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of chemical graph neural network
representations in terms of chemical moieties

Amer Marwan El-Samman,*a Incé Amina Husain, a Mai Huynh,a Stefano De
Castro, a Brooke Morton a and Stijn De Baerdemacker ab

Graph neural nets, such as SchNet, [Schütt et al., J. Chem. Phys., 2018, 148, 241722], and AIMNet, [Zubatyuk

et al., Sci. Adv., 2019, 5, 8] provide accurate predictions of chemical quantities without invoking any direct

physical or chemical principles. These methods learn a hidden statistical representation of molecular

systems in an end-to-end fashion; from xyz coordinates to molecular properties with many hidden

layers in between. This naturally leads to the interpretability question: what underlying chemical model

determines the algorithm's accurate decision-making? By analyzing the hidden layer activations of QM9-

trained graph neural networks, also known as “embedding vectors” with dimension-reduction, linear

discriminant analysis and Euclidean-distance measures we shed light on an interpretation. The result is

a quantifiable geometry of these models' decision making that identifies chemical moieties and has a low

parametric space of ∼5 important parameters from the fully-trained 128-parameter embedding. The

geometry of the embedding space organizes these moieties with sharp linear boundaries that can

classify each chemical environment within <5 × 10−4 error. Euclidean distance between embedding

vectors can be used to demonstrate a versatile molecular similarity measure, comparable to other

popular hand-crafted representations such as Smooth Overlap of Atomic Positions (SOAP). We also

reveal that the embedding vectors can be used to extract observables that are related to chemical

environments such as pKa and NMR. While not presenting a fully comprehensive theory of

interpretability, this work is in line with the recent push for explainable AI (XAI) and gives insights into the

depth of modern statistical representations of chemistry, such as graph neural nets, in this rapidly

evolving technology.
1 Introduction

Neural networks have become common-use in our increasingly
data-driven world. With the proliferation of giant computa-
tional chemistry databases, it is becoming more evident that
chemistry can benet from such techniques as well. For
example, they can aid in drug and material discovery,2–13 speed
up lengthy electronic structure calculations,14–16 or bypass them
all together for the predictions of chemical properties.17–23 Their
ability to provide on-par predictions with ab initio data is based
on their ability to intricately t such data. However, these ts
are generally high-dimensional, non-linear, and hidden from
the user of the algorithm. With this type of process, usually
involving hundreds of parameters, it is not clear if the algo-
rithm's predictions are due to an underlying reliable chemical
model or are just a result of its sophisticated tting techniques.
There have increasingly been attempts to explain these models,
of Chemistry, 30 Dineen Dr, Fredericton,

of Mathematics and Statistics, 30 Dineen

rdemacker@unb.ca

–557
also known as explainable-AI techniques (XAI).24–26 This has
especially been the case for ML models that make risky auton-
omous decisions, such as those used in medicine or self-driving
vehicle technology.27–38 For chemistry, explainability is
becoming a way of gaining insights into complex chemical data
which may be easily overlooked by traditional analysis.39–42

We are specically interested in providing interpretability to
graph neural nets (GNN) that bypass the computation of
chemistry's electronic properties. Such neural nets hold
promise in statistically learning the solutions (or approximate
solutions) of the costly Schrödinger equation, a feat that would
tremendously speed up the exploration of chemical space.43–45

In this work, we narrow in on this new and rapidly pro-
gressing area of graph modelling of chemical data, using GNNs
such as SchNet. By analyzing the graph neural network's acti-
vations in response to molecular input, we nd that the acti-
vations (called “embeddings”) t sharply within what is
universally understood as chemical environments/moieties.
Furthermore, we show that one can associate a Euclidean-
distance measure to the hidden atomistic neural net activa-
tions, allowing for a straightforward molecular similarity
measure in terms of Euclidean distances. This Euclidean-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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distance-preserving space of embeddings can be analyzed with
Linear Discriminant Analysis (LDA) to show clear-cut bound-
aries between different chemical moieties.
1.1 Related work

Work on GNN interpretability in chemistry has been done
before in other contexts. Letzgus et al.46 showed that SchNet
uses the bond order concept to account for atomization energy
contributions. They also showed that SchNet captures the ex-
pected trend of increasing energies with increasing bond order.
In this work, we observe the concept of chemical moieties rather
than bonds as another signicant contributor to the model's
decision-making.

Early indications of this concept have been observed by
Zubatyuk et al.47 and Smith et al.48 while validating the feature
vectors of their AIMNet neural net and ANI-1x model, respec-
tively, with t-distributed stochastic neighbor embedding (t-
SNE). In both architectures, the learned feature vectors of their
neural net naturally clustered into distinct regions representing
distinct chemical environments found in the QM9 and ANI
datasets. However, due to the distortions of the non-linear t-SNE
projection used in their studies,49 it is not possible to further
analyze and quantify this space as a representation of chemistry
on its own with its own useful characteristics. More recently,
Lederer et al. showed that a type-assignment matrix50 and
adjacency matrix can be used to arrive at an unsupervised
learning objective to assign atoms to their chemical moieties.51

In our work, we take a different approach. In the interest of
revealing the hidden contents of a GNN model itself, we do not
design a machine learning model or do any additional training.
Instead, we analyze a pretrained GNN model of chemistry with
Euclidean-distance-preserving techniques to show a represen-
tation of chemistry that already contains structural integrity in
terms of chemical moieties without the need for more machine
learning. A simple Linear Discriminant Analysis (LDA) model
shows that a GNN model already contains a representation that
divides boundaries between chemical moieties with high reso-
lution (classication error of 3× 10−4). In addition, the internal
structure of the model can be analyzed with Euclidean-distance
measurements which act as a similarity measure between these
moieties. We also provide precursors on how this representa-
tion can be used for transfer learning purposes towards other
local chemical properties such as pKa and NMR.

The approach we take in this work is a global one.52–55 We
seek to understand the elementary decision-making and the
variables that underlie the system's predictions as a whole.
Whereas local explanations, such as feature-attribution
methods, saliency maps, deep visualization and others56–65 can
render case-by-case explanations, they are not aimed at
providing an appreciable understanding that encapsulates the
whole black-box model in one interpretable model. In many
instances decision-trees are seen as global interpretable models
since they can be thought of as performing a set of elementary
decisions.66 The purpose of this work is to seek an interpreta-
tion on that level for GNNs: what is the system of decision-
making that the model undergoes for a prediction and what
© 2024 The Author(s). Published by the Royal Society of Chemistry
are the variables at play that affect decisions (and predictions)?
With that respect, we follow the subtle difference in denitions
for interpretability and explainability from Roscher et al.,67 in
which the former refers to a mapping of an internally learned
abstract feature to a human-dened concept, such as moieties
or functional groups in chemistry, whereas the latter employs
features from the interpretable domain to explain the decision
making of the model for specic examples.
1.2 Organization of paper

The remainder of the paper is organized as follows: in Section
2.1–2.3, we recapitulate how message-passing neural nets
(MPNNs) generate their hidden representation and how we
extracted this representation at a meaningful point in the
network. In section 2.4, we provide a synopsis of t-distributed
stochastic neighbor embedding (t-SNE),68 linear discriminant
analysis (LDA),69 and principal component analysis (PCA)70

dimension-reduction techniques useful for this work. In Section
3.1, we extend Zubatyuk's analysis,47 to reveal a global and more
rened visualization of moiety chemistry. We demonstrate the
compactness of the embedding space and introduce the
Euclidean distance in embedding space as a new measure of
molecular similarity. In Section 3.2, we employ LDA to quantify
the geometric organization of the embedding space, and extend
the learned geometric representation to other chemical quan-
tities in Section 3.3. We present our Conclusions and outlook in
Section 4.
2 Methods
2.1 MPNNs

Before the advent of message-passing neural nets (MPNN), the
eld was limited to standard feedforward architectures.17,18 The
Cartesian xyz coordinates of the molecule would serve as the
input and, typically, the potential energy of the system was the
output. These neural nets were not transferable to other
chemical properties nor size-extensive: their architecture was
xed to predict the potential energy surface of a particular
compound with a xed number of atoms over a variety of
congurations. Moreover, these early neural nets did not adhere
to the permutational symmetry of indices within a molecule,
changing the order of atoms in the list incorrectly changed the
energy.

Behler and Parinello would solve these problems, proposing
a neural network architectural design that is more compatible
with molecular systems.71–73 Based on an atom-centered
approach to predictions, Behler–Parinello neural nets parti-
tioned each molecule into atoms. These atomistic neural nets
contributed to a total potential energy by pooling all the pre-
dicted atomwise contributions. To include rotationally-invariant
interatomic interactions between each atomwise partition,
Behler and Parinello used manually-craed symmetry functions
of the interatomic distance as input. In other words, the neural
net was not end-to-end (did not make predictions directly from
xyz coordinates) but assumed an initial representation of inter-
acting molecular systems via the symmetry functions.
Digital Discovery, 2024, 3, 544–557 | 545
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SchNet's architecture,19–22 and many other MPNNs,74–76 are
similar to Behler–Parinello neural nets, see Fig. 1, particularly
that they are oen partitioned atomwise. However, MPNNs can
have a completely end-to-end architecture and are thus not
restricted to make hand-craed assumptions about the inter-
atomic interactions. Instead MPNNs derive their own repre-
sentation of interacting atoms from the molecular graph. The
messages between atomistic “nodes” can themselves be
parameterized to t the interatomic distances between the
atoms and thus “tted” to make an accurate prediction. Aer
these interactions, a nal representation for each atom in the
molecule is stored in the so-called “embedding vector”. The
embedding vector is the neural-network-representation of an
atom-in-a-molecule. This internal representation is nally used
to make a prediction of that atom's contribution to the total
property by running it through a standard feedforward neural
net. The atomwise properties are then summed to give a total
molecular property. Throughout the process, the internal
representation for each atom, and the entire molecule, remains
a hidden feature of the algorithm, leaving the precise nature of
the chemical model unknown. We seek to shed light on the type
Fig. 1 Schematic diagram of a typical GNN neural network architec-
ture. The embedding vectors xi

l are updated after each layer with an
update vi

l, which accepts information from all other atom-embeddings
in the molecule and parametrizes it according to their interatomic
distances. After the last update, the embedding vector is fed into a feed
forward network to produce an atomwise atomization energy Ei. In the
final step all atomization energies are pooled into the total energy of
the molecule. The analysis in the present work focuses on the final
embedding vector xfinali (in orange) for the oxygen atom types (i h Oi).

546 | Digital Discovery, 2024, 3, 544–557
of chemical model that GNNs build using their embedding
vectors, which allow them to achieve their accurate predictions.
2.2 SchNet's hidden representation

There are many intricate variations to how a GNN can be
designed, with important advantages and disadvantages to
each. Because of the many variations of architectures, We have
chosen to describe one such variation, SchNet, in detail, and
concisely summarize other architectures that come up. None-
theless, ultimately the same methodology and interpretation
holds regardless of the exact GNN architecture used, so long as
the main features of a GNN, its embedding and graph interac-
tions, are present. In SchNet, the “embedding vector” is an
atom-in-molecule vector representation xi

l ˛ R
D that is depen-

dent on layer l and atom i with charge Zi (see Fig. 1 for a visual
summary of the network's architecture). The dimension of the
embedding vector D determines the information storage
capacity of the embedding vectors, and should therefore be
chosen sufficiently large by the user. During a feedforward pass
through the network, the embedding vectors are updated aer
each individual layer l

xi
l+1 = xi

l + vi
l, (1)

with the atom-dependent vectors vi
l accepting information from

all other atoms in the network via learned interatomic distance-
dependent convolutional lters. The initial l = 0 vector for each
atom i only depends on the atom type Zi, and carries no addi-
tional information from the rest of the molecule. The total
number of updates (or layers) is repeated a user-chosen number
of times, and should also be sufficiently large such that all
crucial information has been shared among the atoms. Aer the
nal update, the individual embedding vectors are fed into
a feedforward neural network to produce an atomwise property,
which is nally pooled together to give rise to a predicted
molecular property. The training aspects of the network happen
mostly at the level of the interatomic messages, as that is where
the network is capturing correlations between the atoms across
each individual molecule. We refer to ref. 19–22 for more details
on the architecture and training algorithm.
2.3 Network training and dataset

For the analysis, we employed the QM9 dataset,77 a set of 134
000 small-sized organic molecules (∼5 Å to 10 Å in size) with
optimized geometries at the B3LYP/6-31G(d,p) level of theory.
The network was trained on total electronic energy at 0 K,
although QM9 includes other associated properties such as
dipole moment, enthalpy, etc. The algorithm used for training
had six interaction layers and an embedding vector dimension
D = 128. Other relevant parameters in the network are 128
convolutional lters, 50 Gaussians, and an interaction cutoff
distance of 50 Å. The rst 100 000 molecules of QM9 were used
as training data points, the next 10 000 as validation data
points, and the rest was le for testing. Gaussians were used for
an initial expansion of the interatomic distances to provide
a exible starting representation for the model. The cutoff
© 2024 The Author(s). Published by the Royal Society of Chemistry
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distance was purposely chosen to be very large (relative to QM9
molecules) so that all atoms were included in the interaction,
giving the model freedom to have a global representation rather
than force it into a local representation.78 Although generally
expensive and oen leading to an overtted model, a balance
was achieved between high accuracy and generalizability on
QM9, as shown by the loss plot in Fig. 5 in the Appendix section
which displays a nal validation MAE of 0.020 eV. The gener-
alizability of the SchNet model was veried explicitly by running
an additional experiment in which training was performed on
a QM9 data subset in which all alcohols were systematically
removed, aer which test set errors on both test sets with or
without alcohols produced comparable results. Various
embeddings sizes, such as 30, 60, along with the 128, gave
similar results for the analysis. We present the analysis of the
128-embedding model.

Using the 10 000 molecules test set extracted from the QM9
datable, the model was then evaluated and updated embedding
vectors were extracted for all layers. No additional SchNet
training was performed on these molecules. The fully-updated
embeddings xnali (as highlighted in orange in Fig. 1) were
then analyzed using dimension-reduction techniques, linear
discriminant analysis, and Euclidean distance measures. More
specically, the extracted embedding vectors were parsed into
each element-type (e.g. all oxygen embedding vectors are iso-
lated), and the analysis was performed on the set of all
embedding vectors of a certain atom type, across all 10 000
molecules (one molecule can contribute multiple embedding
vectors). More specically, the analysis in the Results section is
focused on the oxygen-type embedding vectors, but the meth-
odology can be applied to any chosen element (see Appendix
Table 5 for the LDA analysis on all element-types). The analysis
for vi

l and xi
l for the intermediate layers (l s nal) can also be

found in the Appendix section, Table 4, and produces very
similar results to xnali . The trained model and generated
embedding vectors are freely available via a Dataverse Reposi-
tory.1 The extracted embedding vectors in the dataset were also
labelled with integers representing the various chemical envi-
ronments found in QM9. For this, we manually surveyed the
functional groups of QM9 and automated the labelling of them
using the adjacency matrix extracted from the .mol les. It is
important to note that for all datasets used in this study, the
geometries are either optimized at the ground-state DFT level or
experimentally determined (see Section 3.3), and therefore
exclude transition-state, bond-breaking, or explicitly charged
molecules (with the exception of a few ammoniums in the QM9
database).

To demonstrate generality of this method to other GNN
architectures, we also extracted embedding vectors from a pre-
trained AIMNet ensemble model47 on the same 10 000 QM9 test
molecules to compare the analysis with that of SchNet. This
AIMNet ensemble model trained on ANI-1x data (includes
molecular energies, atomic forces, and more) computed using
uB97x/def2-TZVPP level. AIMNet's embeddings (and GNN
architecture) are built considerably different than SchNet's.
First, AIMNet uses symmetry functions for input; which have
both angular and radial parts.23,72 The symmetry functions are
© 2024 The Author(s). Published by the Royal Society of Chemistry
used as the features that describe the local environment around
each atom. The radial and angular features are embedded via an
outerproduct on an atomic feature vector space (AFV). In short,
a trainable layer combines the attened radial and angular
tensors and learns a constant-sized embedding from them. This
is how the embeddings in AIMNet are built. We extracted this
embedding representation for the QM9 dataset using pre-
trained AIMNet Ensemble model.
2.4 Dimension-reduction to analyze embeddings in MPNNs

While there are a plethora of sophisticated interpretability
techniques at our disposal, most methods, such as variational
autoencoders,79–82 and saliency maps,83–90 give predominantly
local explanations of the model, providing insight into the
decision making process on a case-by-case basis. In contrast,
dimension-reduction techniques,91–94 are able to provide
a global account of the decision making mechanism which can
be more informative.49 In addition, they are convenient and
useful in the context of MPNNs. Typically, each node in a MPNN
is a high-dimensional vector space, in our case, a.k.a embed-
ding vectors, and dimension-reduction allows us to explore
a more tractable (and possibly visualizable) low-dimensional
projection of that space.

2.4.1 t-SNE and non-linear projection methods. A popular
and powerful example of dimension-reduction is t-distributed
stochastic neighbor embedding (t-SNE).68 t-SNE works by
measuring distances between high-dimensional data points. It
then embeds the data points into neighborhoods using
a conditional probability based on their closeness to each other
as relative to the rest of the dataset:

pjji ¼
exp

�
�kxi � xjk2

.
2si

2
�

P
ksi

exp
�
�kxi � xkk2

.
2si

2

� xi˛ℝD (2)

The neighborhood distribution is then mapped (using the KL
divergence measure) to a lower dimensional t-distribution, q,

qjji ¼
�
1þ kyi � yjk

��1
P
ksl

�
1þ kyk � ylk2

��1 yi˛ℝ2 (3)

While t-SNE uses Euclidean distance for clustering data points,
it does so at the expense of distorting the notion of Euclidean
distance between them.49 This is because t-SNE employs an
adaptive variance parameter si, which takes into account the
sparsity of data in higher-dimensional spaces. More specically,
the variance is chosen such that a user-specied number of
neighbors is reached for each data point no matter how sparsely
distributed that data point is. This is particularly problematic
for outliers which would articially cluster together. Conse-
quently, the notion of distance between and within clusters
becomes blurred due to the varying sparsity in the data. In other
words, while t-SNE shows great capabilities to an insightful
visualizable representation, it does not remain faithful to the
true global geometry of the data and therefore does not allow for
any deeper interpretability. Similar conclusions can be drawn
for other unsupervised data-clustering techniques such as
Digital Discovery, 2024, 3, 544–557 | 547
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Fig. 2 (a) t-SNE of oxygen-type embedding vectors of QM9-trained
SchNet with labelling as defined in (b).
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uniform manifold approximation and projection (UMAP).95 In
contrast, the power of linear methods, such as principal
component analysis (PCA)70 is their minimal distortion to the
original embedding space and their preservation of Euclidean
distances.

2.4.2 Linear PCA projection. PCA works by nding an
optimal basis to express the high-dimensional data points
wherein the rst eigenvectors of the basis (called principal
components) capture the most variance in the data. This allows
us to project out a low-dimensional space of the data with
minimal data loss. The linear transformation to a new basis
preserves the geometry between data points, thus does not
distort the original high-dimensional space allowing for further
interpretability. In addition to preserving the geometry of the
embedding space, PCA helps to gauge how many dimensions of
the embedding space are signicant. By ordering the basis from
largest to smallest variance, it is possible to identify how many
components are required to capture most of the variance in the
data. If a low-dimensional space is sufficient, it means the
model can be condensed into a leaner and more useful repre-
sentation, potentially revealing a low-volume chemical repre-
sentation in terms of just a few global attributes.

2.4.3 Linear discriminant analysis. We also used linear
discriminant analysis (LDA)69 to draw linear boundaries
between embedding data points. LDA is a technique that
assumes a normal distribution on the various classes of data
points. The direction that maximizes the separation between
the normally distributed classes is called a linear discriminant
and is one of the objectives of an LDA analysis. The linear
discriminants are the boundaries of the classication model
that maps a feature vector x to one of the various classes k. This
model of classication can now be tested on new data points to
predict their class. We use linear discriminant models to test
the boundaries of embeddings data points in a classication
task on their chemical environment label. We divided the data
into training and testing parts explicitly. Aer tting the clas-
sication model to the rst 7500 molecules of QM9's test set
(molecules indexed 110 000–117 500, not involved in SchNet
training), the LDA model was then evaluated on the remaining
2500 molecule subset QM9 testset (the molecules indexed 117
500–120 000 in QM9).

3 Results and discussion
3.1 Dimension-reduction on SchNet's trained embedding
vectors

As a conrmation and extension of ref. 47, we begin our analysis
with t-SNE on the embedding vectors of all oxygen atoms in the
dataset. The result is a visualizable 2-dimensional plot of
various clusters, see Fig. 2a. Information in these clusters is
only revealed when we label the oxygen-associated embedding
vectors with the moiety (or chemical environment) that the
atom resides in. In the QM9 dataset, we found 20 moieties that
are associated with oxygen atoms and labeled the embedding
vectors accordingly (Fig. 2b shows the moiety key). As can be
seen from the labeled t-SNE projection, the model distinguishes
environments with ne detail, even when the representation of
548 | Digital Discovery, 2024, 3, 544–557
that environment in the data is scarce (e.g. nitrosos group which
only contain 4 molecules in the test set and 574 in the entire
QM9). Some chemical environments (such as those indexed 16
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Classification accuracy of embedding vectors with LDA and
two SOAP molecular representations with different hyper parameters
(see text), and test populations (Pop.) for each category employed in
the LDA

Index Env. Name SchNet SOAP1 SOAP2 Pop.

1 Ethers 1.00 1.00 1.00 4197

2 Tertiary alcohols 1.00 0.92 1.00 883

3 Secondary alcohols 1.00 0.36 1.00 1308

4 Primary alcohols 1.00 0.92 1.00 1206

5 Enols 0.99 0.72 1.00 31

6 Hydroxylamines 1.00 0.23 1.00 2910

7 Ketones 1.00 0.97 1.00 1060

8 Aldehydes 0.99 0.38 1.00 1212

9 Amides 1.00 0.87 1.00 1186

10 Esters 1.00 0.94 1.00 611

11 Carbamates 1.00 0.16 1.00 168

12 Carbamides 1.00 0.49 1.00 199

13 Carbonates 1.00 0.90 1.00 34

14 Nitrosos 1.00 0.70 1.00 4

15 — 1.00 0.43 1.00 33

16 — 1.00 0.39 1.00 130

17 — 1.00 0.57 1.00 31

18 — 1.00 0.71 1.00 270

19 — 1.00 0.11 1.00 23

20 — 1.00 0.00 1.00 78

Fig. 3 (a) PCA of Oxygen-type embedding vectors of QM9-trained
SchNet labelled accorded to Fig. 2b. The focus is on straight-chain
alcohols. It can be seen even in the 2D projection that distances
between the alcohols' embeddings converge as the chain gets larger.
The Euclidean distance does indeed decrease for each successively
larger straight-chain alcohol in the full PCA space. In that space, the
distances between methanol, ethanol, propanol, butanol, and penta-
nol are 3.98, 2.12, 1.45, and 0.98, respectively. (b) PCA of oxygen-type
embedding vectors of pretrained AIMNet neural net tested on the
same QM9 dataset labelled according to Fig. 2b.
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and 19 in Table 1) have less than 200 data points to represent
them in the entire QM9.

Despite the caveats related to long-range distortions, one can
already observe an intuitive organization between moieties in
the t-SNE. For instance, all carbonyls (carboxylic acids, ketones,
aldehydes, amides, and more) are grouped together in the
bottom right; all primary, secondary, and tertiary alcohols in the
center; and carbonates, carbamides, and carbamates on the top
of the gure. It is evident that the pretrained SchNet model
already contains enough information to distinguish chemical
moieties.

To project a Euclidean-distance faithful representation, we
move on to using linear PCA projection, which provides
a minimally-distorted projection. Fig. 3 shows the 2D PCA
projection on the oxygen-type embedding vectors of the QM9
© 2024 The Author(s). Published by the Royal Society of Chemistry
test set labelled with the same chemical environments key
shown in Fig. 2b.

The projection reveals how the various chemical environ-
ments that are organized in the global embedding space are
consistent with a notion of molecular similarity. For example,
the projection consistently shows that carbonyls are “closer” to
alcohols in a Euclidean sense than they are to hydroxylamines.
This is a chemically intuitive result that cannot be faithfully
reproduced in the distortions of the t-SNE projection. Moreover,
Fig. 3a illustrates how embedding representations become
increasingly closer to one another as the molecular
Digital Discovery, 2024, 3, 544–557 | 549
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environment of the associated atom becomes more similar. To
illustrate this, we analyzed Euclidean-distances between the
oxygen embedding vectors of several primary straight chain
alcohols. As detailed in the gure, we indeed nd a converging
distance between the embedding vectors of the oxygens as the
chain gets longer. Thus, all straight-chain or straight-chain-like
alcohol groups will be grouped in the same region of embed-
ding space within the primary alcohol cluster. Although Fig. 3a
only provides a 2D projection of the principal components, the
gure provides an approximate representation of how the full
Euclidean distances, computed in full (D = 128) embedding
space, relates the individual embedding vectors to one another.

This suggests that only a few dimensions of the full 128-
dimensional embedding space are truly relevant to capture the
chemical identity of the associated atom. Indeed, the PCA
eigenvalue spectrum, presented in Fig. 4, reveals that only a few
signicant eigenvalues (∼5–6) are required to account for 75%
of the variance in the data. This is a remarkably low number
compared with the dimension of the original embedding space,
hinting at the possibility of determining low-dimensional
chemical heuristics or rules for explaining the attributes of
each of these individual dimensions.

For comparison, we also extracted AIMNet's QM9 embed-
ding vectors and analyzed them with PCA projection. The result
is shown in Fig. 3b. AIMNet's embedding are more compact
than SchNet, as AIMNet was trained on a more diverse dataset
(ANI-1x) obtained through active learning.96 This may be an
explanation to why AIMNet's representation of QM9 is more
compact as it must leave space for a wider representation.
However, the relative positions of the various classes is strik-
ingly similar even though AIMNet is a different GNN architec-
ture and involves a signicantly different embedding process
briey described in Section 2.4. This points to the notion of
a weak universality in GNNs, as recently introduced by Chughtai
et al.,97 in which universal underlying principles are shared by
different GNNs, however in slightly different ways.
Fig. 4 log–log plot of PC eigenvalue vs. PC component index. 75% of
the variance in the data is covered by only six out of the 128 dimen-
sions in the embedding vectors. 90% can be captured with 15 PCs and
99% with 70 PCs.

550 | Digital Discovery, 2024, 3, 544–557
The existence of a Euclidean distance measure opens the
opportunity to quantify the “closeness” of atoms from different
moieties. In Fig. 5a, we chose a random molecule from the QM9
dataset (prop-2-yn-1-ol) and evaluated embedding vector distances
with all other molecules in the dataset. Clearly, the closest
molecules to prop-2-yn-1-ol are molecules of the same class and
have similar structural motifs; primary alcohols with an a-alkyne
group. Fig. 5b shows a close-up of distances to all other primary
alcohols. As distance increases, the similarity is diminished but in
a very gradual way. First, showing linear-like moieties with a-
alkynes, then gradually moving the alkyne away to further parts of
the molecule as embedding distance increases. This can be
conrmed until molecules that do not contain any alkyne and do
not resemble the reference primary alcohol anymore.

The same analysis can be done on, e.g., 3-oxopentanenitrile
(shown in Fig. 5c) where the presence of an alkyne is important
for similarity, but one that is specically at the a position to the
ketone. Triple bonds that are right next to the ketone (i.e. not a)
appear in more distant embedding vectors, aer all the a-triple-
bonded-ketones in the dataset. Lastly we show an example of
the tri-ringed structure (Fig. 5d) which shows gradual change in
the ring elements and ring structure with distance between the
oxygen's embedding vectors.
3.2 Linear boundaries and Euclidean distance geometry of
the embedding space

Ultimately, the use of visualization techniques such as t-SNE or
PCA lacks precise quantication of the geometric space
revealed. We can further quantify the embedding geometry
along the lines of testing with concept activation vectors (TCAV)
methodology.38 TCAV uses the idea of training another algo-
rithm to intake embedding vectors and respond to their concept
labels, in our case the chemical labels. In the spirit of using
interpretable techniques, and in view of such a low-volume PCA
projection, we may use linear discriminant analysis (LDA)69 to
draw boundaries between the various embeddings and perform
a chemical environment classication task on them. If this
simple classication algorithm performs accurately, then we
can conclude that the space is made up of well-dened clusters
separated by thick boundaries, showing that the SchNet model
contains enough information to capture the concept of chem-
ical environments with a high degree of resolution.

We performed LDA on the oxygen-type embedding vectors to
get a minimum classication error of 3 × 10−4 for all classes
dened in Table 1. See Table 1 for errors on individual classes.
The confusion matrix of the predicted vs. true is dominantly
diagonal. The excellent performance strongly supports the exis-
tence of distinct regions in high-dimensional space that are
highly associated with chemical environments in the trained
embeddings. To show the signicance of this, we performed the
same classication task on the smooth overlap of atomic posi-
tions (SOAP)98 representations, a popular method for molecular
similarity measures, on the same set of oxygen atoms, the results
are shown in Table 1. We performed two separate tests (SOAP1 &
SOAP2) with two different sets of hyperparameters, the former
consistent with a long cut-off range like the SchNet training (12 Å,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Euclidean distance analysis of chosen cases from QM9. (a) Overall distance distribution between embedding vector of the reference
oxygen of prop-2-yn-1-ol to the rest of the oxygen embeddings in the dataset. The color key follows Fig. 2b. (b) Close-up of the nearest
embeddings to prop-2-yn-1-ol which are also primary alcohols and additionally have similar structural motifs. (c) Same analysis on 3-oxo-
pentanitrile and (d) on tri-ringed structure shown.
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beyond the sizes of the molecules in the QM9 dataset, 6 radial
functions and 6 spherical harmonics), whereas the latter
imposed a more local cut-off (6 Å, and 6 radial basis functions
and 4 spherical harmonics). The classication results for SOAP1
and SOAP2 are given in Table 1. Whereas SOAP1 appears to
struggle with distilling the local character of functional groups,
imposing locality in SOAP2 produces perfect classication
results. However, as the LDA only scales linearly in the number of
data points, the memory requirements are signicantly lighter
than SOAP, for which only a 1000 molecules could be used for
this test without requiring a large amount of memory (>2 GB).
Therefore it is fair to state that embedding vectors are at least on
par with coordinate-based features such as SOAP at capturing
chemical environments in a compact representation, the catch
being that all geometric considerations have already been enco-
ded during the SchNet pretraining stage.
3.3 Transferability properties of the embedding space

An important question to ask is how useful is this global
geometric interpretation for other chemical applications?
© 2024 The Author(s). Published by the Royal Society of Chemistry
Embedding vectors provide an atomwise representation of
a molecule, so a direct comparison with other chemical
observables than energy (on which the SchNet architecture has
been trained) ideally involves chemical observables of atomic
nature. For this reason, we focused on pKa values and NMR
shis in the present study.

As a rst test, we related the pKa values of certain atoms with
their embedding vectors. More precisely, we addressed the
assumption that moieties for which the embedding vectors are
close in Euclidean distance should also have comparable pKa

values. We employed a portion of the IUPAC pKa database,99

consisting of 600 clean and accurate pKa data points, and
plotted the difference in pKa values between all possible pairs
vs. the embedding distance between the pairs, see Fig. 6b. The
triangular shape of the distribution conrms that chemical
environments that are close in embedding space necessarily
have pKa values that are also close. In Fig. 6a, we narrow in on
the distribution by selecting a random carbamide oxygen found
on 2H-1,2,4-triazine-3,5-dione from the database and plotting
only relative distances with respect to this oxygen. From this
Digital Discovery, 2024, 3, 544–557 | 551
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Fig. 6 (a) pKa difference versus embedding vector distance from a reference carbamide oxygen found on 2H-1,2,4-triazine-3,5-dione to all
other oxygens in the IUPAC pKa database. (b) pKa difference vs. embedding distance between all pairs of oxygen atoms in the IUPAC pKa
database. The black labels are oxygens of the same class, the grey labels are oxygens of another class. (c) Truth versus linear regression
predictions of oxygen pKa values of protic sites from 128 dimensional embedding vectors, the R2 value of the fit is 0.91. (d) Predicted vs.
experimental pKa values for molecules affected by inductive and resonance effects, experimental data taken from ref. 101, pKa data taken from an
IUPAC high confidence pKa molecular database.102 All oxygen labels are taken from Fig. 2b.
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gure, we can see how certain groups such as carbamides are
closer in pKa to amides than they are to aldehydes and that they
are signicantly different from hydroxylamines. This is basic
chemistry knowledge that a trained chemist may have, however
the associated embedding space stemming from a learned
representation allows for qualitative and quantitative organi-
zation of this chemical intuition.

A second test has been performed with 13C nuclear magnetic
resonance (NMR) data, extracted from the NMRShiDB2 model
on a selection of 200 QM9 molecules.100 This model uses the
Hierarchically Ordered Spherical Environment (HOSE) molec-
ular descriptor to describe atomic neighborhoods. NMR shis
are particularly interesting to consider for our purpose as they
are considered a sensitive ngerprint of atomic environments.
Again, the differences in NMR shi between all possible carbon
pairs have been plotted against the associated C-embedding
distance between the pairs in Fig. 7b. Fig. 7a shows a selec-
tion of Fig. 7b in which only relative distances with respect to an
552 | Digital Discovery, 2024, 3, 544–557
ethane carbon are considered. The NMR distance can be taken
to be a proxy to molecular similarity and we nd that groups
that are close in embedding space have similar NMR shis.

Finally, we explore the potential to use embedding vectors
for transfer learning. We considered a simple linear regression
model to predict pKa values and

13C-NMR shis from pretrained
embedding vectors of SchNet. As can be anticipated from our
discussion, a linear regression model is relatively successful in
predicting both observables from embedding space with
a modest accuracy, giving a testing error of 1.48 and 23.3 ppm
for pKa and

13C-NMR respectively (see Fig. 6c and 7c). It can be
seen from the errors in Table 4 and the determination coeffi-
cient of the linear t (R2 = 0.91), that some degree of induction
and resonance effects on the pKa can be captured by the
embeddings. Given the small sizes of the datasets used, these
results provide a promising starting point for understanding
transfer learning in GNNs, which we aim to address in future
studies and applications.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) 13C-NMR shift difference vs. embedding distance for carbon atoms with respect to a reference ethane carbon in the NMR dataset. (b)
13C-NMR shift difference vs. embedding distance between all pairs. Black labels are carbons of the same class, grey labels are carbons of another
class. (c) Truth values versus linear regression predictions for 13C-NMR shifts from 128-dimensional embedding vectors, the R2 value of the fit is
0.95. (d) Carbon moiety labels. NMR values were found using NMRDShiftDB2 model100 applied on first 200 QM9 molecules.
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An important hyperparameter in machine learning applica-
tions is data volume. More oen than not, the amount of
training data from computational or experimental studies is
limited, potentially hampering the interpretability of the
embedding vector representation. To this end, we investigated
the effect of dataset size on the interpretability of the embed-
ding vectors. We trained the same SchNet architecture as
Table 2 LDA mean classification error (column 3) and ratio r of
average radial width of all functional group clusters with respect to the
average distance between the individual clusters for oxygen functional
groups (column 4) for SchNet embedding vectors trained onQM9 data
subsets of different sizes (column 1). Validation MAE errors of the
SchNet training are listed in column 2

Size MAE (eV) LDA mean error r

50 1.23 0.025 1.02
100 0.88 0.029 1.08
500 0.64 0.024 0.95
1000 0.78 0.024 0.77
100 000 0.02 3.0 × 10−4 0.45

© 2024 The Author(s). Published by the Royal Society of Chemistry
described in Section 2.3, however on different datasets with
decreasing sizes (see Table 2). For the training sets, random
molecules were chosen from the full QM9 data, with 10%
additional data points for validation purposes. As is expected,
we notice a sharp increase in validation error (MAE) when
reducing the dataset from 100 000 molecules to 1000. In order
to compare the classication capabilities, we extracted the
embedding vectors of the same 10 000 molecules employed in
Section 3.1 and ran the LDA classication task on them. We
observed a similar drop in accuracy moving into smaller
training data as the MAE, however plateauing towards a 97%
accuracy on the functional group classication. These numbers
suggest that the model still succeeds in categorizing the
training data into chemical moieties for smaller training data
sets, however lacked the capability to reduce the uncertainty
and rene the feature space for regression tasks. To further
quantify this observation, we computed the ratio of the average
radial width of all functional group clusters with respect to the
average distance between the individual clusters, nding that
the average size of the clusters grows relative to the average
distance between the clusters (see Table 2).
Digital Discovery, 2024, 3, 544–557 | 553
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Table 3 The mean absolute error of 10 repeated training attemps of
SchNet neural network using the same parameters described in
Section 2.3

Trial MAE (eV)

1 0.020
2 0.017
3 0.023
4 0.029
5 0.019
6 0.025
7 0.023
8 0.025
9 0.021
10 0.027

Fig. 8 Training loss and validation loss of SchNetmodel with 128 atom
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4 Conclusions

We demonstrate how the embedding vectors of SchNet provide
a chemically interpretable representation endowed with
Euclidean-distance-preserving geometry. The model organizes
chemical space into chemical environments or moieties,
conrmed by sharp linear discriminant analysis (LDA) bound-
aries. Furthermore, principal component analysis (PCA) reveals
that the model retains a small volume of information, up to 6
dimensions required to account for 75% the variance in the
data. The chemical information contained in the embedding
vectors is conrmed by confronting them with atomwise
chemical observables such as pKa values or

13C-NMR shis. This
result holds promise that embeddings can be used for appli-
cations in transfer learning while providing an explainable
framework for their predictions.

One important open question leading from this study is to
further pinpoint the algebraic properties and geometry of the
embedding space, as well as identify the chemical role of each
of the signicant dimensions of the PCA. Another question that
has been le untouched is the role of the underlying compu-
tational data. The SchNet GNN has been trained on electronic
energies that have been computed at the density functional
theory level. How much of the fundamental quantum
mechanical ingredients that go in the computed energy data, in
casu the densities or the B3LYP functional in the DFT compu-
tation, have been implicitly identied by the GNN and absorbed
into the embedding vector representation. Can similar conclu-
sions be drawn when pretrained on different chemical training
data, such as enthalpies or dipole moments? These questions
will be addressed in future studies.
basis, 128 gaussian filters, 50 gaussians, and a cutoff of 50 Å.
A Appendix
A.1 Training and validation results and reproducibility of
analysis

We repeated the analysis by retraining a SchNet neural network
10 times on QM9's potential energies at 0 K, with all validation
errors reported in Table 3. The mean absolute error on valida-
tion dataset (molecules indexed 100 000–110 0000 in QM9) is
0.023 eV with standard deviation of 0.004 eV. Fig. 8 shows the
training of model 1 (MAE = 0.020 eV).
Table 4 Mean absolute interaction updates on the embedding vector
〈jvlj〉, mean Euclidean distance between embedding vectors of
different layers 〈Dist(xl − xl−1)〉, mean Euclidean distance between
embedding vectors of different chemical moieties hDist(xfgl− xfg

l)i, and
mean LDA accuracy on moiety classes using the intermediate layers

Layer 〈jvlj〉 〈Dist(xl − xl−1)〉 hDist(xfgl − xfg
l)i

LDA mean
error

x0 0.25 — 0.00 9 × 10−1

x1 0.30 3.56 2.64 2 × 10−3

x2 0.28 4.29 3.90 5 × 10−4

x3 0.26 3.88 5.13 8 × 10−4

x4 0.28 3.64 5.74 2 × 10−3

x5 0.25 4.02 6.32 5 × 10−4
A.2 Analysis of interaction layers, vl

Other than analyzing the fully updated atomwise embedding
vectors xi

l, we also analyzed the intermediate layers,
xil ¼ x0i þ

P
l
vil in a similar fashion. Table 4 below shows the

mean absolute error of interaction updates on the embedding
vector, the mean Euclidean distance between embedding
vectors of different layers, themean Euclidean distance between
embedding of different classes, and lastly, the mean LDA
accuracy on chemical classes using the intermediate layers.

The interesting thing to note about the table is that while the
interaction updates remain relatively the same over the layers
(and so does the average distance between embeddings of
554 | Digital Discovery, 2024, 3, 544–557
different layers), the average distance between different moie-
ties continues to increase over the interaction layers (Fig. 9).

A.3 Analysis on other heteroatoms

One can also perform a similar analysis on the embeddings of
other elements than oxygen in the QM9 dataset. Table 5 below
shows the LDA accuracy of chemical environment classication
using embeddings of each element in QM9.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 PCA plots of oxygen-type embeddings of each successive interaction layer l s final (see Fig. 3 for the final layer l = final), (a) layer 0,
containing the initialized embedding which is the same for all oxygens, (b–f) layers 1 to 5.

Table 5 Mean LDA error of classification using fully-updated
embeddings parsed by the various atom-types found in QM9
(H,C,N,O,F). <f notation means no misclassifications where identified
over a test set of size 1/f

Element LDA mean error

H 5 × 10−3

C <1 × 10−5

N <1 × 10−4

O 3 × 10−4

F <1 × 10−3
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Data availability

The Jupyter notebooks used to generate our research ndings
are available on the githubrepository, https://github.com/
QuNB-Repo/DLCheM. The generated data set of “SchNet
Model embedding vectors of QM9 atoms labeled according
tofunctional group designation” on which the analysis have
been published on UNB’s Dataverseserver, https://doi.org/
10.25545/EK1EQA, IUPAC dataset of pKa values can be found
at https://doi.org/10.5281/zenodo.7236452. NMRShiDB2
model used to extract NMR predictions for QM9 database
found at https://nmrshidb.nmr.uni-koeln.de/.
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