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What is theminimum number of experiments, or calculations, required to find an optimal solution? Relevant

chemical problems range from identifying a compound with target functionality within a given phase space

to controlling materials synthesis and device fabrication conditions. A common feature in this application

domain is that both the dimensionality of the problems and the cost of evaluations are high. The

selection of an appropriate optimisation technique is key, with standard choices including iterative (e.g.

steepest descent) and heuristic (e.g. simulated annealing) approaches, which are complemented by

a new generation of statistical machine learning methods. We introduce Bayesian optimisation and

highlight recent success cases in materials research. The challenges of using machine learning with

automated research workflows that produce small and noisy data sets are discussed. Finally, we outline

opportunities for developments in multi-objective and parallel algorithms for robust and efficient search

strategies.
Introduction

With the development of automation technologies, combina-
torial and high-throughput chemical synthesis is increasingly
applied to discover new materials and molecules.1–3 Enumer-
ating over large chemical spaces becomes impractical as the
number of synthesis parameters increases—termed “the curse
of high dimensionality”—and is difficult to justify with the push
towards more sustainable and efficient research practices.4

Smart automation techniques, such as algorithms to suggest
which experiments to perform next, can accelerate the materials
discovery process and dramatically increase the cost-
effectiveness of research.5,6 Such techniques cover the full
synthesis pipeline, from identifying target chemical spaces with
desired properties using ab initio or machine-learned property
predictions, to suggesting synthesis routes with digital retro-
synthesis and chemical reaction prediction through to synthe-
sising and characterising candidates with fully autonomous
robotics platforms.7 Data-driven algorithms for experiment
selection can be used to minimise the overall cost of chemical
discovery, in terms of the number of experiments performed,
time spent, or use of materials. This process can be framed as
an optimisation problem.
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Optimisation is critical to any problem involving decision-
making8 and is the process of systematically choosing input
parameters (experimental conditions, precursors, etc.) to mini-
mise or maximise an objective function (e.g., running an
experiment and performing a measurement). The objective
function can be arbitrarily dened and is typically derived from
a specic property of the system under study. The process of
optimisation can be summarised as

x* ¼ argmin
x˛X

f ðxÞ; (1)

or

x* ¼ argmax
x˛X

f ðxÞ; (2)

where x* is the parameter that produces the minimum or
maximum of the objective function, f, and X is the domain of
interest. When considering complex high-dimensional land-
scapes, there are oen many minima (stationary points of the
target function or experiment) which make nding the global
minimum exceedingly difficult (Fig. 1). This process is termed
global optimisation. Examples include hyperparameter opti-
misation of supervised machine learning algorithms (in this
case, the objective function may be the mean average error
[MAE] or mean squared error [MSE] of the model),9 solving the
geometric structure of proteins and crystal structures (here the
objective function is the root mean squared error in the atomic
positions),10 and choosing the architecture and synthesis
conditions for functional devices (where the objective function
is the gure of merit of the device).

To nd the minimum or maximum of a function, f, the rst
intuition for a mathematician is to differentiate the function
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Illustration of optimisation in surfaces with increasing complexity and number of dimensions.

Table 1 Three commonly used optimisation algorithms. Bayesian optimisation is summarised assuming the lower confidence bound acquisition
function

Algorithm Key hyperparameter Functional space

Gradient descent Step size g Continuous and convex
Simulated annealing Accept rate r Discrete and multi-optima
Bayesian optimisation Exploitation and exploration rate l Discrete and unknown
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and let its derivative equal zero. Numerically, this can be ach-
ieved by gradient descent, which is an iterative approach to
minimise a differentiable objective function by moving towards
the direction of steepest descent.11 Mathematically, this can be
written

xn+1 = xn + gVf(xn), (3)

where xn is the current input parameter, g is the step size and
Vf(xn) is the gradient. This method is ideal for continuous
functions with a single minimum but is not suitable for global
exploration of multi-minimum problems due to the propensity
to get stuck in local optima. Furthermore, the steepest descent
method is only applicable for continuous functions since one
must calculate the gradient by differentiation. If the function is
not continuous, it is not differentiable. In these cases, (meta)
heuristic approaches can provide approximate solutions where
classical methods fail.12 Heuristic algorithms include simulated
annealing, genetic algorithms, particle swarm optimisation,
and ant colony optimisation.13–16 In each case, a budget is
specied to limit the computational and time cost. Once the
budget is used up, such as when the temperature in simulated
annealing goes to zero, the searching process stops. These
methods are more powerful and exible than iterative methods
because they can be applied to non-differentiable and non-
continuous objective functions.

The eld of optimisation has seen a renaissance with the
development of accurate machine learning models. Machine
learning is a statistical method that relies on the relationships
between input parameters and target outputs, and can be
applied to model, optimise, and evaluate a target system.17,18

The integration of machine learning and optimisation has led
to a new class of optimisation algorithms termed Bayesian
optimisation. The Bayesian method is an active learning
approach that applies a sequential strategy to solve
© 2024 The Author(s). Published by the Royal Society of Chemistry
optimisation problems19 and has been used to nd the optima
of complex functions in chemistry, biology, and materials
science.20 A summary of different optimisation methods and
their associated hyperparameters is summarised in Table 1.

In this work, we outline the principles of Bayesian optimisation,
including the mathematical foundation and choice of surrogate
and acquisition functions.We examine how optimisation has been
implemented in the chemical sciences, particularly focusing on
automated research workows. We discuss state-of-the-art
approaches for handling small, noisy, or high-dimensional data-
sets. Finally, we outline the opportunities for developments in
hybrid algorithms for robust and efficient searches.
Bayesian optimisation

At the heart of Bayesian optimisation is Bayes' theorem, named
aer Thomas Bayes (1701–1761). While Bayes never published
his most famous accomplishment, his notes were collected and
published posthumously by Richard Price in 1763.21 Bayes'
theorem describes the correlation between two different events
and is used to calculate the conditional probability of one event
happening based on the condition that another event has
occurred.22 If A and B are two events, the probability of A
happening given the conditional event B is

pðAjBÞ ¼ pðAÞpðBjAÞ
pðBÞ ; (4)

where p(A) and p(B) are the probability of A and B occurring,
termed the prior probabilities, and p(B) is assumed to be greater
than zero. p(ArB) is called the conditional or posterior proba-
bility of A given B, whereas p(BrA) is the posterior probability of
B given A. Bayes' theorem is frequently applied in nance and
medical tests. For example, to evaluate the probability a person
has a disease given the result of a medical test (event B) and the
accuracy of the test (event A).23
Digital Discovery, 2024, 3, 1086–1100 | 1087
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The term Bayesian optimisation is attributed to JonasMockus
from his work on global optimisation during the 1970s and
1980s.24,25 Bayesian optimisation uses a sequential model-based
strategy for global optimisation. There are two key concepts: (i)
a surrogate function (statistical model) is introduced to estimate
the posterior distribution of the objective function;26,27 and (ii) an
acquisition function is used to evaluate the domain of inputs
and determine which point to sample next.

The Bayesian optimisation cycle starts with the known
points of the objective function. The surrogate model is used to
estimate the remaining distribution of the objective function
(termed the posterior predictive distribution or just the poste-
rior). The mean and variance of the posterior are fed into the
acquisition function and the point with the maximum value
selected. This becomes the new observation point and the
objective function is evaluated—in chemical problems, this
amounts to performing an experiment and measuring a prop-
erty. Aer each iteration, the new sample point is added to the
set of observations, the posterior predictive distribution is
reevaluated using the surrogate model, the mean and variance
are recalculated, and the acquisition function is used to select
the next input point. This process is repeated until the
maximum number of learning cycles (or another convergence
criterion) is reached (Fig. 2). Bayesian optimisation has the
advantage that it can be applied to complex search spaces with
multiple categorical or conditional inputs. Several soware
libraries have been developed for performing Bayesian optimi-
sation (Table 2) and packages to increase its accessability for
real-world tasks such as Honegumi.28
Surrogate models

Surrogate models are used to estimate the value and uncertainty
in the unseen portion of the objective function. Consider the
situation where there are two initial known points on a 1D
Fig. 2 Demonstration of the Bayesian optimisation procedure for a 1D f
approximated by a Gaussian process (green dashed line) based on severa
the green shaded region. Bottom left panel: the acquisition function (b
highlighted (blue circle). The middle and right panels display the same in

1088 | Digital Discovery, 2024, 3, 1086–1100
optimisation surface. We can guess the path that the objective
function takes between the two points. By making many such
guesses, we will build up a distribution of paths. The distribu-
tion will be narrower in the regions around the two known
points and broadest roughly halfway between the points. This
distribution of target values is similar to known probability
distributions, such as a Gaussian process. Since we can now
estimate the distribution of the target property, we can calculate
the mean and variance across the domain and use it in the
acquisition function. We now provide a summary of the two
most common surrogate models.
Gaussian processes

Gaussian processes are a class of stochastic regression model
and are widely employed in Bayesian optimisation.49 The key
concept of Gaussian processes is to model the objective func-
tion as a multivariate normal distribution. A Gaussian process
on f with a set of input points X = {x1, x2, x3, ., xn} is specied
by a mean function m and covariance function or kernel S as

pX ðf Þ � N ðmX ; SXX Þ: (5)

The mean function determines the expected function value at
any location x. The kernel determines the shape of the distribu-
tion at each location and the properties of the function's behav-
iour. The kernel takes two locations x, x0 as inputs and returns
a scalar similarity measure between those two points as output

SXX = Cov(x, x0). (6)

Several kernels are available that confer a range of properties
such as smoothness or periodicity, such as the radial basis
function kernel.

The starting point for Gaussian process regression is
a multivariate normal distribution dened over the objective
unction. Top left panel: the true objective function (red dashed line) is
l experimental observations (red circles) with the uncertainty shown by
lue solid line) across the function domain, with the next query point
formation with additional experimental observations included.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 A collection of open-source Python software libraries for Bayesian optimisation. Surrogate models include Gaussian process (GP),
random forest (RF) and tree of Parzen estimators (TPE)

Package Models Features License Ref.

General purpose
Axa GP, others Modular framework built on BoTorch MIT
Bayesianoptb GP Parallel optimisation MIT 29
BayesOptc GP Single objective MIT 30
BoTorchd GP, others Multi-objective optimisation MIT 31
COMBOe GP Multi-objective optimisation MIT 32
Dragonyf GP Multi-delity optimisation Apache 33
GPyOptg GP Parallel optimisation BSD 34
Hyperopth TPE Serial/parallel optimisation BSD 35
NEXTorchi GP, others Modular framework built on BoTorch MT 36
Optunaj RF Hyperparameter tuning MIT 37
Skoptk RF, GP Batch optimisation BSD 38
SMAC3l GP, RF Hyperparameter tuning BSD 39
GPaxm GP Multi-task/delity MIT 40 and 41

Physical science domain
Atlasn GP Mixed-parameter optimisation for self-driving labs MIT 42
BOSSo GP Crystal structure optimisation Apache 43
Edbop GP Tailored chemical synthesis descriptors MIT 5
GAUCHEq GP Tailored molecular representations MIT 44
NUBOr GP Transparent BO to personalise problem BSD 45
Olympuss GP, TPE, BNN Benchmarking and noisy optimisation MIT 46
Phoenicst BNN Bayesian kernel density estimation Apache 47
Summitu GP, RF Multi-task optimisation for chemical reactions MIT 48

a https://ax.dev. b https://github.com/zavalab/bayesianopt. c https://github.com/fmfn/BayesianOptimization. d https://botorch.org. e https://
github.com/tsudalab/combo. f https://github.com/dragony/dragony. g https://sheffieldml.github.io/GPyOpt. h http://hyperopt.github.io/
hyperopt. i https://nextorch.readthedocs.io. j https://optuna.readthedocs.io. k https://scikit-optimize.github.io. l https://automl.github.io/SMAC3/
main/. m https://github.com/ziatdinovmax/gpax. n https://matter-atlas.readthedocs.io. o https://cest-group.gitlab.io/boss. p https://github.com/b-
shields/edbo. q https://github.com/leojklarner/gauche. r https://github.com/mikediessner/nubo. s https://github.com/aspuru-guzik-group/
olympus. t https://github.com/aspuru-guzik-group/phoenics. u https://gosummit.readthedocs.io.
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function. In the case of no observed training data, this is termed
the prior distribution, pX. Typically it is assumed mX = 0 for
simplicity and the kernel function is chosen based on an initial
guess of the properties of the objective function. Given a set of
observations, D, we can “condition” the prior to produce a new
distribution (which is also Gaussian), termed the posterior
distribution pX jD by forming the joint distribution.

pX ;D ¼ N

 "
mX

mD

#
;

"
SXX SXD

SDX SDD

#!
(7)

The conditioned mean and covariance functions are
dened by

mX jD ¼ mX þ SXDSDD
�1ðD� mDÞ (8)

SX jD ¼ SXX � SXDSDD
�1SDX (9)

One can now extract the mean and standard deviation of the
posterior distribution at each location for use by the acquisition
function.

Random forest

Random forest is a supervised machine learning algorithm
utilising an ensemble of decision trees.50,51 A decision tree is an
© 2024 The Author(s). Published by the Royal Society of Chemistry
approach to predict the target value of a data point through
a series of binary choices based on the input features.52 For
classication tasks, the nal output of a random forest is the
class selected by the most trees. For regression tasks, the nal
output is the average prediction across all trees. By combining
multiple decision trees, random forests correct for overtting to
the training set.53 Random forests utilise an ensemble of B
decision trees, {Tb}

B
1, each trained on a different and randomly

selected subset of the input features, Xb. In regression tasks, the
mean and variance of random forests is given by

m ¼ 1

B

XB
b¼1

mb; (10)

s2 ¼ 1

B� 1

XB
b¼1

ðmb � mÞ2; (11)

where mb is the prediction of tree Tb at input X.
Compared with Gaussian processes,54 random forests can

extend more easily to higher dimensional problems.55 Further-
more, the evaluation time for Gaussian processes scales cubi-
cally with the number of training samples. While various sparse
techniques have been developed to reduce computation time,
Gaussian processes are generally limited to problems with less
than a few thousand data points (n) due to the necessary
covariance matrix inversion with a computational complexity of
Digital Discovery, 2024, 3, 1086–1100 | 1089
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O(n3). However, in experimental materials science and chem-
istry domains with relatively small dataset sizes, Gaussian
processes are oen the surrogate model of choice for Bayesian
optimisation due to their relatively small number of hyper-
parameters and high out-of-the-box accuracy.
Acquisition functions

Acquisition functions use the mean m and variance s computed
from surrogate models to decide which point to search next.
The process of choosing the next point has three main
considerations: (i) exploitation (i.e., maximisation or mini-
misation) of the objective function; (ii) exploration of unknown
regions of parameter space; and (iii) the risk or uncertainty of
predictions. Different acquisition functions have been devel-
oped to balance these considerations, including the “expected
improvement” (EI), “probability of improvement” (PI) and
“lower condence bound” (LCB) approaches. Below, we outline
these methods and their typical applications.
Probability of improvement

The rst activation function designed for Bayesian optimisation
was probability of improvement. If f0 is the maximum value of
the objective function observed so far, we can dene improve-
ment, I, as

I(x) = max(f(x) − f0, 0). (12)

Accordingly, the improvement will only be positive if the new
point has a value greater than f0. In probability of improvement,
we evaluate the point most likely to improve upon this value
using the following utility function

uðxÞ ¼
8<
: 1 f ðxÞ. f

0

0 f ðxÞ# f
0 (13)

Thus, we receive a reward if f(x) is greater than f0 and no
reward otherwise. The acquisition function is the expectation of
the utility function, in other words, the total probability that I(x)
> 0, namely

PIðxÞ ¼ E½uðxÞjx; D� ¼
ðN
f
0
N
�
m; s2

�
df ¼ F

 
m� f

0

s

!
; (14)

where F(z) is the cumulative distribution function.
Expected improvement

PI only considers the probability of improving the current best
estimate but it does not take into account the magnitude of the
improvement. This can lead to getting stuck in local optima and
underexploration of the parameter space. An alternative
acquisition function that accounts for the magnitude of the
improvement is expected improvement. Expected improvement
is the expectation value of I(x), obtained as
1090 | Digital Discovery, 2024, 3, 1086–1100
EI ¼ E½IðxÞ� ¼
ðN
f
0

�
f

0 � f ðxÞ
�
N
�
m; s2

�
df

¼
�
m� f

0
�
F

 
m� f

0

s

!
þ s4

 
m� f

0

s

!
;

(15)

where 4ðzÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
expð�z2=2Þ is the probability density func-

tion of the normal distribution. Expected improvement selects
for values where m > f0 and for points with high uncertainty.
Typical implementations of expected improvement also include
a hyperparameter x, termed jitter, that tunes the balance
between exploitation and exploration by driving the Bayesian
optimisation algorithm towards more exploration.

Lower condence bound

Another simple but powerful acquisition function is lower
condence bound. Here, the acquisition function takes the
form

LCB(X) = −lm + s (16)

where l is an explicit hyperparameter to balance the ratio
between exploitation and exploration. When l is small, the
optimisation algorithm will reward the exploration of
uncharted regions of parameter space, while a larger value of l
will favour regions that are expected to be high-performing.

Demonstration of optimisation
algorithms

We now illustrate the performance of gradient descent, simu-
lated annealing, and Bayesian optimisation in nding the
minimum of a relatively simple analytical function (Fig. 3). We
have chosen the Sine function, dened by Aldeghi et al.56 as

f ðxÞ ¼
XD
d¼1

sin
�
2pxd

2
�þ xd

2 þ 0:2xd ; (17)

where D is the number of dimensions, x ˛ [−1, 1]D, and the
minimum appears at x* = (−0.85297)D. The experiment starts
with a single random point (the same starting point is chosen
for each algorithm) and includes 50 iterations for each method.
For Bayesian optimisation, Gaussian processes and lower
condence bound were used as the surrogate model and
acquisition function, respectively. Gradient descent gets stuck
in a local minimum (depending on the gradients of the initial
point chosen) and fails to nd the global minimum due to the
lack of capacity for global exploration. In contrast, both
Bayesian optimisation and simulated annealing discover the
global minimum within 50 iterations. As can be seen in the
trajectory subplots, Bayesian optimisation converges to the true
minimum considerably faster (within 20 iterations) compared
to simulated annealing which takes more than 30 iterations.

Photovoltaic device optimisation

For a physical science demonstration, we apply Bayesian opti-
misation to a photovoltaic device design. The Modelling Solar
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Comparison of optimisation algorithms: (a) gradient descent, (b) simulated annealing, and (c) Bayesian optimisation on the Sine function
with 10 minima (see text for details). Typical optimisation trajectories have been displayed in each case. The surfaces illustrate the Sine function,
which is not directly observable, but that we would like to optimise. The initial starting point is shown by a red cross, while the true global
minimum is indicated with an orange star. Points sampled by the optimisation algorithm are indicated by white crosses. The accompanying
subplots illustrate the minimum value observed at each iteration of the optimisation. Bayesian optimisation converges to the true global
minimum the quickest while gradient descent fails to find the global minimum.
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Cells package57 is used to simulate the power conversion effi-
ciency of a TiO2/ZnO/CdS/Cu2ZnSnS4/Mo solar cell under AM1.5
global sun illumination. This phenomenological approach
accounts for radiative, Auger, trap-assisted, and surface
recombination losses through shunt resistance. A p-doped
Cu2ZnSnS4 absorber layer and n-doped CdS buffer layer form
the p–n semiconductor junction. The parameter space
controlling the efficiency consists of the thickness and doping
concentrations of the absorber and buffer layers, giving rise to
a four-dimensional optimisation problem.

We evaluate the performance of Bayesian optimisation
against a grid search approach that enumerates all potential
input parameters on a discretised 4 × 4 × 5 × 5 grid (4 thick-
nesses and 5 doping concentrations per doping polarity) and
random parameter selection over the entire domain (n-type
thickness ˛ [10−9, 10−6] m, p-type thickness ˛ [10−8, 10−5] m,
and n/p doping concentrations ˛ [1014, 1018] cm−3). Accord-
ingly, even using very coarse sampling of the parameter space,
the grid search approach must still sample 400 points for
complete coverage. In contrast, it takes less than 20 iterations
for Bayesian optimisation to converge to maximum efficiency by
effectively using information from early evaluations to focus on
promising areas quickly.

The performance of Bayesian optimisation with different
acquisition functions against simulated annealing and random
sampling is compared in Fig. 4c. Due to the stochastic nature of
the optimisation, we repeat the experiment 30 times and plot
the standard deviation of predictions in the shaded region. We
nd Bayesian optimisation converges rapidly to the optimal
value of 17.1% in less than 20 iterations, with the expected
improvement and upper condence bound acquisition
© 2024 The Author(s). Published by the Royal Society of Chemistry
functions slightly outperforming probability of improvement.
Simulated annealing also converges to the optimal value but
takes over three times as many iterations. In contrast, random
sampling converges much more slowly and only reaches an
efficiency of 14.5% aer 75 iterations. In Fig. 4a and b we
illustrate two-dimensional slices of the optimisation surfaces,
highlighting the route Bayesian optimisation samples the
parameter space. The optimisation algorithm quickly identies
a p-type thickness of 10−5 m and n-type carrier concentration of
1018 cm−3 as optimal values, and samples the remaining input
parameters to nd the global maximum. Our results demon-
strate the potential of Bayesian optimisation compared to naive
grid and random searches.
Recent applications to chemical
problems
Automated experiments

In the last decade, advances in robotics platforms tailored to the
chemical sciences have enabled the rise of automated experi-
ments. These systems can screen large libraries of precursors
and experimental conditions more rapidly and reproducibly
than human researchers.58 A natural application of Bayesian
optimisation is driving the selection of input parameters to
minimise or maximise an experimental observable in auto-
mated chemical experiments. To understand the performance
of Bayesian optimisation on materials science problems, Liang
et al.59 compiled ve datasets from the literature (Fig. 5) span-
ning polymeric and nanoparticle formulations, inorganic thin
lms, andmaterials manufacturing, with a range of dimensions
(3–5) and sample counts (94–600). For each dataset, they
Digital Discovery, 2024, 3, 1086–1100 | 1091
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Fig. 4 Bayesian optimisation outperforms random search in optimising the efficiency of a solar cell. The path taken by the Bayesian optimisation
algorithm to identify the global maximum projected on two-dimensional slices of the parameter space, namely (a) p-type CZTS thickness and
carrier concentration, and (b) n-type CdS thickness and carrier concentration. The initial point for the optimisation is indicated with a red cross.
The optimal input value is identified with a gold star. The points along the optimisation trajectory are indicated in green crosses, varying from light
to dark as the number of iterations increases. (c) The performance of Bayesian optimisation with different acquisition functions (Upper Confi-
dence Bound [UCB], Probability of Improvement [PI], Expected Improvement [EI]) against simulated annealing and random search. The opti-
misation was performed 30 times with the standard deviation of experiments indicated by the shaded regions.

Fig. 5 Materials science datasets used to evaluate Bayesian optimisation against random sampling. (a) Histogram of objective values. (b) Input
feature space projected onto 3 dimensions using principal component analysis (PCA). Reproduced with permission from Liang et al.59
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evaluated the performance of Bayesian optimisation against
random sampling at discovering the percentage of top candi-
dates and the improvement in objective function. Bayesian
optimisation using Gaussian processes with anisotropic kernels
and a random forest surrogate model was found to outperform
random sampling in all cases.

Optimisation of chemical reactions is a highly complex,
multidimensional problem that requires synthetic chemists to
evaluate many parameters, including reagents, concentrations,
temperatures, solvents, substrates, and catalysts. Bayesian
optimisation has emerged as a powerful tool in facilitating the
efficient synthesis of functional chemicals.5,60,61 Shields et al.5

developed a Bayesian approach using quantum chemical
properties of reaction components as descriptors. They
1092 | Digital Discovery, 2024, 3, 1086–1100
benchmarked their method on a large Pd-catalysed direct ary-
lation reaction dataset and the real-world optimisation of Mit-
sunobu and deoxyuorination reactions. Their approach was
found to outperform human decision-making on both average
optimisation efficiency (i.e., the total number of experiments
needed to optimise the reaction) and consistency (i.e., the
variance of the nal performance against initially available
data). Their work highlights the potential of integrating
autonomous experiment planning systems into chemical
robotics platforms. Bayesian optimisation has also been
applied in the biomaterials chemistry domain. Lofgren et al.62

optimised the synthetic parameters of the AquaSolv omni bio-
renery for lignin production through Bayesian optimisation
with multiple experimental outputs including structural
© 2024 The Author(s). Published by the Royal Society of Chemistry
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features and nuclear magnetic resonance spectroscopy. Their
approach enabled the construction of a Pareto front to identify
the conditions that simultaneously optimise the lignin yield
and other chemical features needed for downstream
processing.

Bayesian optimisation has also been applied to accelerate
the discovery of multicomponent systems, for example those
containing large numbers of elements, which present a chal-
lenge when relying on chemical intuition.63,64 Wahl et al.65 used
Bayesian optimisation to discover biphasic, single-interface
nanoparticles in the eight-dimensional Au–Ag–Cu–Co–Ni–Pd–
Sn–Pt phase space. They rst benchmarked their approach on
a curated dataset of 148 unique nanoparticle compositions,
spanning a range of chemical diversity and interfacial
complexity (from 0 to 6 interfaces), using a domain-specic
upper condence bound acquisition function and elemental
properties as descriptors. When applying their method in
a closed-loop synthesis and characterisation framework, they
observed a high success rate with 18 out of 19 candidates
resulting in a successful synthesis. Furthermore, they identied
extremely complex biphasic nanoparticles that would have
unlikely been suggested by a human researcher.

Beyond synthesis, chemical and physical characterisation is
another high-dimensional problem that requires signicant
time even for domain experts. Scanning probe microscopes are
powerful instruments to study the properties of materials on the
nanoscale.66 The availability of programmable interfaces for
microscopes has enabled automated analysis and operation
Fig. 6 Deep kernel learning (DKL) applied to identify the microstruc
microscopy image obtained over a large field of view is split into a series
a patch is converged into a single scalar used in the optimisation. (c) The
output. (d) and (e) Examples of DKL sampled points during the optimisat
permission from Ziatdinov et al.68

© 2024 The Author(s). Published by the Royal Society of Chemistry
powered by machine learning. For example, recent work applied
deep reinforcement learning to discover how to manipulate
individual Ag adatoms on a silver surface, leading to an
autonomous atomic assembly system.67 When operating scan-
ning microscopes, one has to make decisions over (i) the
instrument parameters (e.g., the set point value and driving
amplitude) that can modify the spatial resolution and smearing
of the spectra, (ii) the scan trajectory used to rasterise the image,
and (iii) the identication of microstructural elements that
possess the behaviors of interest. Bayesian optimisation can be
used to help optimise microscopy experiments across all three
considerations.68 Liu et al.69 employed Bayesian optimisation,
combined with deep kernel learning, for the automated
discovery of the structure–property relationships in a PbTiO3

ferroelectric thin lm. By learning to map the local domain
structure to the corresponding hysterisis loop, their approach
was able to identify ferroeletric and ferroelastic domain walls as
the origin of ferroelectric behaviour without any prior physical
knowledge (Fig. 6). While their particular system was studied
using piezoresponse force microscopy, the general approach
can be applied to any other probe method including optical and
mass-spectrometric chemical imaging methods and scanning
transmission electron microscopy.

Accelerated computations

Bayesian optimisation has been widely employed to optimise
the discovery of new materials in computational screenings.
Nanoporous materials are developing technologies used to
tural origins of ferroelectricity in PbTiO3. (a) A piezoresponse force
of patches. (b) A voltage–polarization hysterisis spectrum measured at
DKL model learns to map between the image patch and the scalarised
ion, highlighting the order the points were sampled. Reproduced with

Digital Discovery, 2024, 3, 1086–1100 | 1093
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store, capture and sense gases. Given a target molecule, a typical
task is to search a large library of materials to nd the one with
optimal adsorption properties. However, the current cost of
such searches, either experimentally or computationally, is
relatively high and limits the number of systems that can be
studied. Deshwal et al.70 applied Bayesian optimisation to
search a database of ∼70 000 hypothetical covalent organic
frameworks (COFs) for the system with the highest simulated
methane deliverable capacity. Their Bayesian optimisation
approach identied ∼30% of the top 100 ranked COFs aer
evaluating only 140 systems, including identifying the optimal
material in the dataset. Lampe et al.71 integrated three machine-
learning models with Bayesian optimisation, and successfully
achieved precise control over CsPbBr3 nanoplatelet thickness
with enhanced optical quality and monodispersity with
minimal data requirements. The algorithm's ability to optimise
spectral quality, account for purity, and incorporate heuristic
constraints enabled rapid improvement, achieving remarkable
results with only 220 samples for nanoplatelet syntheses, orders
of magnitude fewer than necessary for other complex
approaches. Seko et al.72 used Bayesian optimisation with the
Kriging method73 to discover materials with low lattice thermal
conductivity (kl) for thermoelectric applications. They explored
over 50 000 potential materials using an initial dataset of 101
rst-principles anharmonic lattice dynamics calculations. Their
study identied 21 materials with low lattice thermal conduc-
tivities suitable for high-performance thermoelectrics,
including two compounds with kl less than 0.5Wm−1 K at 300 K
and a narrow electronic band gap less than 1 eV.

Needle-in-a-haystack problems, in which the optimum value
appears in a small portion of the total search space, exist across
a wide range of elds including disease prediction and mate-
rials property optimisation. The problems typically pose a chal-
lenge to Bayesian optimisation algorithms which exhibit slow
convergence or get stuck in local optima. Siemenn et al.74

developed a new approach they termed the Zooming Memory-
Based Initialization algorithm (ZoMBI) to tackle needle-in-a-
haystack problems building on traditional Bayesian optimisa-
tion. Their approach starts by iteratively zooming in on the
manifold search bounds, with each dimension handled inde-
pendently, using a set number of memory points to identify the
plausible region containing the global optimum needle. Next,
the memory points not being used to zoom in the search
bounds are pruned to reduce the computational cost. In an
approach that better mimics the human learning process,
actively learned acquisition function hyperparameters are used
to tune the preference between exploration and exploitation.
Together, these procedures enable the optimisation method to
locate the region containing the optimum needle and avoid
local optima. The method was benchmarked on two real-world
problems, namely identifying materials with a highly negative
Poisson's ratio and materials with a highly positive thermo-
electric gure of merit, for which exhaustive computational
datasets were available. They nd the ZoMBI algorithm
outperforms standard Bayesian optimisation (a computational
speed-up of 400×) and other state-of-the-art algorithms
1094 | Digital Discovery, 2024, 3, 1086–1100
designed for needle-in-a-haystack problems (3× fewer
experiments).

Machine-learning interatomic potentials (MLIPs) have
emerged as efficient surrogate models for approximating ab
initio potential energy surfaces. However, computational
searches employing MLIPs are constrained by their reduced
accuracy, particularly for out-of-sample predictions of energies
and forces on unseen regions of composition or conguration
space. Tran et al.75 developed a multi-delity machine learning
framework to fuse a hierarchy of atomistic computational
models, with density functional theory calculations and a SNAP
MLIP76 used for high- and low-delity predictions, respec-
tively.77,78 By coupling their model to a Bayesian optimisation
procedure, they performed an on-the-y search for materials
with high bulk modulus in the Al–Nb–Ti ternary composition
space. Their approach was able to locate the optimum material
aer only 5 high-delity and 31 low-delity evaluations,
demonstrating the power of multi-delity inference coupled
with Bayesian optimisation.
Challenges and opportunities

While the utility of Bayesian optimisation in the physical
sciences has been demonstrated, further developments are
required to increase its robustness to real data and the scaling
to more complex problems of interest to chemists.
Noisy data

In most practical optimisation tasks, the objective function
evaluation is subject to random noise, for example, due to
errors arising from the instrumental resolution or inhomoge-
neity of prepared samples. To illustrate the impact of noise on
the Bayesian optimisation procedure, we investigate applying
random uctuations to the two-dimensional Rastrigin function

f ðxÞ ¼ Anþ
Xn
i¼1

�
xi

2 � A cosð2pxiÞ
�
; (18)

where A = 10, n = 2, and xi ˛ [−5.12, 5.12] and with a global
minimum at x = 0. Noise is simulated by applying a random
vector to x, drawn from a normal distribution with variance a.
We consider optimisation under three conditions: zero noise
(e.g., clean data with a = 0), small noise (a = 0.05), and high
noise (a = 0.2). In the zero-noise and small noise cases,
Bayesian optimisation with the lower condence bound acqui-
sition function can reach the global minimum in under 75
learning cycles (Fig. 7). However, for the high noise experiment,
the optimisation failed to nd the global minimum within 75
cycles. In our example, adjacent local minima are relatively
close to the global minimum and illustrate the utility of
Bayesian optimisation in chemical experiments where oen we
are primarily interested in an “acceptable” solution. Gaussian
process regression can handle unbiased noise by giving an
estimate of its standard deviation. However, it is difficult to
determine the range of noise in real experiments and it may be
biased due to environmental factors.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The impact of noise on the optimisation of the two-dimensional Rastrigin function, a non-linear, non-convex function withmanyminima.
Noise is simulated by adding a random vector to themodel inputs, with variance a. Bayesian optimisation finds the global minimum in the case of
(a) clean data (a = 0) and (b) low noise (a = 0.05) but fails for (c) high noise (a = 0.2).
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To improve the robustness of optimisation algorithms on
noisy tasks, Aldeghi et al.56 developed the Golem approach,
which accounts for sources of uncertainty and reweights the
merits of previous experiments. Golem explicitly models the
objective function uncertainty with parametric probability
distributions that assign a weight to the collected measure-
ments. This allows the construction of an objective function
that maximises the average performance under variable condi-
tions, while penalizing the expected variance of the results. This
new surrogate model is highly correlated with the true robust
objective, therefore, the predictions made by Golem exhibit
increased accuracy and are useful in problems even with high
levels of noise. This approach is designed to be agnostic to the
experiment planning strategy or optimisation algorithm and is
therefore useful in contexts beyond Bayesian optimisation. They
benchmark their approach on synthetic optimisation tasks,
including analytical chemistry protocols under noisy experi-
mental conditions, nding considerable efficiency improve-
ments in both systematic searches and those powered by
Bayesian optimisation. An alternative approach was proposed
by Noack et al.79 who highlight the importance of accounting for
inhomogeneous noise (not independent and identically
distributed noise). The general solution they adopt is to esti-
mate and model noise through the Gaussian process directly as

mX jD ¼ mX þ SXDðSDD � VÞ�1ðD� mDÞ; (19)

SX rD ¼ SXX � SXDðSDD � VÞ�1SDX ; (20)

where V is a diagonal matrix containing the respective
measurement variances due to noise. They demonstrate their
approach by optimising fabrication parameters for polymer-
graed gold nanorod thin lms in an autonomous X-ray scat-
tering experiment. Proper handling of noise was found to be
© 2024 The Author(s). Published by the Royal Society of Chemistry
essential to steer the optimisation away from regions of high
noise, leading to faster optimisation times and fewer wasted
resources.
Parallel optimisation

For high-dimensional tasks, parallel optimisation can improve
the accuracy, convergence, and overall performance of the
optimisation process. In contrast to batch optimisation, where
points are chosen for evaluation sequentially in each iteration,80

parallel optimisation involves conducting multiple optimisa-
tion processes simultaneously from various starting points
across different partitions of the search space. The simplest
approach of this sort is multi-start gradient descent. In this
method, the initial points are distributed randomly with space-
lling techniques and gradient descent performed indepen-
dently for each starting point. During optimisation, the points
will fall into their local minima automatically, without the need
for explicit space partitioning. However, this approach is
limited to situations where the optimisation function is known
and is differentiable or where it is feasible to calculate the
derivatives by numerical methods. Furthermore, this method
relies on at least one initial point being placed within the basin
of the true global minimum, since the algorithm lacks the
capability for global exploration.

More advanced techniques have been developed that are
suitable for Bayesian optimisation. One method is the bandit
greedy-selection approach, which aims to allocate limited
resources between competing choices.81 Bandit methods are
oen used in conjunction with Thompson sampling, a heuristic
algorithm to balance the exploration and exploitation rates in
multi-armed bandit problems. The underlying logic is how to
choose the most efficient sampling points according to the
optimal probability. Ueno et al.32 developed a Python package
Digital Discovery, 2024, 3, 1086–1100 | 1095
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(COMBO) employing Thompson sampling, random feature
maps, one-rank Cholesky updates, and automatic hyper-
parameter tuning for Bayesian optimisation, and applied it to
discover the atomic structure of a crystalline interface.
Furthermore, Kandasamy et al.82 explored variations of the
classical Thompson sampling process combined with Bayesian
optimisation for parallel computing. Their study highlighted
that operating n iterations distributed among T workers can
provide a similar performance as if n sequential operations were
made.

Building on these methods, Falkner et al.83 introduced the
Bayesian optimisation and HyperBand approach (BOHB).
HyperBand aims to speed up the searching process by
spreading the initial starting points over different partitions of
the parameter space and performing multiple Bayesian opti-
misation processes at the same time.84 Aer several iterations,
the worst-performing optimisation processes are stopped,
where the fraction stopped is an adjustable hyperparameter,
and the other processes allowed to continue, with the stopping
stage repeated until there is only one worker le. In their
benchmarks, they demonstrated the algorithm exhibits
enhanced efficiency throughout the entire learning process and
identies the global minimum with 40% fewer objective eval-
uations compared to standard Bayesian optimisation. Further-
more, it allows the utilisation of parallel computing techniques
which further decrease the computational time.
Multi-objective optimisation

When optimising for more than one parameter of interest,
multi-objective Bayesian optimisation (MBO) is an attractive
method.85,86 A typical example might include nding optimal
solutions for stability as well as a functional property quanti-
fying overall performance.87–90 In the traditional Bayesian opti-
misation algorithm, the N best solutions generated by prior
calculations are used to rebuild the probabilistic model. For
multi-objective problems, it is challenging to decide on the
“best” solution and one must develop a ranking scheme to
weight individual parameters in the overall score. Non-
dominated sorting is a key concept that originated from
multi-objective evolutionary algorithms91 and is widely applied
as target ranking schemes in multi-objective Bayesian optimi-
sation. It accounts for a signicant proportion of the compu-
tational cost when applying selection, comparison and
crossover.92,93 A multitude of non-dominated sorting methods
have been proposed andmust be carefully selected based on the
functional space in chemical and materials science.

Agarwal et al.94 applied multi-objective Bayesian optimisa-
tion to the discovery of benzothiadiazole (BzNSN) redoxmers,
with the goal of simultaneously optimising the reduction
potential, solvation-free energy, and absorption wavelength.
They applied their approach to a dataset of 1400 BzNSN mole-
cules, where properties were calculated using density functional
theory calculations. They demonstrated at least 15 times
increased efficiency compared to randomly selecting materials
highlighting the exibility for the discovery of functional
materials.
1096 | Digital Discovery, 2024, 3, 1086–1100
The main difficulty in multi-objective optimisation is
balancing different target properties to maximise the use of
available data. For physical experiments, the cost of measuring
different properties can vary substantially. For example, optical
properties can oen be measured efficiently through in situ
spectroscopic techniques, whereas surfacemorphology requires
more laborious experimental procedures. It is desirable to rst
explore the objectives with lower to locate regions with suitable
values, before continuing the search across more expensive
objectives within these regions. This procedure can reduce the
overall cost and the initial data can be applied to design a new
target space with less complexity by dimension reduction.
Further cost reductions can be achieved by combining multi-
objective Bayesian optimisation with parallel search methods.
Integration of chemical knowledge

In some elds, black-box optimisation starting from no prior
information is necessary. In the chemistry domain however, we
generally have some insights and expectations concerning the
physical nature of our system and its variables. For Bayesian
optimisation, this may involve the incorporation of physical
laws, phase stability criteria, and intrinsic material property
constraints to inform the surrogate model/acquisition function
and rene the search towards regions most likely to contain
promising solutions. The integration of a structured probabi-
listic model that captures the expected physical behavior of the
system proved successful for solving Ising problems in
physics.95 Constrained Bayesian optimisation was used to
improve the validity and quality of molecular candidates in
a generative computational search.96 In the context of materials
design, leveraging information on preferred coordination
environments, valency, and known synthetic accessibility, could
guide the optimisation process to consider only chemically
viable compositions and structures. The challenge to realise
this opportunity lies in developing methods to encode such
qualitative knowledge into quantitative, algorithmically
processable constraints without oversimplifying the problem
and limiting the diversity of emerging solutions. An optimal
solution may deviate from our expectations based on known
chemistries.

Chemistry- or physics-driven models can help navigate vast
combinatorial spaces for materials design. Häse et al.97 devel-
oped Gryffin to accelerate the search for promising materials by
incorporating Bayesian optimisation with smooth approxima-
tions to categorical distributions and physicochemical
descriptors. The approach was used to design non-fullerene
acceptors for organic solar cells, hybrid organic–inorganic
perovskites for light-harvesting, and ligands and process
parameters for Suzuki–Miyaura reactions. Inclusion of domain
knowledge was found to lead to a superior strategy for mixed
categorical-continuous optimisation in chemistry andmaterials
science compared to state-of-the-art methods such as one-hot
encoding. Clancy and co-workers developed the Physical
analytics pipeLine98 (PAL) and PAL 2.0 (ref. 99) approaches that
merge physics-based models with Bayesian optimisation using
a physics-based prior mean for the Gaussian process surrogate
© 2024 The Author(s). Published by the Royal Society of Chemistry
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model. Physical descriptors correlated to the target property
were identied by XGBoost and used as features for a neural
network to predict the prior mean. They found PAL 2.0 could
obtain lower prediction errors for unseen material composi-
tions in the design of metal halide perovskites and organic
thermoelectric semiconductors than off-the-shelf Bayesian
optimisation packages and one-hot-encoded Gaussian process
methods. Chemical knowledge can further be introduced
through automated experiments or ab initio calculations. Sun
et al.100 demonstrated a sequential learning framework with
physics constraints from high-throughput degradation tests
and rst-principle calculations of phase thermodynamics to
identify the most stable alloyed multi-cation perovskites.
Superior search efficiency was demonstrated by identifying the
Cs0.17MA0.03FA0.80PbI3 (MA = methylammonium, FA = for-
mamidinium) perovskite composition with minimal optical
change under increased temperature, moisture, and illumina-
tion. This compound exhibited a 17-fold stability improvement
compared to well-known CH3NH3PbI3, despite the method only
sampling 1.8% of the discretised compositional space. In
related work, Pedersen et al.101 combined a kinetic model based
on density functional theory and Bayesian optimisation to
predict the most efficient compositions for the oxygen reduc-
tion reaction in high-entropy alloys (HEAs). The model identi-
ed the optimal compositions of Ag15Pd85 and Ir50Pt50, and
successfully extrapolated to other binary alloys.

Conclusion

We have introduced the strategy of Bayesian optimisation for
accelerating discoveries in the chemistry domain. The key
concepts are a surrogate model to estimate the probability
distribution of the unseen objective function and an acquisition
function to determine which point to sample next. We
compared the performance of numerical (gradient descent),
heuristic (simulated annealing) and statistical approaches
(Bayesian optimisation) on toy optimisation problems, high-
lighting the potential for signicant efficiency gains.

Bayesian optimisation is being adopted to aid the discovery
of optimal molecules/materials and accelerate experimental
characterisation of structures and properties. Despite this
progress in the application of statistical optimisation
methods, several challenges and opportunities remain. Real
experimental data is oen noisy and this must be considered
for efficient searches. In many setups, evaluating a sample can
be highly costly and involve multiple observables. Parallel and
multi-objective optimisation approaches have been developed
that can overcome such challenges but currently require
careful consideration of hyperparameters tailored for specic
problems. An understanding of the range of chemical prob-
lems and the suitable methods in each case will facilitate the
general application of Bayesian optimisation in chemical
discoveries.
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