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and Jian Lin *a

Rapid analysis of materials characterization spectra is pivotal for preventing the accumulation of unwieldy

datasets, thus accelerating subsequent decision-making. However, current methods heavily rely on

experience and domain knowledge, which not only proves tedious but also makes it hard to keep up

with the pace of data acquisition. In this context, we introduce a transferable Vision Transformer (ViT)

model for the identification of materials from their spectra, including XRD and FTIR. First, an optimal ViT

model was trained to predict metal organic frameworks (MOFs) from their XRD spectra. It attains

prediction accuracies of 70%, 93%, and 94.9% for Top-1, Top-3, and Top-5, respectively, and a shorter

training time of 269 seconds (∼30% faster) in comparison to a convolutional neural network model. The

dimension reduction and attention weight map underline its adeptness at capturing relevant features in

the XRD spectra for determining the prediction outcome. Moreover, the model can be transferred to

a new one for prediction of organic molecules from their FTIR spectra, attaining remarkable Top-1, Top-

3, and Top-5 prediction accuracies of 84%, 94.1%, and 96.7%, respectively. The introduced ViT-based

model would set a new avenue for handling diverse types of spectroscopic data, thus expediting the

materials characterization processes.
Introduction

Global challenges in clean energy, sustainability, medicine and
healthcare have sparked an unprecedented demand for inno-
vative functional materials.1 Given the urgency of these chal-
lenges, there is a compelling need to transition the research
paradigm from a labor-intensive and empirical one to an
autonomous one. This transformation spans several crucial
stages, encompassing synthesis, characterization, performance
testing, and informed decision making.2–5 Within these stages,
collection of characterization data assumes a paramount role.
Spectroscopic techniques including X-ray diffraction (XRD),
Fourier-transform infrared (FTIR), Raman, nuclear magnetic
resonance (NMR), and mass spectrometry (MS), as well as
microscopic methods like scanning electron microscopy,
transmission electron microscopy, and atomic force micros-
copy, witness an exponential surge in acquisition. This neces-
sitates real-time processing of this characterization data to
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prevent accumulation of the massive datasets, which otherwise
could signicantly impede the momentum of subsequent
decision-making steps. But current mainstream data analysis
practices predominantly rely on experience and domain
knowledge, a process that is not only monotonous but also is
incapable of matching the data acquisition pace. Consequently,
it is highly desirable to establish a rapid and precise technique
for processing characterization data with automation to expe-
dite the advancement of novel materials.

Recent advances in machine learning (ML), especially deep
learning (DL), offer an exciting opportunity to reshape scientic
research within the domains of chemical and materials
science.6–8 This is particularly evident in facilitating rapid
analysis of intricate data, including but not limited to XRD,9,10

IR/FTIR,11,12 Raman,13,14 and MS data.15,16 For example, Oviedo
and coworkers have demonstrated deployment of convolutional
neural networks (CNNs) to effectively classify the dimensional-
ities and space groups of thin-lm metal halides from XRD
spectra.9 This application showcases the potential of utilizing
advanced DL techniques to enhance the accuracy and efficiency
of materials characterization. Fine et al. developed CNNs for
identifying functional groups of unknown compounds from
fused FTIR and MS spectra.11 Despite much progress, applica-
tion of DL in spectrum analysis still faces several challenges.
First, with the increase in input data size, CNNs may not be
ideal for chemical spectra analysis because their lters have
Digital Discovery, 2024, 3, 369–380 | 369
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a local receptive eld, limiting their ability to capture global
patterns in the data.17 Furthermore, in the past studies, the DL
models lack generality to be transferred across different mate-
rials and/or spectrum types. Consequently, one would need to
initiate the training process for a new model from scratch for
each distinct application.

Transformer, initially introduced in 2017 for sequential data
processing,18 has become a predominant architecture for
natural language processing (NLP). This is attributed to its
adeptness in extracting broadly applicable representations from
the textual information that it encodes. The self-attention layers
inherent in the Transformer enable simultaneous handling of
sequential data, overcoming challenges associated with long-
range dependencies. This in turn facilitates efficient training
of neural networks using extensive datasets. Built upon the
foundation of the Transformer architecture, large language
models like ChatGPT, Bard, LLaMA, and CLAUDE19–22 have
shown surprisingly emergent ability in generating text and
performing zero- and few-shot learning scenarios. They hold
signicant promise across different application domains.23 For
instance, Transformer has paved the way to image recognition.
This diversication into visual modalities is prominently illus-
trated by Vision Transformer (ViT).

With its success in processing sequential data, Transformer
has recently demonstrated its versatility and far-reaching
impact in chemical and materials sciences, spanning from
literature mining to physiochemical property prediction.24–28 An
exemplary promise is reected in its power for data
analysis.17,29–36 In a recent study, a Mass2SMILES model based
on Transformer was employed to predict functional groups and
SMILES descriptors from the high-resolution MS/MS spectra,29

showing mean square errors (MSEs) of 0.0001 and 0.24 for the
functional groups and SMILES descriptors, respectively.
Another Transformer model was trained to predict molecular
structures from the 1H/13C NMR spectra, showing a Top-1
accuracy of 67%.30 When the input 1H NMR spectra are
combined with a set of likely compounds, the Top-1 accuracy is
increased to a remarkable value of 96%. In contrast to the MS
and NMR spectra showing sharp, discrete peaks corresponding
to the molecular features, XRD, Raman, and FTIR spectra oen
produce broader absorption or emission bands, reecting
a range of various features. These much-broadened bands
would make it difficult for many ML/DL models to predict
accurate results but could be well suited for the ViT models to
handle. Very recently, a ViT model was developed to identify
bacterial Gram types, species, and antibiotic-resistant strains in
bloodstream infections from the surface-enhanced Raman
scattering (SERS) spectra, achieving accuracies of 99.30% for
classifying the Gram types and 97.56% for the species.34 Despite
the progress, application of ViT in characterization data anal-
ysis is still in its infancy. Particularly, exploration of their
genericity for applications from one material to another and
from one spectrum type to another has been quite limited if not
any.

Herein, we demonstrate a transferable ViT model for accu-
rate and rapid identication of metal organic frameworks
(MOFs) and organic molecules from XRD and FTIR spectra,
370 | Digital Discovery, 2024, 3, 369–380
respectively. ViT for XRD (ViT-XRD) achieved prediction higher
accuracies of 70%, 93%, and 94.9% for Top-1, Top-3, and Top-5,
respectively, and a shorter training time of 269 seconds (∼30%
faster) than those of CNN-XRD (60.4%, 88.1%, 89.9%, and 378
seconds, respectively). Fine hyperparameter tuning reveals that
the length of the segmented spectra plays a critical role in
determining the predicted outcomes. Dimension reduction by t-
SNE shows that the ViT-XRD model is more adept at classifying
these XRD spectra than the CNN-XRD model. The derived
attention weight heatmap reveals that the ViT-XRD model
exhibits concentrated attention on the minor peaks to distin-
guish very close spectra showing close characteristics of the
primary peaks, while the CNNmodel more relies on the primary
peaks to do so. Furthermore, the ViT-XRD model can be trans-
ferred for FTIR spectra classication of a different material type
(organic molecules). This model is denoted as ViT-TL-FTIR.
Classication of the FTIR spectra is a more difficult task since
the characteristics of the FTIR spectra are much more irregular
than those of the XRD spectra. Nevertheless, the ViT-TL-FTIR
model achieved prediction accuracies of 84%, 94.1%, and
96.7% for Top-1, Top-3, and Top-5, respectively, which are much
higher than those of the non-transferred one and the trans-
ferred one from the CNN model (CNN-TL-FTIR). It is worth
noting that these results were attained without the noise
reduction in the raw spectra, thereby drastically expediting the
data analysis.

The contribution of this work can be summarized as follows.
First, we innovated the use of a Vision Transformer architecture
for classifying XRD spectra of MOFs, demonstrating higher
prediction accuracies compared to those of the CNN models.
Second, results from the dimension reduction and the attention
weight map uncover the mechanism of discerning key features
of the XRD spectra, thus improving the interpretability of the
model. Third, transferability of a pre-trained model to a new
one for analyzing the FTIR spectra of a different material type
accentuates the generality of Transformer for this purpose, thus
opening a new avenue to future research in integrating and
synthesizing the diverse spectroscopic data sources, e.g.,
Raman, NMR, and MS. This integration can further be enriched
by combining other chemical information, such as structures
and properties of the materials, thereby developing a compre-
hensive and multifaceted approach to materials discovery.

Results and discussion
Development of CNN and ViT models

The architectures of CNN-XRD and ViT-XRD models are illus-
trated in Fig. 1. Derived from the LeNet-5 architecture, the CNN-
XRDmodel is composed of multiple layers, each contributing to
the overall model's functionality (Fig. 1a). This architecture
includes an input layer, four convolutional blocks, one attened
layer, three fully connected layers, and an output layer. The
input layer processes the complete XRD spectra spanning
2theta (2q) in a range of 5–50°. Subsequently, the data
undergoes a series of transformations with four consecutive
convolution blocks. Each block comprises a convolutional layer
responsible for feature extraction, a max pooling layer for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Pipelines of (a) CNN-XRD and (b) ViT-XRD models.
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spatial down-sampling, and a dropout layer to prevent over-
tting. Following these convolutional operations, the data pass
through a attened layer followed by three fully connected
layers. These layers enable the model to comprehend patterns
within the data. Finally, the output layer affords the classica-
tion of the input data based on the operations in the preceding
layers. The detailed architecture of the CNN-XRD model can be
found in Fig. S1.†

The ViT-XRD model is constructed as a deep neural network,
leveraging a self-attention mechanism as its foundation
(Fig. 1b). It begins with segmenting the XRD spectra as the
input. For the spectra that cannot be evenly segmented into an
integer, the trailing portion of the data is discarded. Specically,
embedding of the spectra adds a class [CLS] token to symbolize
the start of embedding. To capture positional information,
position encoding is added to each segmented spectrum. Then,
the embedding is processed by a sequence of the Transformer
encoder stacks, each of which comprises a multi-head attention
(MHA) layer and a multilayer perceptron (MLP) layer (right
panel of Fig. 1b) with both residual connection and layer
normalization. In each attention head, the input embedding is
multiplied by three learnable weight vectors Wq, Wk, and Wv,
transforming it into a query, key, and value vector (Q, K, and V).
The scaled dot-product attention A is calculated from the
equation: A = somax((Q × KT)/(dk)

1/2) × V, where dk denotes
the dimension of Q and K. The randomly initializedWq,Wk, and
Wv vectors enable the ViT-XRD model to grasp contextual
information in the segmented spectra. All attention heads are
concatenated and then passed through the MLP for projecting
© 2024 The Author(s). Published by the Royal Society of Chemistry
the output to match the dimension of the embedded input. The
self-attention mechanism permits the incorporation of infor-
mation from the full spectra into individual embeddings.
Consequently, each of these embeddings stands as a represen-
tative of the entire sequence. The encoder iterates this process
through a dened number of layers, where a stochastic depth
dropout is incorporated at each layer for additional regulariza-
tion. Ultimately, only the [CLS] token enter an MLP regression
layer for the output classication.
Datasets and data preprocessing

A total of 2000 theoretical MOF XRD spectra were sourced from
the Cambridge Crystallographic Data Centre (CCDC) website
and subsequently truncated to t within a 2q range spanning
from 5 to 50°. Then, they were augmented by a factor of 200
using a physics-informed, three-step approach of peak elimi-
nation, scaling, and shi (Fig. S2†).9 Details can be referred to
ESI Note S1.† Inspired by the augmentation techniques such as
random crop and erasing in the domain of image classica-
tion,37 instead of augmenting data in a xed 2q range,9 we
augmented it in a randomized 2q range to obtain more diverse
training data. As a result, the trained model affords higher
prediction accuracies, as depicted in Fig. S3.† To test the
models, 30 experimental XRD spectra were collected from ten
well-known MOFs that were synthesized by three different
methods.10 These experimental XRD spectra were subjected to
subsequent preprocessing steps of Savitzky–Golay smoothing
and background subtraction (ESI Note S2†).9 Fig. S4† shows
augmented, theoretical, and experimental XRD spectra of the
Digital Discovery, 2024, 3, 369–380 | 371
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ten representative MOFs. The augmented theoretical XRD
spectra are split into training and validation datasets with
a ratio of 4 : 1, while the experimental XRD spectra serve as the
testing data.
Performance of ViT-XRD and CNN-XRD models

Fig. 2 depicts the performance of both CNN-XRD and ViT-XRD
models. Each model was trained 100 times with slightly varied
prediction accuracies and training durations each time. Their
statistical results are reported here. The optimal ViT-XRDmodel
shows average prediction accuracies for Top-1 (69.1%), Top-3
(93.2%), and Top-5 (94.9%), respectively, which are higher
than those of the CNN-XRD model (60%, 87.6%, and 89.5%,
respectively). This indicates that the ViT-XRD model can extract
more critical features from the XRD spectra than the CNN-XRD
model can. It is noteworthy that the ViT-XRD model requires an
average training duration of 269 seconds, which is 110 seconds
(∼30%) shorter than that of the CNN-XRD model. In compar-
ison to the CNN-XRD model, the superior performance of the
ViT-XRD model can be attributed to key factors such as the self-
attention mechanism and parallelism.18 The self-attention
mechanism in the Transformer architecture allows for effi-
cient capture of long-range dependencies within the spectra,
thereby facilitating faster convergence. Unlike CNNs that rely on
local sliding windows to process sequences, Transformer is
inherently designed for high parallelism. This enables them to
perform computations simultaneously at different positions in
a sequence, thus signicantly reducing the training time.

In addition to the CNN-XRD and ViT-XRD models, ve
traditional ML models including Näıve Bayes (NB), k-nearest
neighbors (KNNs), logistic regression (LR), random forest
(RF), extreme gradient boosting (XGB) were also trained to
classify the XRD spectra. As summarized in Table S1,† though
impressive performance in performing various tasks,7,38 the
ensemble models including RF and XGB were found to be
entirely inappropriate for spectra identication, requiring
exorbitant computational times and yielding near-zero accura-
cies. NB exhibited prediction accuracies of less than 20% across
Top-1 to Top-5 and training time of ∼4 seconds, while KNN
Fig. 2 Comparison performance of the CNN-XRD and ViT-XRD
models in terms of prediction accuracies and training time.

372 | Digital Discovery, 2024, 3, 369–380
showed higher prediction accuracies (36.7%, 63.3%, and
66.7%) and shorter training time (1.8 seconds). In contrast, LR,
previously used for materials spectra analysis,39,40 demonstrated
pretty high prediction accuracies. However, it required
a training time of 4100 seconds, which is >10 times longer than
those of the CNN-XRD and ViT-XRD models. This is mainly
because LR does not inherently support parallel computation
and cannot fully utilize the advantage of parallelization capa-
bilities embedded in modern GPUs.

Hyperparameter tuning for the ViT-XRD model

To improve model's generalizability and robustness, tuning the
hyperparameters of the ViT-XRD model was performed using
a grid search technique. Fig. 3 shows the prediction accuracies
when three hyperparameters of Embed_dim, Depth, and
Num_head are tuned. The Embed_dim sets the length of the
segmented XRD spectra, directly inuencing their positional
information. As shown in Fig. 3a, the prediction accuracies
increase with the increased Embed_dim, peaking at 66.9%,
94.6%, and 96.2% for Top-1, Top-3, and Top-5, respectively,
when Embed_dim is 120. But a further increase in Embed_dim
decreases the accuracies. Notably, the corresponding training
time shows the opposite trend. Embed_dim of 120 requires the
lowest training time of ∼420 s. Depth signies the number of
the Transformer's encoder stacks in deciphering intricate rela-
tionships within the spectra. As depicted in Fig. 3b, an optimal
value of 7 for Depth achieves satisfactory prediction accuracies
although a training time of 336 s is slightly larger than that
achieved in the model trained with Depth of 4. Num_head
governs the number of self-attention heads for parallel pro-
cessing. The prediction accuracies for Top-1, Top-3, and Top-5
occur when Num_head is 4 without signicantly increasing
the training time (Fig. 3c). Hence, the optimal three hyper-
parameters were determined to be 120 for Embed_dim, 7 for
Depths, and 4 for Num_head. To investigate the importance of
these hyperparameters on performance, a set of decision trees
was trained (ESI Note S3 and Fig. S5–S7†). The results from
Fig. S5–S7† are summarized in Fig. 3d, revealing that
Embed_dim plays the most important role in classifying the
XRD spectra as it occupies an importance score of ∼90%,
consistent with the analysis shown in Fig. 3a. When the number
is larger or less than 120, the prediction accuracies are greatly
reduced. Num_head takes∼10% in the importance score, while
the importance of Depth is negligible. It is worth noting that we
tried many reasonable hyperparameter combinations. The
afforded prediction accuracies by the ViT-XRD model are
consistently higher than those by the CNN-XRD model.

Visualization of attention weight maps output from the ViT-
XRD model

Understanding how the ViT model can efficiently classify the
XRD spectra is quite desired. To do that, t-distributed stochastic
neighbor embedding (t-SNE) was rst employed. t-SNE is
a dimensionality reduction technique commonly used in data
visualization and pattern recognition.41 It represents the high-
dimensional data in a lower-dimensional space while
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Performance of the ViT-XRD models in terms of prediction accuracies and training time when trained with varied hyperparameters of (a)
Embed_dim while setting Depth and Num_head to be 10 and 10, respectively; (b) Depth while setting Embed_dim and Num_head to be 120 and
10, respectively; and (c) Num_head while setting Embed_dim and Depth to be 120 and 7, respectively; (d) hyperparameter importance scores
among Embed_dim, Depth, and Num_head.
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preserving the pairwise similarities among them. The t-SNE plot
can reveal clusters, patterns, or structures that might appear in
the original high-dimensional space. The t-SNE plot of the 2000
theoretical XRD spectra is depicted in Fig. 4a. It is evident that
the XRD spectra sharing similar patterns are clustered together
while those less similar spectra are furthered away, e.g., the dots
representing MOF-2, MOF-5, ZIF-71, and ZIF-90 are scattered
apart. Close observation shows that the dots belonging to ZIF-8
and ZIF-67 are overlapped, like those of ZIF-7 and ZIF-9, MOF-74
and MOF-199, which is consistent with the results shown in
Fig. S3,† indicating similarity of their XRD spectra. The close
similarity leads to the decreased prediction accuracy by the
CNN-XRD model. But the ViT-XRD model seems to easily
distinguish them. It inspires us to explore the mechanism
behind it.

To do that, representations of the corresponding spectra
learned by the CNN-XRD and ViT-XRD models were visualized
by t-SNE (Fig. 4b and c). Surprisingly, ZIF-8 and ZIF-67, MOF-74
and MOF-199, and ZIF-7 and ZIF-9 no longer overlapped.
Instead, they are scattered and easily dispersible. But the
representations extracted from the CNN-XRD model for ZIF-8,
ZIF-67, and ZIF-90 still overlapped. This suggests that the ViT-
XRD model is more adept at classifying these XRD spectra
with higher accuracies than the CNN-XRD model. To test this
hypothesis, two sets of spectra for a total of 10 MOFs were
chosen. Details of selection criteria are explained in ESI Note
S4,† and their full names are listed in Table S2.† The rst set
© 2024 The Author(s). Published by the Royal Society of Chemistry
contains the ve MOFs that are maximally distant from their
nearest neighbors (yellow dots in Fig. 4a), which still maintain
a distinguishable distance from other MOFs in t-SNE maps
(yellow dots in Fig. 4b and c). The second set comprises another
ve MOFs that are the most closely clustered together (purple
dots in Fig. 4a), which are widely distributed across the feature
space by the CNN-XRD model with reduced localized concen-
tration (purple dots in Fig. 4b). But the ViT-XRDmodel succeeds
in dispersing them while still maintaining them within the
same region, thereby retaining a visible indication of their
intrinsic similarities (purple dots in Fig. 4c).

To deeply understand how these two models identify XRD
spectra, two representative ZIFs including ZIF-8 and ZIF-67
sharing nearly similar XRD spectra were chosen. Fig. 5a pres-
ents the XRD spectra of ZIF-8 and ZIF-67, annotated with crystal
planes at respective peaks. Obviously, three primary peaks at
7.4° and 12.8°, corresponding to the (011) and (012) planes are
virtually identical for two ZIFs. In contrast, a few minor peaks
located at 16.5°, 18.1°, 24.6°, and 26.8°, corresponding to the
(013), (222), (233), and (134) planes, exhibit different intensities,
which are the main disparities between these two spectra. Since
CNN can't classify them while ViT can, herein, we aim to
disclose how they make such different decisions. Heatmap,
a graphical representation to visualize the intensity or impor-
tance of certain values/regions, is useful for interpreting the
outcome of neural networks. For CNNs, a class activation map
(CAM), highlighting the regions in the input spectra that most
Digital Discovery, 2024, 3, 369–380 | 373
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Fig. 4 t-SNE plots of (a) theoretical XRD spectra of 2000 MOFs,
representations learned from (b) the CNN-XRDmodel and (c) the ViT-
XRD model. Red: ten representative XRD spectra of MOFs. Purple: five
MOFs with maximal distance to their respective nearest neighbors.
Yellow: five most clustered MOFs. The CCDC numbers and full names
of these 10 MOFs are listed in Table S2.†
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inuence the classication result, was used for a comparative
analysis.42 The CAMs for ZIF-8 and ZIF-67 were plotted by
utilizing the output of the last convolutional layer of the CNN-
XRD model, and the details can be found in the Methods. As
shown in Fig. 5b and c, the red regions in CAMs reveal that the
CNN-XRD model predominantly focuses on the two primary
374 | Digital Discovery, 2024, 3, 369–380
peaks at 7.4°, 12.8° with a slight blue-shi (∼3°) when making
the classifying decision. Such a mechanism may lead to the
wrong classication when the model is fed with very similar
spectra in the primary peaks like the ones of ZIF-8 and ZIF-67.

In the context of the ViT model, the learned attention
weights can be visualized to investigate the attention allocated
to different regions of the input XRD spectra, highlighting the
extent to which each input element contributes to the model's
decision-making process.43,44 For each XRD spectrum, a total of
28 attention weight maps can be obtained from the seven
encoder layers and four attention heads. Fig. S8† showcases the
attention maps for ZIF-8 and ZIF-67 as well as MOF-74 and
MOF-199 as these respective XRD spectra are similar to closed
primary peaks. Additional examples are available on GitHub. In
the rst layer, attention disperses across the spectra segments,
implying the model's effort to understand the primary patterns.
As the ViT-XRD model delves into deeper encoder layers, the
attention shis noticeably to the interrelationships among
different spectra segments, leveraging the inherent advantages
of the Transformer's attention mechanism. This transition
signies the model's encompassment of various data slices
from their simple patterns to complex ones, from a localized
relationship to a global one. Close observation found that the
attention maps for ZIF-8, ZIF-67, MOF-74, and MOF-199 share
similar trends in the rst few layers, indicating a broad focus on
key features. However, a divergence in attention patterns
between ZIF-8/ZIF-67 and MOF-74/MOF-199 becomes evident in
the deeper layers. Given that the XRD spectra of MOF-74 and
MOF-199 are totally different from those of ZIF-8 and ZIF-67,
such divergence highlights the capability of the ViT model to
ne-tune its focus on subtle peak differences. The attention
mechanism in the Transformer architecture allows the model to
capture long-range dependencies and contextual information of
the XRD spectra, resulting in higher prediction accuracies.

When it evolves to the last encoder layer (Fig. 6a and b),
different attention heads play diverse roles. As for the attention
weight map of ZIF-8 and ZIF-67, Heads 1, 3 and 4 exhibit a few
obvious vertical patterns, while Head 2 focuses on more specic
regions. For instance, Head 1 shows two vertical patterns
located at the regions of 5–7.4° and 14.6–17°, corresponding to
the (011) plane, (022)/(013) planes, respectively. Head 3
possesses an obvious vertical pattern located at the regions of
9.8–12.2° corresponding to the (022)/(013) planes. Head 4
focuses more on the peaks at 21.8–24.2° for ZIF-8 while the
peaks at 7.4–9.8° and 26.6–29° for ZIF-67. As for the specic
regions of ZIF-8, in Head 2, the peaks at the 9.8–12.2° region
correspond to the (022) plane. For ZIF-67, two large attention
weights in Head 1 are related to the peaks of the (011) and (044)
planes and the peaks of the (114) and (044)/(344) planes. Head 2
shows the large attention weights to the peaks of the (112) and
(114) planes. Head 3 shows large attention weights to the peaks
of the (114) and (123) planes, while Head 4 exhibits the large
ones to the peaks of the (011) and (233)/(224) planes.

To directly compare how attention is distributed across the
regions of the spectra, an attention rollout map (ARM), as
shown in Fig. 6c, is averaged from the rst rows of the attention
weights from the XRD spectra of ZIF-8 and ZIF-67 (red squares
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) XRD spectra of ZIF-8 and ZIF-67. Class activation maps derived from the CNN-XRD model on (b) ZIF-8 and (c) ZIF-67.

Fig. 6 Heat maps of the learned attention weights from the ViT-XRD model's last layer over the XRD spectrum of (a) ZIF-8 and (b) ZIF-67.
Normalized attention rollout map of (c) ZIF-8 and (d) ZIF-67.
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in Fig. 6a and b).44 It represents the attention weights of the
[CLS] token query over the spectra segments, offering inter-
pretability into the mechanism of a Transformer model on
making decisions. The ARM clearly shows that the highest (%
© 2024 The Author(s). Published by the Royal Society of Chemistry
7E30%) attention from the VIT-XRDmodel was concentrated on
the (022)/(013) peaks, while the remaining attentions are paid to
the other peaks. These results indicated that the ViT model can
detect less apparent but potentially relevant peaks by detecting
Digital Discovery, 2024, 3, 369–380 | 375
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the relevance of the distances and intensity ratios between the
peaks when classifying the spectra, thus uncovering the mech-
anism of how the ViT model can better distinguish very similar
spectra than the CNN does.

Reduced 2q range

Visualization of self-attention weights reveals that the ViT-XRD
model focuses more on the initial segments of XRD data for
making decisions. This observation prompts us to assess the
balance between accuracy and the range of the 2q angle. This is
because narrowing the range will reduce the data amount and
subsequently the model training time. Herein, we investigated
how narrowing the 2q range would change the predictive accu-
racy of the ViT-XRDmodel (Fig. S9†). The initial 2q range in 5–50°
serves as a baseline. Then it is narrowed to 5–45°, 5–40°, 5–35°,
and 5–30° by directly truncating the data points out of these
ranges. Subsequently, the ViT-XRD models were retrained using
these reduced datasets. In comparison with the original model,
the prediction accuracies for Top-1, Top-3, and Top-5 from the
retrainedmodels are marginally decreased, but the training time
is signicantly decreased, highlighting the robustness of the
model for rapid classication. For instance, if taking the model
trained with 2q in the range of 5–30° as an example, the Top-1
accuracy slightly decreases from 96.7% to 92%, while the
acquisition time is shortened from 11.25 to 6.25 minutes given
a scan rate of 4° per minute, which may be further reduced by
increasing the scan rate. These results prove that the crucial
characteristic features required for MOF classication are
predominantly contained within the smaller 2q ranges.

Transfer learning from XRD to FTIR

The ViT model has exhibited remarkable prediction accuracy in
classication of the XRD spectra. Retraining a new model for
application in different types of spectra, e.g., FTIR, for
a different type of material can be time-consuming, labor-
intensive, and oen impractical due to the challenges of gath-
ering and curating extensive data. This limitation poses
a substantial obstacle to the application of DL in chemical and
materials science, where data limitation is an issue. An alter-
native solution to this issue is to use transfer learning (TL). TL
leverages knowledge gained from a source domain and adapts it
to another one. This approach has garnered much attention as
it mitigates the need for massive datasets and reduces compu-
tation. Tian et al. demonstrated a TL strategy to improve the
accuracy of classifying Raman spectra trained by limited data.45

Another study by Kim and colleagues showcased the universal
transferability of a MOFTransformer model.46 They achieved
this by ne-tuning an already trained model for predictions of
diverse MOF properties like gas adsorption, diffusivity, and
electronic properties. These accomplishments motivate us to
investigate the transferability of our ViT-XRD model to classify
another type of spectrum, e.g., FTIR, for a different type of
material. The FTIR spectra provide intricate insights into
chemical bonding and molecular structures. Each chemical
bond possesses distinct light absorption frequencies, resulting
in an FTIR spectrum that acts as a molecular “ngerprint”. It
376 | Digital Discovery, 2024, 3, 369–380
can be used to identify unknown substances and quantify
specic compounds within mixtures. However, it poses a chal-
lenge in analysis and interpretation due to irregular peak
shapes, containing various absorptions originating from the
distinct functional groups.47,48 These functional groups are
inevitably subjected to varying degrees of inuence from nearby
molecular features and environmental conditions. Moreover,
the presence or absence of a particular functional group is not
solely determined by the presence or absence of a single spec-
tral band; it is also by intricate spectral regions. These
complexities make the analysis of FTIR time-consuming and
error-prone, necessitating the development of powerful and
robust analysis techniques to expedite this process.

Given the complexities associated with FTIR analysis, it was
chosen as a demo to evaluate the transferability of the ViT-XRD
model. Fig. 7a depicts the TL procedure, wherein the ViT-XRD
model that was originally trained by the XRD spectra was
transferred to classify the experimental FTIR spectra of 3753
organic molecules. They were selected by criteria on the pres-
ence of carbon, hydrogen, nitrogen, sulfur, and uorine atoms
while the number of carbon atoms ranges from 6 to 20.
Subsequently, these FTIR spectra underwent a series of pre-
processing steps, encompassing transmission-to-absorption
conversion, wavelength-to-wavenumber conversion, trunca-
tion, interpolation, and normalization. It is worth mentioning
that neither noise nor background reduction was employed to
preprocess the raw FTIR spectra.

The transferred ViT model can harness its prior under-
standing from the XRD spectra to effectively classify the FTIR
spectra, even though they differ largely in the spectra character-
istics. To train a new ViT model for the FTIR classication by TL,
the weights, and biases of the pre-trained ViT-XRD model were
used as initial parameters without any subsequent modication
or changes of the model components. This model is denoted as
ViT-TL-FTIR. As a control, a separate ViT-FTIR model was trained
from scratch using the same FTIR spectra. It is worth noting that
the congurations with the 10 attention heads and 10 encoders
were set for both the ViT-TL-FTIR and ViT-FTIR models. As
a control study, a transferred CNN-XRD model, denoted as CNN-
TL-FTIR was also trained, while a CNN-FTIR model without TL
was developed. Fig. 6b and c show the Top-1, Top-3, and Top-5
prediction accuracies from these models. Generally, the trans-
ferredmodels show enhanced prediction accuracies compared to
the non-transferred ones.45,46 Notably, the ViT-TL-FTIR model
outperforms the CNN-TL-FTIR model, with Top-1, Top-3, and
Top-5 prediction accuracies of 84%, 94.1%, and 96.7%, respec-
tively, highlighting the inherent advantages of the Transformer
architecture, while the ViT-FTIR model affords much lower cor-
responding accuracies of only 72.5%, 85.4%, and 88.9% (Fig. 7b).
Similarly, the CNN-TL-FTIR model delivers prediction accuracies
of 50.6%, 66.9% and 73.1% for Top-1, Top-3, and Top-5, respec-
tively, which are higher than those predicted by the CNN-FTIR
model (Fig. 7c). But they are respectively lower than those affor-
ded by the ViT-TL-FTIR model, agreeing well with the conclusion
that Transformer is superior to CNN for this application.

Furthermore, effects of Embed_dim, augmentation times,
and classication categories on the prediction accuracies of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The workflow and results of the transferred ViT model for FTIR classification. (a) Sources of XRD and FTIR spectra and the schematic of
transfer learning the ViT-XRDmodel to the ViT-TL-FTIRmodel. Prediction accuracies and training times of the ViT-FTIR and ViT-TL-FTIRmodels
(b) as well as the CNN-FTIR and CNN-TL-FTIR models (c) for classifying 3753 molecules.
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ViT-TL-FTIR model were investigated (Fig. S10–S12†). Fig. S10†
shows that the reduction of Embed_dim to 120 decreases the
prediction accuracies to 65.5%, 80.2%, and 84.4% for Top-1, Top-
3, and Top-5, respectively. A decrease in the augmentation times
reduces the prediction accuracies as well as the training time
(Fig. S11†). For instance, if the model is trained by data
augmented 10 times, the accuracies for Top-1, Top-3, and Top-5
decrease to 68.7%, 83.7%, and 88.5%, and the training time
decreases from 420 to 132 seconds. We also investigated the
effect of classes (the number of organic molecules) on the model
performance. As shown in Fig. S12,† the Top-1 prediction accu-
racy afforded by the model trained for 500 molecules is 94.4%,
which reduces to 84.7% when the number of the molecules
increases to 3000. The decrease in the Top-1 prediction accuracy
with the increase of classes is common in a classication task.10
Conclusions

In this study, we demonstrate an interpretable and transferrable
ViT model for material classication from their spectra. The ViT
model rst trained by the XRD spectra of MOFs performs better
than the CNNmodel. Visualization of the attention weight maps
illustrates that the self-attention mechanism helps the model to
capture long-range dependencies of the tokens in the XRD
spectra. Then, the pre-trained ViT-XRD model was successfully
transferred to classify the FTIR spectra of organic molecules.
Despite the higher characteristic complexity in the FTIR spectra,
© 2024 The Author(s). Published by the Royal Society of Chemistry
the transferred models exhibit superior performance to the
non-transferred ones. It indicates that by leveraging the TL
strategy, the issues of lacking enough high-quality data in the
chemical and material elds can be mitigated. This ViT model
provides an accurate and interpretable approach to identify
materials from their spectral ngerprints, laying a broader
platform for analyzing other spectroscopic modalities, such as
Raman and NMR. Importantly, the inherent structure of the
Transformer models holds great promise for multimodal
learning by fusing diverse types of characterization data. Such
a multimodal Transformer model, coupled with transferability
as demonstrated in this study, would lead to a new route to
comprehensive structure–property analysis.
Methods
Theoretical and experimental XRD data: collection and
processing

A total of 2000 theoretical XRD spectra in the Crystallographic
Information File (CIF) were sourced from an open-source
database of the Cambridge Crystallographic Data Centre
(CCDC). Then, all CIFs were converted in a batch mode to a tab-
separated format using Mercury soware for subsequent data
processing. To collect the experimental XRD, ten MOFs (ZIF-7,
ZIF-8, ZIF-9, ZIF-67, ZIF-71, ZIF-90, MOF-2, MOF-5, MOF-74
and MOF-199) were synthesized by three common methods,
resulting in a total of thirty MOF samples.10 Then experimental
Digital Discovery, 2024, 3, 369–380 | 377
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XRD spectra were collected from these samples using a Bruker
D8 Advance XRD. The spectra underwent processing procedures
of noise reduction and background subtraction and then were
augmented. Details are explained in ESI Note S2.† To maintain
consistency, all XRD spectra were truncated to the same 2q
range of 5–50°, and then rescaled to a range of 0–1.

FTIR data collection and processing

A total of 3753 organic molecules were sourced from the
National Institute for Science and Technology (NIST) Chemistry
WebBook. Specically, the molecules that contain 6–20 carbon
atoms, hydrogen, nitrogen, sulfur, and uorine were selected.
These FTIR spectra were standardized to the absorption type
with the same wavenumber unit. Subsequently, a three-step
data processing by truncation, interpolation, and intensity
normalization was employed to ensure a constant wavenumber
in the same range of 700–3500 and a standardized absorption
intensity in the range of 0–1. Note that they did not undergo
noise or background reduction. Note that among the 5–10 FTIR
spectra for each molecule, one spectrum was designed as the
test set. The remaining ones were randomly selected for
augmentation to a total of 50 spectra. These augmented data-
sets were subsequently partitioned into training and validation
subsets with a ratio of 4 : 1.

Model training

NB, KNN, LR, RF, XGB, CNN, and ViT were trained. A grid-
search strategy was applied to nd the optimal hyper-
parameters. To prevent overtting, an early stopping strategy
was implemented when training the CNN and ViT models. The
training was terminated prematurely if it surpassed a patience
level of 3 epochs without a signicant decrease in the loss.
Unless specied, for each model, the training was replicated ten
times to obtain the mean and standard deviations of the
prediction accuracies. The model performance was evaluated
using Top-N accuracy on the test datasets. In detail, Top-1
accuracy refers to the ViT model's capability to correctly rank
anMOF sample at the rst position. Meanwhile, Top-3 and Top-
5 accuracies assess the model's accuracy in ranking the sample
within the top three and top ve positions, respectively.10 All
computations were conducted on a desktop equipped with an
Intel Core i7-12700K processor, an NVIDIA GeForce 2080 GPU,
and 64 GB of RAM, running on the Ubuntu 22.04.2 operating
system. The codes were implemented using Python 3.7.9. For
data processing, we utilized NumPy version 1.19.2 and Pandas
version 1.2.1. The data processing and analysis on the tradi-
tional ML models were undertaken using Scikit-learn 1.0.2. The
CNN model was constructed using the TensorFlow 2.2.0
framework, while the ViT model was built using PyTorch
1.13.1+cu117.

Heatmap

ARM and CAM for ViT-XRD and CNN-XRD models, respectively,
were plotted. For the ARM, the attention weights associated
with the ‘CLS’ token were extracted from each attention head in
the last layer of the Transformer encoder. These attention
378 | Digital Discovery, 2024, 3, 369–380
weights indicate the importance of different positions in the
input sequence relative to the ‘CLS’ token. These weights were
averaged across all attention heads to create a composite
attention vector, which illustrates the cumulative attention in
the model allocated to the CLS token. Each composite vector
was mapped to the corresponding XRD spectrum. The CAM was
plot by utilizing the output of the last convolutional layer of the
CNN-XRDmodel. Specically, we took the weights from the fully
connected layer and performed a matrix multiplication with the
feature maps from the last convolutional layer.

Data availability

All codes are publicly available at https://github.com/
linresearchgroup/ViT_Materials_Spectra. For the source data,
the theoretical XRD spectra are available from the CCDC. The
experimental FTIR spectra can be sourced from the NIST
WebBook and are copyrighted by NIST. Additional attention
maps for the XRD spectra of other MOFs are summarized in
(https://github.com/linresearchgroup/ViT_Materials_Spectra/
tree/main/Visualization). Additional data can be made available
from the corresponding author upon request.
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Maseda, Determination of polymorphic purity by near
infrared spectrometry, Anal. Chim. Acta, 2000, 407, 247–254.

40 X. Fan, W. Ming, H. Zeng, Z. Zhang and H. Lu, Deep
learning-based component identication for the Raman
spectra of mixtures, Analyst, 2019, 144, 1789–1798.

41 L. Van der Maaten and G. Hinton, Visualizing Data using t-
SNE, J. Mach. Learn. Res., 2008, 9, 2579–2605.

42 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba,
Learning Deep Features for Discriminative Localization,
arXiv, 2015, preprint, arXiv:1512.04150, DOI: 10.48550/
arXiv.1512.04150.

43 J. Vig, A Multiscale Visualization of Attention in the
Transformer Model, arXiv, 2019, preprint,
arXiv:1906.05714, DOI: 10.48550/arXiv.1906.05714.

44 S. Abnar and W. Zuidema, Quantifying Attention Flow in
Transformers, arXiv, 2020, preprint, arXiv:2005.00928, DOI:
10.48550/arXiv.2005.00928.

45 R. Zhang, H. Xie, S. Cai, Y. Hu, G.-k. Liu, W. Hong and
Z.-q. Tian, Transfer-learning-based Raman spectra
identication, J. Raman Spectrosc., 2020, 51, 176–186.

46 Y. Kang, H. Park, B. Smit and J. Kim, A multi-modal pre-
training transformer for universal transfer learning in
metal–organic frameworks, Nat. Mach. Intell., 2023, 5, 309–
318.

47 Z. Wang, X. Feng, J. Liu, M. Lu and M. Li, Functional groups
prediction from infrared spectra based on computer-assist
approaches, Microchem. J., 2020, 159, 105395.

48 F. Zhang, R. Zhang, W. Wang, W. Yang, L. Li, Y. Xiong,
Q. Kang and Y. Du, Ridge regression combined with model
complexity analysis for near infrared (NIR) spectroscopic
model updating, Chemom. Intell. Lab. Syst., 2019, 195,
103896.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.2010.09885
https://doi.org/10.26434/chemrxiv-2023-l6lzp
https://doi.org/10.26434/chemrxiv-2023-979mt
https://doi.org/10.26434/chemrxiv-2023-979mt
https://doi.org/10.1101/2023.07.06.547963
https://doi.org/10.26434/chemrxiv-2023-8wxcz
https://doi.org/10.48550/arXiv.2111.04824
https://doi.org/10.48550/arXiv.2111.04824
https://doi.org/10.48550/arXiv.2307.08240
https://doi.org/10.48550/arXiv.1512.04150
https://doi.org/10.48550/arXiv.1512.04150
https://doi.org/10.48550/arXiv.1906.05714
https://doi.org/10.48550/arXiv.2005.00928
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00198a

	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a

	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a

	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a
	An interpretable and transferrable vision transformer model for rapid materials spectra classificationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00198a


