley case, we are

interested in how much each individual instance contributes to
the error of the model. Along with the other properties of
Shapley values, they provide a strong sense of intuition
regarding how models can produce outputs.3,21

The residual decomposition framework for Shapley values
extends the concept of data value5 and is well suited to materials
informatics. This framework considers the pairwise effect of
each instance in the set upon other instances in the context of
the learning model, in terms of their contribution and composi-
tion values dened as:

� Contribution: how much an individual instance affects the
predicted outcomes of other instances.

� Composition: how much the model predictions of an
individual sample are affected by the effects of the other
instances upon the predictive model.

An example of the contribution and composition values can
be seen in Fig. 1 where an example dataset interacts to produce
the residuals of the model. Together these “CC” effects are
calculated using the Shapley values by setting the value function
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 An example of contribution and composition values for an
example dataset of five samples. Red values indicate the residual value
the model produces for that instance, black values indicate the effects
that an instance has upon another. Reproduced from Liu and Barnard
under a CC BY 4.0 Deed license.5
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v($) to be the impact that an instance xi has upon the predicted
outcomes of all other instances in F\{xi}. This is precisely eval-
uated using the residual values over the dataset given in eqn (6).

v(S) = {fS(xi) − yi}
n
i=1. (6)

What this produces is a “CC-matrix” F where each row fi is
the Shapley value of the ith instance which consists of n values
representing how much the ith instance affects the model
predictions of the n other instances in the dataset (including i
itself).

The most notable motivation behind the CC values is that
inuential instances are not equally inuential across the
Fig. 2 A CC-plot of the well-known Boston Housing dataset22 in
machine learning for a linear regressionmodel coloured by themedian
house value (1000 s). Reproduced from Liu and Barnard under a CC BY
4.0 Deed license.5

© 2024 The Author(s). Published by the Royal Society of Chemistry
spectrum of all the input data. In particular, some types of
instances are important when making predictions on other
specic (possibly related) examples. This decomposition
framework views the data not in terms of points in feature space
(instances) but in terms of behaviours; how instances interact
with the other instances in the dataset and the model. This
means that some materials are more important than others,
and will inuence other materials differently.

By plotting the contribution and composition values against
each other for each instance we obtain a “CC-plot” which is
a valuable data visualisation strategy. This visualisation essen-
tially serves as a model- and data-agnostic method of dimen-
sionality reduction into the two CC axes. An example of a CC-
plot can be seen in Fig. 2, where positive contribution values
indicate that instances work to make the model worse, and
negative contributions work to improve the performance of the
model. We see in Fig. 2 that the majority of the instances lie
around the origin indicating that the impacts of their compo-
sition and contribution values are relatively low. Instances with
larger feature values (the yellow instances) tend to have signif-
icantly larger contributions and make the model worse. This is
oen the case with data that does not t the trend of the model
or arose from a different distribution (outliers) and warrants
further investigation. For this particular data set (the Boston
Housing benchmark set), it is known that there was a trunca-
tion process applied to houses with a value >50 (thousand). As
a result of the truncation process, the houses with larger
(yellow) median values are not entirely correct data samples,
and it is therefore suggested to remove this data to improve the
model t. To improve the model, more of these types of samples
must be gathered or a piece-wise approach should be taken
based on the two groups of yellow and non-yellow instances.

The CC values can also be used to analyse the pairwise effects
of instances upon the model predictions upon another in the
form of a heatmap. Returning to our focus on materials infor-
matics, a CC heatmap reveals how much each element
contributes to the residual errors across the rows and the
composition of each of the residuals is given in the columns.
Individual cells (scaled to [−1,1]) in the heatmap based on some
element represent how much particular types of materials
contribute to one another and can uncover hidden interactions
from within the data.

It is known that data is more than the sum of its parts,
particularly when tting models for the inference and predic-
tion tasks. The interactions between the instances present in
a dataset can increase or decrease the performance of the model
which the CC framework seeks to analyse quantitatively. This is
just as applicable to data instances as to features, relevant
frameworks such as SISSO23 seek to identify low dimensional
descriptors which ‘aggregate’ (by means of dimensionality
reduction) the most relevant groups of features together to
improve model performance for materials data. Other feature
engineering and analysis approaches such as SHAP21 and
feature selection seek to identify the most relevant features
under a certain model. The Shapley Taylor interaction index24

extends the concept of Shapley values to attribute model
outputs to the interactions between features. In contrast with
Digital Discovery, 2024, 3, 422–435 | 425
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Fig. 3 Residual plots for the linear model with all the raw features
(top), and fitted using interaction terms of the features (bottom). The
red trend line shows the average residual across fitted values.
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features, the concept of interactions is signicantly more
important when discussing features. Most models are not
simply the intersection of a disjoint set of data points, but
a mathematical representation of how they interact together, we
demonstrate in this work that taking such an interpretation can
provide insights into possible actions to take when analysing
materials data.

3 Results and discussion
3.1 Dilute solute diffusion dataset

In this section, we present an interpretation of the publicly
available solute diffusion dataset25 which includes host and
solute pairs and describes the energy of the diffusion energy
barriers between these element pairs. This dataset contains
more than 230 dilute solute diffusion systems comprising Mg,
Al, Cu, Ni, Pd, and Pt host lattices and was previously generated
using high-throughput density functional theory (DFT)
simulations.

The host–solute diffusion problem has previously been
studied using statistical and machine learning techniques for
the task of predictive inference.16,26 This predictive task is useful
in determining the energy barriers, and therefore applications
of potential new and unknown host–solute pairs, particularly
when no experimental data exists. We view this problem
through a data and instance analysis lens where we are inter-
ested in the effect that the individual host–solute pairs play
upon the model. The information gathered can be useful in
determining where the deciencies of existing models may lie,
along with what kinds of data may be more valuable or relevant
in the future.

Our dataset consists of 408 host–solute pairs, each with 27
features; two of which are the host, and solute elements
themselves, along with raw and normalised barrier diffusion
energies in eV.27 The normalised barrier diffusion energy is
calculated by subtracting a baseline value from the raw diffu-
sion energy based on the main host–solute pair that consists of
the same elements (i.e. we subtract the Ag–Ag diffusion energy
from all Ag–d pairs where d is any element). While this nor-
malisation is well founded in chemistry, physics, and materials
science to separate the particularly slow diffusers (i.e. tungsten),
the effect this transformation has on the data has never been
fully quantied which we attempt to in this section. Using
residual decomposition will measure the impact of this ubiq-
uitous correction since what might make sense to domain
experts does not necessarily translate well to algorithmic
approaches when modelling the data. Additionally, we compare
the impacts that this transformation has upon traditional
statistical regression models and analyse the impacts that it
may have on the assumptions or quality of t.

3.1.1 Initial regression model. We begin by tting a simple
linear regression to the raw barrier diffusion energies, achieving
an adjusted R2 score of 0.88. The diagnostic plots determine
how well this model ts, as shown in the residual and QQ plots
(Fig. 3 and 4). In this case, the residuals show two major
groupings of the model mispredictions and a trend potentially
containing a dip towards the central values (2 eV to 4 eV) of the
426 | Digital Discovery, 2024, 3, 422–435
data suggesting some presence of non-linearity in the data. We
also observe that the tails of the QQ plot deviate from the ideal
distribution. Additionally, an inspection of the associated vari-
ance ination factors (VIFs) suggests that some multi-
collinearity exists among the features.28 The rst step to
addressing these issues is making use of well-known feature
selection strategies including, backwards, forwards, and LASSO
selection.17

By applying feature selection strategies we can reduce the
number of features to 17, 15, and 21 physicochemical features
respectively with lower VIFs and no loss in the adjusted R2

scores. However, the reduction of features does not signicantly
change the trend in the residual plot and suggests that simple
feature selection is not sufficient to optimise the model. The
linear model t may be improved by tting interaction feature
terms.

To further improve our model (to be competitive with ML
models), we include interaction terms, where pair-wise inter-
action between features is considered. The main motivation for
this is that some features are related to the host elements,
whereas others are related to the solute, and that the relation-
ship between the raw barrier diffusion energies and the host
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 QQ plots for the linear model with all raw features (top), and
fitted using interaction terms of the features (bottom). The red trend
line ideal distribution.

Fig. 5 Distribution of the Cooks' distance for each instance on the
best model from Fig. 3 (bottom).
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features could be dependent upon the value of the other (solute)
features. The nal model including interaction terms produces
an R2 value of 0.995. Fig. 3 and 4 (bottom) show the residual and
QQ plots produced for the best model aer including interac-
tion terms and applying LASSO as a feature selection strategy. It
is much more well-behaved compared to the original model, as
indicated by the removal of the U-shaped trend from the
residual plot and the approximate normality from the QQ plot.

We now consider an instance-level analysis of this nal
model based on Cooks' distances. Fig. 5 shows the Cook's
distance value for each observation derived from the nal
model produced. Based on a relative comparison of the Cook's
distances, the presence of inuential outliers is detected in the
data as indicated by the instances with relatively large Cook's
distances compared to the others. These outliers are the three
pairs: Al–Ce, Ca–Ag, and Ca–Nb, which all contain earth-
abundant elements and possess some corrosion resistance
and thermal properties that make them suitable for automotive
and aerospace applications, and all have been used as catalysts.

Through further examination, we nd the magnitude of the
standardised residuals for these three instances is large, where
Al–Ce, Ca–Ag, and Ca–Nb instances are ranked 8th, 1st, and 6th,
© 2024 The Author(s). Published by the Royal Society of Chemistry
respectively, out of the 408 instances. Additionally, these three
instances have high leverages, with Al–Ce, Ca–Ag, and Ca–Nb
instances being ranked 13th, 4th, and 7th, respectively. The
high leverage of Al–Ce is because of its host element (Al) having
the smallest host ionic radius and its solute element (Ce) having
the largest number of unlled D-valence electrons in the data-
set, while the high leverages of Ca–Ag and Ca–Nb are due to
their host element (Ca) possessing the largest host covalent
radius, smallest host electronegativity and host Mendeleev
number (and the solute element of Ca–Ag having the smallest
solute Nd valence unlled value) among the 408 host–solute
pairs. Consequently, these instances are agged as inuential
through Cook's distance plot, where their relatively high Cook's
distances are mainly contributed by their large standardised
residuals and high leverages.

3.1.2 Machine learning analysis. To explore the impact of
non-linearity we consider random forests,1 which are a well-
known class of models used in machine learning shown to
perform well for materials data,29–31 along with a linear regres-
sion model. The R2 values produced by the random forest when
tting to the raw activation barrier energies are close to 1.0
without any signicant data processing and contrast with the
model steps taken in the previous section. This is an example of
where machine learning diverges from statistics, focusing more
on how well the model generalises to unseen data (i.e. for the
task of predicting properties of unknown host–solute pairs)
rather than how well the model ts.

Fig. 6 shows the CC plots for the two models trained on the
full set of data to predict the raw diffusion energies. It can be
seen that the random forest model (centre) is a signicantly
better t for the data than the linear model (le) as the residuals
and instances effects are more uniformly distributed and cen-
tred at 0. The host–solute pairs with larger diffusion barrier
energies (yellow) are poorly behaved, compared to the random
forest model where the effects are more symmetric, which
conrms that the linear regression model is a poor t for the
data compared to the random forest. Fig. 6 (right) shows the
effects on the model when the normalisation scheme is applied.
Digital Discovery, 2024, 3, 422–435 | 427
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Fig. 6 CC-plots for linear regression (left, R2 = 0.90) and random forest (centre, R2 = 1.00) models trained to predict the raw diffusion energy,
and random forest model (right, R2= 0.99) predicting the normalised diffusion energy of the host–solute pairs. Coloured by the diffusion energy
level (eV) of the selected samples.
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By comparing the centre and right plots we can see that the slow
diffusers such as W have less impact on the model, and the
contribution values tend to be lower which achieves the stated
goals of normalising these types of data. The CC-plot however
becomes less symmetric when using the normalised diffusion
barrier values compared to the original data and produces
a slightly worse tting model with a lower R2 value (0.99 vs.
0.98). Despite this, the 5-fold cross-validation score of the nor-
malised model is signicantly higher than that of the raw
values. This is precisely because the different behaving
instances like W have smaller effects resulting in much lower
changes to the model predictions when other more useful
samples are removed. As a result, the extrapolation accuracy of
using a model with normalised diffusion energies is signi-
cantly higher, as evidenced by a cross-validation RMSE score of
0.09 compared to the raw model of 0.12, which is in line with
the best performing models developed by Wu et al.16
Fig. 7 Heatmaps showing how instances with varying host (left) and solut
contribution/composition values that each element has upon another's

428 | Digital Discovery, 2024, 3, 422–435
To determine what types of materials have signicant
impacts on the model, we can break down the CC information
into a heatmap, as seen in Fig. 7. The effects that instances have
on themodel can be unevenly distributed across the dataset. We
observe that materials with a Pb host have the greatest effect on
other Pb hosts and tend to slightly increase the errors of all
other solutes. At the same time, the other host elements (other
than Au) have little effect on the predictive outcomes of Pb as
seen in the Pb column in Fig. 7 (le). This suggests that there
may be some special characteristics or outliers among the
properties of Pb hosts. Ca hosts have a different effect compared
to Pb hosts, where Ca tends to signicantly improve the
predictive performance of Ir, Mo, and W hosts. We nd these
two elements to be the most inuential, which is consistent
with previous studies that found that the predictive perfor-
mance of machine learning models for Ca and Pb hosts is
inferior compared to the other elements.32 The CC-plot
e (right) elements contribute to themodel. Coloured by the normalised
predicted outputs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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conrms that the effects of these two elements are greatest, but
the largest contributor to errors associated with Pb hosts is the
Pb data itself, and this is not the case for Ca. We can suggest
that, apart from generating more data regarding Ca and Pb
hosts, the related elements from the heatmap with impacts on
Ca (Pd, Ir, Au, Al) and Pb (Au, Ir) predictions are also of interest.
Additionally, despite being particularly slow diffusers, and
hence having much higher energy values, the W elements do
not signicantly increase the loss of the model. The two
elements that increase the quality of predictions the most are Ir
and W.

We group instance contributions by their solute material
composition in Fig. 7 (right) instead of by their host elements
(le). There are a signicantly larger number of solutes avail-
able. The most impactful are the Th–Th, and K–K contributions
though again, they do not signicantly affect other predictions.
The row-wise elements that do decrease the errors (and increase
prediction quality) are As, Ca, Er, Gd, Na, and Nd.

The contribution heatmap also informs us of the types of
materials that are most useful for the prediction of a particular
element. For example, if we are interested in improving the
prediction of solutes containing W as a host, we should look
into the relevant Ca and Ir elements, along with increasing
relevant Pb and W samples since they are most responsible for
the prediction errors. If W is the focus, Ca, Ir and Pb could be
worth the investment.
Fig. 8 Residual plots for the linear model with all the raw features
(top), and fitted using interaction terms of the features (bottom) for the
perovskites dataset.
3.2 Perovskite forming dataset

In this section, we present a similar interpretation and analysis
of the perovskite forming dataset33,34 which describes the
material composition of various perovskite materials. This
dataset contains the component elements of the perovskite
divided into (up to) the three elements present at the A, B, and X
sites. There are 70 features and 1929 sample instances, with two
energy levels that may serve as the target prediction labels; the
energy above hull (meV) which directly measures the stability
based on convex hull analysis,34 and the formation energy (eV)
of the system. In this study, we will focus on the energy above
hull as it is a more difficult target and is consistent with
previous studies.34,35

3.2.1 Initial regression model. Beginning with a statistical
analysis and considering the regression diagnostics of the
model, Fig. 8 (top) shows a relatively poor simple linear model
tting the data to the level of the energy above hull (meV) with
an adjusted R2 score of 0.64. The residual plot displays a slight
U-trend and a notably larger spread of residual values in the
range of 100–200 meV tted values, with the latter suggesting
the issue of heteroskedasticity. There are also highly non-ideal
values in the upper and lower ends of the QQ plot (Fig. 9).
Again, backwards, forwards, and LASSO selection strategies are
used to reduce the severe multicollinearity issues given the large
number of features.

To deal with the issues in the residuals, we considered
a square-root transformation for the energy above the hull and
incorporated pair-wise interaction terms of the features into
the model as some features are associated with the elements in
© 2024 The Author(s). Published by the Royal Society of Chemistry
A site while the others are related to the elements in B site.
When adding interaction terms to the model, some features
had to be excluded due to their high degree of discreteness, it
appears that many of the tested linear models struggled with
this data due to the number of discrete features in the data. We
observe that the square-root transformation of the energy
above the hull and inclusion of additional pair-wise interac-
tion terms produce a signicantly atter trend and more
consistent spread (homoskedasticity) for the residual plot in
Fig. 8 (bottom). A line is also formed from the residuals of
instances with 0 meV energy above hull in the residual plot.
However, it can be observed that the QQ plot (Fig. 9 (bottom))
still demonstrates deviations from the ideal line. This suggests
that a linear model may not be the best t for this dataset
either.

Across the tested linear models, the set of inuential mate-
rials identied by Cook's distance in Fig. 10 is largely similar.
The materials we found to be inuential across models were
Ba8Mo8O24, Mg8Fe8O24, Y4Ba4Mn2Fe6O24 and Y4Sr4MnNi7O24.
Additional investigation into these inuential materials found
that they all have large magnitudes of standardised residuals
around the value of 5 (except for Mg8Fe8O24 with 2.7), and
Digital Discovery, 2024, 3, 422–435 | 429
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Fig. 9 QQ plots for the linear model with all raw features (top), and
fitted using quadratic terms of the features (bottom) for the perovskites
dataset.
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relatively higher leverages compared to the rest of the materials
(except for Ba8Mo8O24), where the latter is primarily due to
some of their features taking extremely large/small values. For
Fig. 10 Distribution of the Cooks' distance for each instance on the
best model from Fig. 8 (bottom).

430 | Digital Discovery, 2024, 3, 422–435
instance, Mg8Fe8O24 has the largest difference in the specic
heat capacity between A and B sites, Y4Ba4Mn2Fe6O24 has the
largest rst ionisation potential averaged across A and B sites.
In contrast, Y4Sr4MnNi7O24 has a large ionisation energy aver-
aged across A and B sites. Finally, the energy above hull of
Ba8Mo8O24, Mg8Fe8O24 and Y4Ba4Mn2Fe6O24 are 643.73 meV,
636.34 meV, and 950.23 meV, respectively, which are much
larger than the energy above hull of the other material instances
that are mostly concentrated in the range of 0–400 meV. In
summary, the combination of large standardised residuals,
high leverages, and extreme energy above hull resulted in these
materials being identied as inuential instances in the tted
models.

3.2.2 Machine learning analysis. We continue with the
analysis of a linear model and random forest using CC plots.
Once again the random forest produces a higher R2 = 0.95 value
compared to the linear model with a value R2 = 0.58, as shown
in Fig. 11. The t is noisy with a large number of samples lying
far from the central mass, which suggests that many of the
perovskites are unique or the model fails to learn the behav-
iours well.

The contribution interactions between the material
contributions are shown in the heatmaps for the A and B site
main elements in Fig. 12. We note that this form of data vis-
ualisation may not be fully representative of this dataset since
there are up to three elements at the A and B sites but we can
only capture and visualise the main (rst) one since there are
sometimes no elements at the second and third sites. Other
than the self-element interactions (i.e. Mg to Mg), there are
relatively few highly interacting groups of A site elements, and
the two main ones are Ho–Mg, and Mg–Sn. An observation we
can make here is that there is a signicant difference when
having elements as the rst or second A site element. For
example, there is only a single perovskite with Mg as the rst
element at the A site, but many more as the second element at
the A site, and there is a signicant difference in their energy
above hull levels and may be contributing to the poorer model
t. This again could be attributed to the low sample size where
there is only one instance of each Mg, and Sn, or the poor
visual representation given that there are a signicant number
of samples with these elements as the second or third element
at the A site. When we consider the B site in Fig. 12 (right), we
see several elements with effects that stand out from the rest,
notably Ir and Mo for contributions effects and Ir, Mo, Pd, and
Re for the composition effects. Again, there is a signicant
data imbalance within this attribute, and these elements only
contain a single sample and produce large impacts on the
model.

These materials could be removed, or more resources dedi-
cated to gathering more data. Due to the extreme effects that
these perovskites have upon the model, and the differences
between their energy levels and the rest of the data, we suggest
the removal of these materials. The net effect that they have
upon the model is negative and does not aid in predicting
similar materials as evidenced by their large residual errors
when predicting themselves. It is unlikely more data would give
a return on the investment.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 CC-plots for the linear model (left, R2= 0.58) and random forest (right, R2 = 0.98) for perovskite dataset predicting the energy above hull
(meV). Coloured by the energy above hull (meV) value for each instance.

Fig. 12 Heatmap showing the contribution effects of effects that each instance has upon each other based on Shapley residual decomposition.
Pairwise contribution based on A site #1 (left) and B site #1 (right). Coloured by the normalised contribution/composition that each element has
upon another's predicted outputs.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 6
/1

4/
20

25
 1

1:
42

:3
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3.3 Metallic glass dataset

Themetallic glass dataset contains 585material samples and 20
features consisting of descriptors of the composition of the
material, and two additional features detailing the chemical
formula along with the main element involved. The glass tran-
sition temperature (trg) is an approximate indicator for the
glass forming ability (GFA) of each alloy which can be used as
a target label for predictive tasks.36,37

3.3.1 Initial regression model. When tting the linear
model to the data we observed serious multicollinearity issues
in this dataset, in particular, between specic heat capacity and
heat capacity mass. As a result, we begin with the feature
selection using LASSO to drop some of these highly correlated
features, then t a model that includes pair-wise interaction
terms of the selected features. For brevity, we directly consider
© 2024 The Author(s). Published by the Royal Society of Chemistry
the best model produced which made use of the interaction
terms here. The residual and QQ plots are shown in Fig. 13 and
14, where we observe that the distribution of residuals is rela-
tively at across the tted values, but there are signicant
deviations from the tails of the QQ plots.

To interpret the outliers based on the model containing
feature interaction terms from Fig. 15, namely Au35Ca65, Ga8Sr82
and Pt42$5Cu27Ni59$5P21. These instances all have leverages
∼0.99, primarily due to some of their features taking extremely
large/small values. For example, Au35Ca65 has the smallest B
composition average and site1 heat capacity mass, Ga8Sr82 has
the smallest IsDBlock composition average, and Pt42$5Cu27-
Ni59$5P21 has the largest site1 density. Their extremely high
leverages combined with their relatively large standardised
residuals (1.44, 1.79, and −3.86 for Au35Ca65, Ga8Sr82, and
Digital Discovery, 2024, 3, 422–435 | 431
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Fig. 13 Residual plots for the linear model with all the raw features
(top), and fitted using interaction terms of the features (bottom) for the
metallic glass data.

Fig. 14 QQ plots for the linear model with all raw features (top), and
fitted using interaction terms of the features (bottom) for the metallic
glass data.

Fig. 15 Distribution of the Cooks' distance for each instance on the
best model from Fig. 13 (bottom).
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Pt42$5Cu27Ni59$5P21, respectively) resulted in them being
inuential materials. Overall the presence of these outlying
terms had a signicant impact on the regression model and
poses a challenge to model tting.

3.3.2 Machine learning analysis. Fig. 16 shows the CC plots
for the linear and random forest models to predict the glass
transition temperature. We observe the characteristic V-shaped
plot which is commonly seen among poor-performing models
where few points reduce the magnitude of the errors in the
model,5 This V-shaped curve is a result of a large number of
instances with large residual values (large composition mean)
which results in a larger number of instances producing large
contribution values which correspond to those large residuals.
The linear model is a poor t to the data with a low R2 = 0.27
score along with the V-shaped nature of the CC plot. The
random forest model performs signicantly better and has
a much larger number of subzero contribution values which
increases the quality of the predictions, despite the difference in
model performance, the most impactful materials remain
consistent across both models. However, there remains asym-
metry in the contribution effects signifying possible problems
with the data itself. One notable aspect of this data is the
432 | Digital Discovery, 2024, 3, 422–435
imbalance in the trg values where there are fewer materials with
trg values <0.4, with a single small outlier with trg = 0.2.
Furthermore, we observe a large number of deviations from the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 CC-plots for the linear model (left, R2 = 0.27) and random forest (right, R2 = 0.92) for the metallic glass dataset coloured by the glass
transition temperature.

Fig. 17 Heatmap showing the contribution effects of effects that each
instance has upon each other based on Shapley residual decompo-
sition. Pairwise contribution based on the main element present in the
metallic glass. Coloured by the normalised contribution/composition
that each element has upon another's predicted outputs.
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central group which may indicate poor coverage of the data
space or the presence of outliers. This indicates that this dataset
contains signicant selection bias that is common among
materials datasets that were not originally generated with
machine learning in mind.13

Within this dataset, there are many main element groups
with only a small number of materials, sometimes even only
one instance (such as Ho), and the effects of this sampling
procedure are reected in the heatmap shown in Fig. 17. We
observe that there is a ‘spotted’ quality, where many of those
same materials with a low number of samples contribute to
producing larger error values. Similar to the linear model
previously considered in Section 3.3.1, the impact of these
outliers in the model and data is signicant, even though the
© 2024 The Author(s). Published by the Royal Society of Chemistry
outliers we observe for the random forest are different
compared to the linear model. Glasses with Er and Sc main
elements were the most responsible for making the model
worse and interacted with other model predictions, whereas Pt
had a similar effect on itself but seemed to t the general trend
and had little negative impact upon other main element
predictions. A greater variety of Pt-rich glasses could be added
without compromising model performance or affecting other
instances, suggesting this is a safe and effective way of pro-
gressing this research.

4 Conclusion

In this paper, we presented an analysis of three established
datasets in the materials sciences, exploring the impact of
domain-driven normalisation, extreme values, and selection
bias. Our analysis includes tting a linear model and using
inuence statistics to analyse the effects that particular inu-
ential samples may have had on the model. We extend this
analysis using the residual decomposition framework to analyse
and compare the instance insights derived from statistical and
machine learning methods. These insights can provide a deeper
analysis of the materials data, or inform future data-gathering
processes to gather sample that ts better models.

In general, across the three datasets, we identied several
materials that were problematic and signicantly impacting the
model t. From a statistical perspective, these materials man-
ifested as outlying extreme values in the model diagnostic plots.
From a machine learning perspective, they had high contribu-
tion and composition values resulting in signicant changes in
model performance. The residual decomposition framework
can inform us of the appropriate treatment of these types of
materials, including removal as outliers, gathering more
specic data, or rebalancing the dataset using oversampling or
imputation.

Our workow approach is entirely general, and can also be
used as forensics to quantify the impact of practical decisions
that are made by researchers during data acquisition, cleaning,
and processing. We have provided an example in Section 3.1
where the impact of applying data normalisation can be
Digital Discovery, 2024, 3, 422–435 | 433
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compared with the model trained on the raw energy values. Not
all materials are equally important in materials informatics,
and predictions can be improved by focusing more attention on
thematerials that are. At the same time, quantifying the types of
data which even slightly deviate from each other can provide
greater insights into why or how the phenomena are generated
from the representative inputs if the inference task is the goal. If
the predictive ability is the only criterion, removing the outlying
instances tends to signicantly improve model performance.
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