
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 1
2:

06
:4

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Learning materia
aMaterials Measurement Science, Division o

Technology, Gaithersburg, MD 20899, USA

mcdannald@nist.gov; brian.decost@nist.go
bMaterials Science and Engineering, Departm

Park, MD 20742, USA

† Electronic supplementary informa
https://doi.org/10.1039/d4dd00048j

Cite this: Digital Discovery, 2024, 3,
2211

Received 20th February 2024
Accepted 16th September 2024

DOI: 10.1039/d4dd00048j

rsc.li/digitaldiscovery

© 2024 The Author(s). Published by
l synthesis–process–structure–
property relationship by data fusion: Bayesian co-
regionalization N-dimensional piecewise function
learning†

A. Gilad Kusne, *ab Austin McDannald a and Brian DeCost a

Autonomousmaterials research labs require the ability to combine and learn from diverse data streams. This

is especially true for learning material synthesis–process–structure–property relationships, key to

accelerating materials optimization and discovery as well as accelerating mechanistic understanding. We

present the Synthesis–process–structure–property relAtionship coreGionalized lEarner (SAGE) algorithm.

A fully Bayesian algorithm that uses multimodal coregionalization and probability to merge knowledge

across data sources into a unified model of synthesis–process–structure–property relationships. SAGE

outputs a probabilistic posterior including the most likely relationship given the data along with proper

uncertainty quantification. Beyond autonomous systems, SAGE will allow materials researchers to unify

knowledge across their lab toward making better experiment design decisions.
1. Introduction

Lack of advanced materials stymies many next-generation
technologies such as quantum computing, carbon capture,
and low-cost medical imaging. However, fundamental chal-
lenges stand in the way of discovering novel and optimized
materials including (1) the challenge of a high-dimensional,
complex materials search space and (2) the challenge of inte-
grating knowledge across instruments and labs, i.e., data
fusion. The rst challenge arises from the need to explore ever–
more complex materials as simpler material systems are
exhausted. Here material system refers to the materials result-
ing from a set of material synthesis and processing conditions.
With each new material synthesis or processing condition, the
number of potential experiments grows exponentially – rapidly
escape the feasibility of Edisonian-type studies, forming a high-
dimensional search space. As a result, any data is typically
sparse relative to the search space. The search space is also
highly complex due to the underlying complex relationship
between material synthesis and process conditions and the
resulting material structure and functional properties, i.e., the
material synthesis-process-structure–property relationship
(SPSPR).
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Knowledge of this SPSPR plays a fundamental role across
materials research, whether the research is performed by hand
or through an automated or autonomous system. Researchers
use knowledge of the SPSPR as a blueprint to navigate the high-
dimensional complex search space toward novel and optimized
materials and to explore the underlying mechanistic origins of
material properties. As a result, an algorithm that properly
unies diverse materials data into SPSPRmodels may accelerate
all these activities, impacting much of materials research. For
example, such an algorithm can exploit the SPSPR to dramati-
cally improve prediction accuracy of a target functional prop-
erty, despite sparsity of data. This improved prediction would
then better guide subsequent research, which would in turn
boost SPSPR knowledge.

Building the SPSPR blueprint involves combining knowledge
of material synthesis and process conditions, lattice structure
(and potentially microstructure), as well as the diverse set of
functional properties required to meet the technological
requirements. This requires integrating data across different
instruments and measurement modalities, each dependent on
differing physical principles. Additionally, measurements can
vary based on instrument calibration, measurement parameter
settings, environmental conditions such as temperature and
humidity, and each instrument user's measurement process.
Even instruments of the same make and model differ based on
unique biases, uncertainties, and data artifacts.

As a very common example, researchers oen start their
search for improved materials with the phase map of the target
material system. A phase map (or ‘phase diagram’ for equilib-
rium materials) visualizes the synthesis–structure relationship.
Digital Discovery, 2024, 3, 2211–2225 | 2211
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Fig. 1 (a) The (Bi,Sm)(Sc,Fe)O3 material system experimentally identified phase diagram. Phase boundaries indicated by black dashed lines. (b)
(Bi,Sm)(Sc,Fe)O3 coercive electric field magnitude overlayed with phase diagram. Circles indicate experimentally characterized materials and
color indicates coercive electric field magnitude between 0 kV cm−1 and 491 kV cm−1. (c) SAGE schematic. A collection of materials spanning
a target material system are characterized for multimodal structure data which is then processed through a preliminary phase analysis tool. The
materials are also characterized for a range of functional properties. The collected data is passed to SAGE which outputs posterior probabilities
for both the material system phase map and the functional properties. These posteriors can then be used in an experiment design (active
learning) algorithm to determine the next material to investigate.
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An example phase map is shown in Fig. 1a for the (Bi,Sm)(Sc,Fe)
O3 material system.1 Here the phase map relates material
composition (the target synthesis conditions) to resulting lattice
structure, described in terms of phases, i.e., composition-
structure prototypes. The phase map is divided into phase
regions – contiguous regions of synthesis-process space
(experiments of varying synthesis and process conditions) that
result in materials of the same set of phases. The regions are
separated by phase boundaries (dashed black lines). Material
phase information is predictive of many functional properties.
Materials with property extrema tend to occur either within
specic phase regions (e.g., magnetism and superconductivity)
or along phase boundaries (e.g., caloric-cooling materials).
Thus, a materials researcher can use phase maps to guide their
studies toward synthesis and process conditions that are ex-
pected to produce materials with more promising properties.

Fig. 1b visualizes a (Bi,Sm)(Sc,Fe)O3 SPSPR by combining the
phase map with the functional property of coercive electric eld
magnitude (CEFM).2,3 Circles indicate experimentally charac-
terized materials and circle color indicates measured CEFM.
The CEFM is highly dependent on both synthesis conditions
2212 | Digital Discovery, 2024, 3, 2211–2225
and phase, with the highest values occurring with ‘open’
hysteresis loops in the rhombohedral R3c phase region. Addi-
tionally, the composition dependence of CEFM signicantly
differs between phase regions, with greater variation occurring
in the R3c and Pnma phase regions than the intermediary
region. In general, discontinuities in functional property values
may also occur at phase boundaries. Thus, functional proper-
ties can be represented as piecewise functions of the synthesis
parameters (in this case composition), with each ‘piece’ of the
piecewise function associated with a phase region. This allows
for signicant changes in function behavior from region to
region and/or discontinuities to occur at phase boundaries.

For this example, data for materials synthesis and structure
are used to build a phase map, and that phase map is then used
to guide understanding of target property data. Knowledge is
one directional, from structure to functional property. With
a proper SPSPR learning algorithm, these diverse data could be
combined in a unied model where knowledge of the phase
map would improve analysis and prediction of functional
properties and vice versa. For example, signicant changes in
functional properties may indicate a phase boundary and thus
© 2024 The Author(s). Published by the Royal Society of Chemistry
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improve analysis and prediction of materials structure. Such an
algorithm would boost overall materials research prediction
accuracy and subsequent research, but such an algorithm has
been lacking.

To overcome the dual challenges of a complex, high-
dimensional search space and data fusion in SPSPR learning,
we present the synthesis–process–structure–property relAtion-
ship coreGionalized lEarner (SAGE). The SAGE algorithm is
available as part of the Hermes library, https://github.com/
usnistgov/hermes and as a standalone library https://
github.com/KusneNIST/SAGE. SAGE is a Bayesian machine
learning (ML) algorithm that combines three features: (1) ML-
based segmentation of the synthesis-processing space using
material synthesis, process, and phase data. Segments are
phase regions, and the collection of phase regions forms the
synthesis–process–phase map. The synthesis–process–phase
map is then used to extrapolate the synthesis–process–
structure relationship to new materials, (2) piecewise
regression to t and extrapolate synthesis–process–property
relationships, and (3) coregionalization. Coregionalization
allows multimodal, disparate knowledge of structure1 and
property,2 both gathered across the shared domain of
synthesis and processing conditions, to be combined to
exploit shared trends. Here the term multi-modal refers to
learning from disparate data sources (similar to its use in the
common machine learning challenge of learning from text,
audio, and image data). SAGE combines these three features
to learn the most likely SPSPR model given material synthesis,
process, structure, and property data. Multi-modal learning
arises from exploiting both structure and functional property
data to improve phase mapping (rather than using just the
structure data) and both structure and functional property
data to improve functional property regression (rather than
just using the functional property data). Here the language of
probability is used to unify knowledge across multi-modal
data with assumptions represented as priors and data
combined through likelihoods. Additionally, SAGE's Bayesian
framework allows for full uncertainty quantication and
propagation.

Much of machine learning focuses on algorithms that
provide “point estimate” outputs, i.e., they provide analysis or
prediction without uncertainty. Proper uncertainty quantica-
tion and propagation requires explicitly expressing uncer-
tainties in all variables and data, and then propagating these
uncertainties through all computations to provide the uncer-
tainty in the algorithm's outputs. A set of statistical learning
algorithms such as Gaussian process regression were analyti-
cally developed to explicitly and properly manage uncer-
tainties.4 Due to the complexity (and wide-spread use) of many
algorithms, computational methods are oen employed to
approximate output uncertainties without signicantly
changing the main algorithm.5 Alternatively statistical methods
such Bayesian inference can be used to build probabilistic
models. With Bayesian inference, uncertainties are explicitly
expressed and combined with Bayes rule to output the posterior
probability (a probabilistic representation of uncertainty) – the
probability distribution of the model given the data.6 When
© 2024 The Author(s). Published by the Royal Society of Chemistry
analytically intractable, sampling methods such as Markov
Chain Monty Carlo (MCMC) can be used to estimate these
posterior probabilities.6 Implementing these techniques is
made easier through probabilistic programming languages
such as Pyro and Turing.7,8 SAGE employes Bayesian inference
and MCMC for uncertainty quantication and propagation.

A schematic of SAGE is provided in Fig. 1c. Here SAGE takes
in data streams from the material synthesis and processing
systems, structure characterization instruments, as well as
functional property characterization instruments. Each struc-
ture data stream is rst processed using a phase analysis algo-
rithm as described below. SAGE then learns the SPSPR from the
combined phase analysis data streams and the functional
property data streams. SAGE's output SPSPR posterior can be
broken down into posteriors over the synthesis–process–struc-
ture phase map and the functional properties. These posteriors
can then be integrated into either an experiment recommen-
dation engine or a closed-loop autonomous materials labora-
tory,9 which can guide subsequent experiments and
measurements in structure and functional property. For
example, an autonomous system could target maximizing
knowledge of the SPSPR or optimizing a material for a set of
target functional properties.

Each of SAGE's features has a diverse history. The rst
feature of ML-based phasemapping has a seen the development
of an array of algorithms over the last few decades.3,10–14 These
algorithms combine two tasks, (1) data analysis: analyzing
structure data to identify phase abundances or phase regions
and (2) extrapolation: extrapolating phase knowledge from
measured materials to unmeasured materials. Data analysis
techniques (i.e., phase or phase region identication) include
matrix factorization, peak detection, graphical model segmen-
tation, constraint programming, mixed integer programming,
and deep learning, among others.3,15–23 For an example of such
an algorithm applied to the provided datasets, including
a thorough description of these datasets, we refer the reader to
ref. 3. Extrapolation algorithms have focused primarily on the
use of graph-based models or Gaussian processes (GP).16,17,24,25

(For a brief overview of Gaussian processes, see Section 4.2.6
Gaussian processes) For the present work, we assume the task
of structure data analysis is addressed with one of the many
available algorithms. We indicate the use of one of these algo-
rithms with the function m(Ds) applied to structure dataset Ds,
as described below. SAGE therefore begins with knowledge of
phase and focuses on the task of extrapolating phase map
knowledge through Bayesian coregionalized synthesis and
process space segmentation.

Piecewise function regression algorithms have a much
longer history. This includes the common challenge of detect-
ing data discontinuities – also known as jumps or change-
points, which can be generalized to higher dimensions as
edges,26 change-boundaries, and change-surfaces. Changepoint
detection algorithms are quite diverse, using function deriva-
tives, lter convolution, Bayesian inference, and more recently,
adaptive design.27 Common methods for piecewise regression
include linear piecewise algorithms and splines. We point the
reader to review articles in these elds.28,29 Specically for GPs,
Digital Discovery, 2024, 3, 2211–2225 | 2213
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multiple piecewise modeling methods exist30 including the use
of the changepoint kernel (below called GP-CP).31

The eld of coregionalization developed from geospatial
science to learn functions with shared trends over the same
physical domain.32,33 Data for each target function is not
required to be collected for the same set of points in the input
domain.33 For example, if one seeks to learn f1:x/ y and f2:x/
s, data D1 = {(xk, yk)}

N
k=1 and D2 = {(xl, sl)}

M
l=1, the set of input

locations {xk}
N
k=1 and {xl}

M
l=1 are not required to correspond to

the same locations. Alternative methods for jointly learning
related functions include multi-task learning, co-kriging,
including multi-task Gaussian processes5,34 as well as
constraint programming methods and Bayesian methods.33,35,36

These algorithms focus on exploiting similarities between
functions over the full underlying shared domain, assume the
set of output functions are similar (e.g., all continuous), and
assume that each experiment is characterized similarly. Recent
work tackles learning heterogenous sets of functions such as
a mix of continuous, categorical, and binary outputs.37 These
algorithms assume a correlation between a set of latent func-
tions that contribute to the observed output functions.

Our challenge is unique. While we seek to jointly learn the
synthesis–process–structure relationship and synthesis–
process–property relationships, the correlation of interest
between these relationships is purely that of discontinuities,
rather than correlations over the full synthesis–process domain.
We assume that phase boundaries indicate potential change
surfaces in functional properties, and vice versa. We wish to
jointly learn these phase boundaries and utilize them to dene
piecewise functions for the functional properties, allowing for
different property behavior in different phase regions. Prior
algorithms fail for this challenge as the synthesis–process–
structure relationship and those of synthesis–process–proper-
ties are not correlated over the full synthesis–process domain
(this is also true for latent function representations). Addi-
tionally, SAGE utilizes coregionalization to allow different
measurements to be performed at different locations in the
shared synthesis and process domain. This is commonly the
case when materials synthesis and processing experiments take
equal or less time than the measurements or when combining
data collected at different times or by different labs.

To the authors' knowledge, the only algorithm that
addresses the same challenge is the closed-loop autonomous
materials exploration and optimization (CAMEO) algorithm.16

CAMEO rst learns phase boundaries from synthesis, process,
and structure data and then utilizes this knowledge to dene
the change boundaries in the piecewise function used to t and
model functional property data. This two-step approach was
employed in driving an X-ray diffraction-based autonomous
(robot) materials research system in the study of phase-change
memory material. The study resulted in the discovery of the
current best-in-class phase-change memory material – the rst
autonomous discovery of a best-in-class solid state material.16

SAGE improves on CAMEO by allowing full Bayesian uncertainty
quantication and propagation, thus providing simultaneous
information sharing between the structure and property
measurements. SAGE jointly solves for the SPSPR to better
2214 | Digital Discovery, 2024, 3, 2211–2225
exploit shared trends across structure and property data and
improve SPSPR knowledge. SAGE is offered as a module of
CAMEO, i.e., CAMEO-SAGE.

The present data science challenge is generalizable beyond
learning SPSPR. One can use SAGE to address the more
common issue of having successful and failed experiments
across a shared experiment parameter domain. SAGE would
then learn and exploit knowledge of the success–failure
boundary to improve prediction of properties of either type of
experiments. Additionally, SAGE addresses data fusion across
instruments, measurement modalities and labs. The common
approach to this data fusion challenge is to map data from
different sources into the same data space, allowing compar-
ison. For example, data fusion for X-ray diffraction (XRD)
measurements from two different XRD instruments requires
removing source-based data artifacts including instrument
effects that are convolved into the data. To do this, that data
must then be mapped from the instrument specic, source-
based independent variable space (2q) to an instrument-free
independent variable space (q), while also accounting for
differences in nite resolution in 2q space, absolute intensities
and counting times, beam wavelength dispersion, and back-
ground signals, amongst other considerations. In general, data
mapping to an instrument (also lab, weather, etc.) invariant
space requires a signicant amount of meta data that is oen
not available.

An alternative is to independently analyze the data from each
source and then combine the derived knowledge across sources.
SAGE allows such limited-metadata data fusion. The idea
behind coregionalization, as implemented in SAGE, is that the
boundaries identied by one measurement method are also
boundaries in the other measurement methods – regardless of
if those measurement methods are all nominally the same
technique (e.g., several different XRD instruments) or different
techniques (e.g., an XRD instrument and electrical coercivity
measurements). For example, for structure data, one performs
phase mapping analysis for each data source and then SAGE
coregionalization combines knowledge across sources. A
similar benet exists for functional property data by treating
data from each source as a different target property, e.g., coer-
civity_data_source_1 and coercivity_data_source_2. Addition-
ally, SAGE may be applied to cases where only structure data or
only functional property data is obtained.

The contributions of this work are:
� Extending Bayesian coregionalization algorithms to 1-

dimensional and N-dimensional joint segmentation and
piecewise regression.

� Associated constraint programming algorithms for cor-
egionalized joint segmentation and piecewise regression.

� Demonstration of Bayesian algorithms for learning SPSPR
in a unied model.

SAGE is a physics-informed (also known as inductive-bias
informed) machine learning algorithm.38 A wide array of
methods exists for integrating prior physical knowledge into
machine learning methods, including engineering descrip-
tors,39,40 latent mappings,12 constrained solution spaces,41

kernels,42 among many others. For example, a physics-informed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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algorithm was designed for autonomous, closed-loop control
over neutron scattering to accelerate characterization of
temperature-dependent magnetic structure.43 The authors
represent the temperature-dependent structure as a stochastic
process with neutron scattering-dened measurement uncer-
tainties as well as a mean function prior dened by magnetics
physics. The algorithm resulted in a vefold acceleration in
measurement efficiency. However, no previous algorithms
provide the contributions listed above. Such physics-informed
methods provide greater performance and lend greater inter-
pretability to the machine learning model – providing more
physically meaningful solutions.

While the provided implementation of SAGE is a surrogate
model, its framework allows easy modication to embed greater
prior knowledge and to increase interpretability. Target func-
tional properties are currently dened through samples of
multivariate normal distributions, similar to a Gaussian
process. To increase interpretability, users can replace these
samples with samples of potentially descriptive parametric
models (as well as a parameter that selects between themodels).
SAGE will then identify the most likely model and posteriors
over its parameter values. In this way a user can exploit SAGE's
built-in coregionalization of functional property with phase
mapping (i.e., enforced SPSPR) to boost data analysis. Addi-
tionally, one can modify parameter priors. For example, setting
segmentation length scales to a Gamma distribution to increase
bias for small or larger phase regions.
2. Results

We demonstrate SAGE for 1D and 2D example challenges. For
both 1D and 2D, we rst investigate performance for 2 edge
Fig. 2 SAGE-1D performance for two edge cases: (a) edge case 1 where s
and (b) edge case 2 where functional property data (black squares) is mor
comparison of: the SAGE-1D posterior mean and 95% confidence inter
mean estimate (MLE, magenta line and shaded region), and GP-CP – a GP
basis function kernels on either side of the changepoint. The ground tr
functional property function is indicated as a black dashed line. The GP ide
potential changepoints identified by SAGE-1D is indicated by green dotted
histogram) and compared to the SAGE-1D-PM changepoint detection a
unable to find the correct phase boundary, due to only having access to
functional property to be due to data noise. SAGE-1D MLE properly ident
either side. For the second edge case (b), both GP-CP and SAGE perfor
behavior as the functional property data is informative of both.

© 2024 The Author(s). Published by the Royal Society of Chemistry
cases, each with articial phase maps of 2 phase regions and
one articial target functional property. In the rst edge case,
structure data is more informative of the change boundary and
in the second edge case the functional property data is more
informative of the change boundary. These edge cases demon-
strate SAGE's ability to exploit knowledge across both structure
and functional property data to improve prediction of both. We
then provide an example of SAGE's multi-data source cor-
egionalization capabilities with a challenge of 2 structure data
sources and 2 functional property data sources. This is followed
by a real-world application to the (Bi,Sm)(Sc,Fe)O3 and FeGaPd3

material systems.
As described above, SAGE performs the two tasks jointly of

(1) segmenting the synthesis–process domain X into phase
regions i.e., a phase map and (2) regression of the functional
properties. SAGE tackles both tasks by exploiting shared
knowledge (i.e., multimodal knowledge) across the structure
and functional property data. We compare SAGE to a set of
common algorithms and modied SAGE algorithms as
described below (see section Additional models). SAGE's phase
mapping capabilities are compared to that of GPC, the modied
SAGE algorithm SAGE-1D-PM, and SAGE-ND-PM using only
synthesis–process and structure data to segment the synthesis–
process space. SAGE's functional property regression capability
is compared to that of GPR, GP-CP, and the modied SAGE
algorithms SAGE-1D-FP and SAGE-ND-FP using only synthesis–
process and functional property data. Here the GP-CP algorithm
seeks to perform functional property regression while also
identifying change points (i.e., phase boundaries) without
access to structure data. SAGE's capabilities for jointly per-
forming phase mapping and functional property regression
from synthesis, process, structure, and property data is
tructure data (red diamonds) is more informative of the phase boundary
e informative of the phase boundary. In both parts, the main plots show
val (green line and shaded region), and SAGE-1D maximum likelihood
(blue line and shaded region) with a changepoint kernel and two radial

uth phase map is indicated by a red dotted line and the ground truth
ntified changepoint is indicatedwith a blue dotted line and the range of
lines. The SAGE-1D changepoint posterior is shown as the inset (green
lgorithm (orange histogram). For the first edge case (a), the GP-CP is
functional property data and thus identifies significant variations in the
ifies both the phase boundary and the functional property behavior on
m well at identifying the phase boundary and the functional property

Digital Discovery, 2024, 3, 2211–2225 | 2215
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compared to the CAMEO's regression algorithm which rst uses
synthesis–process and structure data to identify a phase map
and then employs the phase map in piecewise regression for
functional property data.

For each experiment, an algorithm is given a subset of
materials data – for each challenge, all algorithms are given the
same set of data (as visualized by red and black markers for 1D
challenges and red markers for 2D challenges in the gures
below) – and each algorithm is then used to predict one of or
both of (based on its capabilities): (1) the phase map over the
synthesis–process domain X, (2) functional properties over X.
For 1D challenges this is over a 100-point grid and for 2D
challenges a 40 × 40-point grid (see Fig. 2 and 3 for ranges). For
instance, GPC takes a subset of data in X and the associated
structure data and then predicts the phase map over the asso-
ciated X grid; GPR takes a subset of data for X and associated
functional properties data to provide functional property
regression over the X grid.

Phase mapping performance is measured by comparing
predicted phase map labels to ground truth (over the grid) using
the micro F1 accuracy score. Ground truth for the 1D and 2D
cases can be seen in the red and black dashed curves of Fig. 2
and the color-coded values of Fig. 3. Functional property
Fig. 3 SAGE-ND demonstration on 2D example for the 2 edge cases: (a
more informative of the phase boundary and (b) edge case 2 where fun
informative of the phase boundary. Here the yellow and blue phase map
predicted (based on figure label). The algorithm shows good agreement
ND properly identifies both the phase boundary and the functional p
prediction of both. For the second edge case (b) SAGE-ND properly ide
using the more informative functional property data to improve predicti

2216 | Digital Discovery, 2024, 3, 2211–2225
regression performance is quantied by comparing predicted
regression models with the ground truth using the typical
coefficient of determination R2. A description of these measures
can be found in the Methods section. Furthermore, the
performance of MCMC-computed algorithms is based on their
posterior mean and the performance of variational inference-
based algorithms (e.g., GPs) is based on their maximum likeli-
hood estimate (MLE) mean as given in Table 1.

2.1. 1D examples

The 1D challenges are shown in Fig. 2 with the target functional
property shown as a black dashed curve and the phase map
shown as a dotted red curve that switches between a value of
0 and 1 at x = 0.7. For the rst edge case, structure data (red
diamonds) is more informative of the phase boundary,
compared to functional property data (black squares). The
reverse is true for the second edge case. To compare functional
property prediction performance, in Fig. 2a and b we plot: (1)
SAGE-1D's functional property posterior mean (solid green line)
and 95% condence interval (shaded green area), (2) an off-the-
shelf GP with the changepoint kernel31 (GP-CP, blue line and
shaded area) which uses maximum likelihood estimate (MLE),
and (3) a plot of SAGE-1D's maximum likelihood sample (MLS,
) edge case 1 where structure data (red squares in phase map plots) is
ctional property data (red squares in functional property plots) is more
color coding indicates the two phase regions either as ground truth or
with the ground truth for both cases. For the first edge case (a), SAGE-
roperty behavior, using more informative structure data to improve
ntifies both the phase boundary and the functional property behavior,
on of both.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Performance scores comparing SAGE with alternative algorithms for the 1D and 2D edge cases and the real-world (Bi,Sm)(Sc,Fe)O3 and
FeGaPd challenges. Here both 1 and N-dimensional Edge Case 1 has structure data that is more informative of the phase boundary and edge case
2 has functional property more informative of the phase boundary

Phase map performance, micro F1 accuracy score [arb. Units]

1D challenges
SAGE-1D
(post. mean)

SAGE-1D-PM
(post. mean

SAGE-1D-FP
(post. mean)

GP-CP
(max likelihood)

GP classication
(max likelihood)

CAMEO
prediction

1D edge case 1 1.00 1.00 0.89 0.82 1.00 1.00
1D edge case 2 0.99 0.89 0.99 0.90 0.90 0.86

Phase map performance, micro F1 accuracy score [arb. Units]

2D challenges
SAGE-ND
(post. mean)

SAGE-ND-PM
(post. mean)

SAGE-ND-FP
(post. mean) —

GP classication
(max likelihood) CAMEO

2D edge case 1 0.98 0.97 0.85 — 0.98 0.94
2D edge case 2 0.98 0.92 0.97 — 0.93 0.53
(Bi,Sm)(Sc,Fe)O3 0.97 0.94 0.61 — 0.89 0.99
FeGaPd 0.95 0.93 0.13 0.99 0.96

Functional property performance R2 [arb. units]

1D challenges
SAGE-1D
(post. mean) —

SAGE-1D-FP
(post. mean)

GP-CP
(max likelihood) —

CAMEO
prediction

1D edge case 1 0.99 — 0.98 0.96 — 1.0
1D edge case 2 1.00 — 1.00 0.98 — 0.92

Functional property performance R2 [arb. units]

2D challenges
SAGE-ND
(post. mean) —

SAGE-ND-FP
(post. mean) —

GP regression
(max likelihood) CAMEO

2D edge case 1 0.88 — 0.53 — 0.67 0.86
2D edge case 2 0.89 — 0.87 — 0.62 0.67
(Bi,Sm)(Sc,Fe)O3 0.91 — 0.27 — 0.84 0.87
FeGaPd 0.91 0.87 0.90 0.91
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magenta line and shaded area) – the MCMC sample with the
maximum computed likelihood. This sample contains an
explicit changepoint value and associated piecewise GP regres-
sion. For phase boundary prediction comparison, we plot: (1)
SAGE-1D's phase boundary posterior distribution (green inset
histogram) and (2) SAGE-1D-PM's posterior distribution (orange
inset histogram).

For the rst edge case, SAGE-1D MLS combines structure
and functional property knowledge to outperform GP-CP in
predicting both functional property and phase boundary. SAGE-
1D's slanted transition at the phase boundary (Fig. 2a) indicates
a range of potential phase boundary locations between the two
structure data points (range is also indicated by the dotted
green lines). SAGE-1D and SAGE-1D-PM have similar perfor-
mance in identifying the phase boundary location, providing
similar posteriors (inset). SAGE-1D employs phase boundary
uncertainty to better quantify its regression uncertainty as
indicated by the wider condence intervals.

For the second edge case, SAGE-1D MLS and GP-CP have
similar regression performance due to the highly informative
functional property data. However, SAGE-1D outperforms SAGE-
1D-PM in locating the phase boundary, as it exploits functional
© 2024 The Author(s). Published by the Royal Society of Chemistry
property data to greatly narrow in on potential locations. A
further comparison between SAGE-1D, GP-CP, SAGE-1D-PM,
SAGE-1D-FP, and GP classication are presented in Table 1.
Knowledge of the changepoint location is limited to the two
nearest data points, either functional property or structure data.
As a result, functional property prediction performance is
measured outside the range of the two nearest data points.
2.2. 2D examples

We observe similar behavior in the 2D demonstration of SAGE-
ND as shown in Fig. 3. The location of structure data (red
squares on phase map plots) and functional property data (red
squares on functional property plots) are indicated. For phase
map prediction, SAGE-ND is compared to SAGE-ND-PM, SAGE-
ND-FP, and GP classication. For functional property predic-
tion, SAGE-ND is compared to SAGE-ND-FP and off-the-shelf GP
regression. Performance scores are reported in Table 1. SAGE-
ND outperforms the other methods in both phase mapping
and functional property prediction for both edge cases. In edge
case 2, despite highly informative functional property data,
SAGE-ND outperforms off-the-shelf GP regression due to its
Digital Discovery, 2024, 3, 2211–2225 | 2217
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Fig. 4 Demonstration of SAGE-ND algorithm for 2 structure data sources and 2 functional property data sources. The two structure data
sources provide phase boundary information in different regions of the phase map. SAGE-ND combines knowledge from these two structure
data sources as well as the two functional property data sources to properly identify the phase boundary as well as the behavior of both functional
properties.
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ability to properly deal with the change in property and change
in hyperparameters across the phase boundary.

In Fig. 4 we demonstrate the ND algorithm for the 2D case
with 2 structure data sources and 2 functional property sources.
Here the rst structure data source provides more information
for the upper part of the phase boundary and the second source
provides more information for the lower part of the boundary.
SAGE-ND unies knowledge across all four data sources to
obtain good prediction of both phase map and the two func-
tional properties.
Fig. 5 SAGE-ND applied to (Bi,Sm)(Sc,Fe)O3 dataset, where structure dat
truth. (a1) Phase map estimate indicated by color coding with structure
dashed black lines. (a2) Entropy-measured uncertainty in the phase map
red squares. (b2) Variance-measured uncertainty for the CEFM estimate
phase regions and utilizes this information to better identify the varying

2218 | Digital Discovery, 2024, 3, 2211–2225
2.3. Materials example

For the rst materials challenge demonstration, SAGE-ND is
applied to learn a SPSPR for a (Bi,Sm)(Sc,Fe)O3 composition
spread dataset of Raman spectra structure measurements and
CEFM as shown in Fig. 5. As structure data is collected primarily
to learn the phase map, we present the case where structure
data is more informative of the phase boundaries than the
functional property data. Phasemapping and CEFM predictions
estimates are shown in Fig. 5a1 and 5b1 and uncertainties in
Fig. 5a2 and 5b2 respectively.
a is more informative of the phase boundaries. Fig. 1 shows the ground
data indicated with red squares and phase boundaries indicated by

of (a1), (b1) CEFM estimate with functional property data indicated with
. SAGE-ND utilizes the more informative structure data to identify the
CEFM behavior in each phase region.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 SAGE-ND applied to FeGaPd dataset, where structure data is
more informative of the phase boundaries. (a1) Phase map ground
truth with structure data points indicated with red squares, (a2) func-
tional property ground truth with functional property data points
indicated with red squares, (b1) phase map estimate indicated by color
coding, (b2) entropy-measured uncertainty in the phase map of (b1),
(c1) remnant magnetization estimate with measured data indicated
with red squares. (c2) Variance-measured uncertainty for the remnant
magnetization estimate. From (a2) one can see that functional prop-
erty behavior (e.g., length scale) is dependent on phase region. Within
the yellow, light blue and dark green indicated regions (a1) there are
lower remnantmagnetization values andmore slowly varying values as
a function of composition, compared to the behavior in the light green
and dark blue indicated phase regions. SAGE-NDutilizes structure data
to better identify the phase boundaries and use this to better identify
the varying behavior of the functional property across the phase map.
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For the secondmaterials challenge demonstration, SAGE-ND
is applied to learn a SPSPR for a FeGaPd3 composition spread
dataset of X-ray diffraction structure measurements and rema-
nent magnetization as shown in Fig. 6. Ground truth phase
mapping and remanent magnetization are shown in Fig. 6a1
and 6a2, respectively. SAGE prediction estimates are shown in
Fig. 6b1 and 6c1 and uncertainties in Fig. 6b2 and 6c2,
respectively.

For both material systems, a comparison of SAGE-ND with
SAGE-ND-PM, SAGE-ND-FP, GP classication, GP regression,
and CAMEO are shown in Table 1. For the (Bi,Sm)(Sc,Fe)O3

dataset, SAGE-ND provides 97% (or 0.97 out of 1.00) or greater
phase mapping accuracy, though not the top accuracy among
algorithms. For (Bi,Sm)(Sc,Fe)O3, CAMEO outperforms SAGE-
ND by 2% and for FeGaPd, GPC outperforms SAGE-ND by 4%.
© 2024 The Author(s). Published by the Royal Society of Chemistry
For functional property predictions, SAGE-ND provides the best
(or tied for best) performance.

Better performance for predicting functional properties over
phase mapping is to be expected as there is greater information
of the phase boundaries from the structure data than the
functional property data. Thus, SAGE exploits knowledge from
the structure data (knowledge of the synthesis–process–struc-
ture relationship) to boost functional property prediction.

While SAGE-ND does not always provide the best results, it
does provide proper uncertainty quantication compared to
CAMEO. Additionally, if the SAGE assumption that the target
functional property behavior is dependent on phase is true for
the material system of interest, SAGE exploits this relationship
to improve uncertainty quantication using both structure and
functional property data compared to methods (e.g., GP
methods) that can only utilize either structure or functional
property data. SAGE is also the only algorithm which provides
a single model for quantifying both prediction and uncertainty
for the synthesis–process–structure–property relationship.

3. Conclusion

SAGE allows one to combine knowledge of material structure
and material property from multiple data sources into one
unied SPSPR model, exploiting shared data trends to maxi-
mize knowledge of the phase diagram and functional proper-
ties. The Bayesian inference methodology allows for
appropriate quantication of uncertainty. By providing proba-
bilistic descriptions of data of varying quality or delity
(whether theory-derived or experimental), these uncertainties
can then be propagated through the model by sampling the
data distributions along with the model parameters and/or by
replacing the piecewise GPs with heteroskedastic GPs. Addi-
tionally, correlations between functional properties can also be
exploited by replacing the functional property-representing
independent piecewise GPs with a coregionalized multi-
output GP. These points will be the focus of future work.

Model output estimates and uncertainties can be employed
in active learning-driven recommendation engines or closed-
loop autonomous systems, to ensure optimum selection of
subsequent experiments. For example, the phase map estimate
and uncertainty can guide subsequent structure measurements
toward improved phase map knowledge while the paired func-
tional property estimates and uncertainties guide materials
optimization. With each experiment increasing knowledge of
separate portions of the SSPR, SAGE can play a part in unifying
knowledge across a research lab toward the discovery of
advanced materials.

4. Methods

We present coregionalization algorithms for combining multiple
data sources for materials synthesis, process, structure, and
property to learn the SPSPR over the shared synthesis and pro-
cessing domain x ˛ X. Structure data from data source i is rep-
resented by Ds,i = {xk, zk,i}

N
k=1

i for material xk (data pair indexed
with k) and its associated structure descriptor zk,i, with Ni data
Digital Discovery, 2024, 3, 2211–2225 | 2219
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pairs collected from data source i. The full set of structure data is
labeled Ds, where the subscript s indicated structure-associated
data. Similarly, property data from data source j is represented
by Dp,j = {xl,yl,j}

N
l=1

j for material xl and its associated material
property measurement yl,j, and where subscript p indicates
functional-property-associated data. Ds,i,k and Dp,j,k are the i-
sourced structure data for xk and the j-sourced functional prop-
erty data for xl. For this work we assume each data source
provides data for one property. The full set of functional property
data is labeled Dp. This representation allows for duplicate
measurements of the same material from different data sources.
The functionm(Ds) maps dataset Ds to a set of phase map labels.
It is one of the many such algorithms described above, and as
such is not part of SAGE.
4.1. Constraint programming

The constraint programming algorithm (eqn (1)) is dened by
nding the set of parameters q = {qs,qp} that minimize the
objective function Obj. The phase map is described by the
function fs(x,qs) which maps each point x in the target synthesis-
process space X to a set of phase labels s, fs:x/ s, where qs is the
associated set of parameters. The functional property is
described by the piecewise function fp(x, fs, qp) which maps each
point x to a set of functional properties y, i.e., fp:x / y. This
function is dependent on the set of parameters qp and its
piecewise nature is dependent on fs. The functions ds and dp
compute the relationship – typically the loss, between the func-
tion fs and data Ds or between fp and data Dp, respectively. For
example, dp can combine a measure of goodness of t of fp and
model complexity, e.g., the Bayesian information criteria.44 To
quantify loss for structure data, the data Ds must also be mapped
to a set of phase map labels, here performed by the function
m(Ds) (As discussed above, this function is one of themany found
in the literature). Minimizing the objective involves: (1) identi-
fying potential values for parameters qs, (2) solving for m(Ds) and
fs, (3) identifying potential values for parameters qp, (4) solving
for fp, and (5) computing the overall loss for the objective func-
tion. This iterative approach allows a target property estimate to
inform the subsequent optimization of fs(x).

Obj ¼ min
fqs ; qpg

�
dsðfsðx; qsÞ;mðDsÞÞ þ dp

�
fp
�
x; fs; qp

�
;Dp

��
(1)

If the loss functions are additive across datasets, we have:

Obj ¼ min
fqs ; qpg

"X
i

dsðfsðx; qsÞ;mðDs;iÞÞ þ
X
j

dp
�
fp
�
x; fs; qp

�
;Dp;j

�#
;

(2)

One implementation has fs map each point to an integer
label associated with a given phase region. The function ms is
then required to map the structure data to potential phase
region labels similar to those of.3,10–13,15 Alternatively, one may
want the overall algorithm to identify phase abundances for
each material x. For this case, ms identies phase abundances
and maps x to phase region labels. Abundance regression can
2220 | Digital Discovery, 2024, 3, 2211–2225
then be performed by including abundances in the list of target
properties yp.

The Bayesian model presented below can be solved using
such an objective function. Here, ds and dp are the negative log
likelihood functions:

ds = −ln[p(fs(x, qs)jm(Ds)], (3)

dp = −ln[p(fp(x, fs, qp)jDp,j)], (4)

i.e., the negative log likelihood of data {Ds, Dp} being observed
for functions {fs, fp}. This gives: Obj ¼ min

fqs; qpg
½�ðLs þ LpÞ�where Ls

and Lp are the sum log likelihoods over all structure or all
functional property observations, respectively. The notation p()
represents a pdf, p(ajb) describes the pdf of a given b, and for
the equations below, a ∼ p(b) indicates drawing independent
and identically distributed samples from p(b). Solving for {qs,
qp} may be done under the variational inference approximation.
The results presented her focus on Markov Chain Monte Carlo
(MCMC) computed posteriors. The variational inference
approximation can be used to initialize MCMC and speed up
calculations.

4.2. Bayesian models

We provide two Bayesian models, one for challenges where X is
one dimensional (i.e., only one synthesis or process parameter
is investigated) and one where X is of arbitrary dimension.
Rather than minimizing loss, the aim of these models is to
maximize the sum log likelihood L over the set of parameters
and observed data (e.g., minimize sum of negative log likeli-
hood as above). Here, MCMC is used to compute a posterior for
each model parameter. Additionally, one can incorporate prior
physical knowledge by modifying parameter prior probability
density functions (pdf). For example, if one believes there to be
many small phase regions, the uniform prior for ls can be
replace with a Gamma distribution. Large expected uctuations
in a functional property can be included through modifying the
sr,j prior. Both the 1-dimensional and N-dimensional models
output an estimate for the posterior of the SPSPR and each
parameter (given the model and data) – providing both an
estimate and uncertainty, compared to the constraint
programming algorithm which outputs a point estimate (esti-
mates of the uncertainty can also be obtained). The posteriors
can be used in further Bayesian analysis as demonstrated
below. The MCMC Bayesian inference method for evaluating
the models consists of: (1) sampling function parameters, (2)
using the samples to dene fs and fp, and then (3) compute the
log likelihood L.

Model 1 provides the general model. One samples the
function parameter priors for qs and qp = {qp,j,r} for each j of J
functional properties (or function property data source) and
each r of R phase regions. fp,j is a piecewise random process with
different behavior fp,j,r for each functional property in each
phase region, i.e., different kernel hyperparameters for each
phase region. fs is used to compute the categorical distribution
p(r(x)) of phase regions labels for each point x. p(r(x)) is used to
compute the sum log likelihood Ls of structure data
© 2024 The Author(s). Published by the Royal Society of Chemistry
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observations and identify phase region label probabilities for
each functional property observation data point xp. The sum log
likelihood of the observed functional properties Lp is computed
using these probabilities and the piecewise fp,j. The total like-
lihood L is then returned, guiding Bayesian inference sampling.
The implementations and associated code can be used with an
arbitrary number of data sources. Sampling from GPs uses the
Cholesky decomposition method to improve MCMC stability.4

Aer Bayesian inference is run, i.e., each b sample of B total
MCMC samples are collected, the Bayesian posteriors for the
phase map and functional-properties-describing functions are
approximated. Here the categorical distribution describing the
phase map is computed by taking meanb[pb(r)], the posterior
mean over the sampled categorical distributions. The phase
map estimate p̂ and uncertainty ep̂ are then computed with p̂ =

argmaxr[pM] and ep̂ = entropyr[pM]. Each functional property is
described by the posterior multivariate normal distribution
N(meanb[fp,j,b], stdb[fp,j,b]) with additional measurement noise
meanb[np,j,b].

The SAGE algorithms make use of latent functions. One set
of latent functions are used to identify the probabilities of each
point x belonging to a specic phase region. These probabilities
are then multiplied by an additional set of latent functions
describing target functional properties, in effect weighting
these second set of functions to bound them to target phase
regions. Through this combination of latent functions, one can
identify regions in X that may contain signicant changes in
phase and/or functional properties and may be of interest for
further experiments. Statistical analysis of multiple samples of
latent functions provides a posterior distribution for phase map
and piecewise functional properties.

4.2.1. One dimensional challenges. When X is one dimen-
sional, phase boundaries may be represented as change points.
The set of structure model parameters qs are simply a set of
© 2024 The Author(s). Published by the Royal Society of Chemistry
changepoints in X. The changepoints qs are sampled and then
converted to categorical distribution p(r)= fs(x). Each continuous
region of X, bounded by either a change point or the edge of the
search space, denes a phase region r. For example, for a 2-phase
region challenge over X= [0, 1] with one changepoint at arbitrary
value 0.5, phase region 0 would have a probability of 1 at x=< 0.5
and a probability of 0 for x > 0.5 and vice versa for phase region 1.
The categorical distribution is then used to compute the likeli-
hood of the observations given the samples.

The presented implementation is developed from that of ref.
25. The functional property in each phase region is represented
by an independent radial basis function kernel Gaussian
process, with qp including: lr,j kernel length scale, sr,j kernel
standard deviation (also known as ‘scale’), and sj measured
noise standard deviation. For this work, we assume that sj is the
same for property j across all phase regions. For each property,
the region-specic functions fp,j,r are sampled from GP(qp,j,r)
and then combined using the probabilistic weights p(r) to give
the piecewise functions fp,j. fp,j describes the sample mean and
nj the sample noise of the multivariate distribution N(fp,j, nj)
used to describe a potential generating random process. Data
likelihood is then given by p(Dp,jjN(fp,j, nj)).

Example implementation:
Digital Discovery, 2024, 3, 2211–2225 | 2221
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‡ NIST disclaimer: certain commercial equipment, instruments, or materials are
identied in this paper to foster understanding. Such identication does not
imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment identied
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4.2.2. N-dimensional challenges. Change boundaries and
surfaces are not easy to dene in higher dimensions, so we
instead sample latent functions w(x) and then transform these
latent functions with categorical distributions for phase region
labels over X. We dene an N-dimensional multivariate normal
distribution for the latent functions with associated parameters
qs. For an SPSPR with R phase regions, we take R latent function
samples, again, using the Cholesky decompositionmethod. The
samples w(x) are then used to dene the columns of matrix Ms,
i.e., Ms[:, r] = wr. Each entry of Ms[k, r] is taken as the unnor-
malized event log probability (and converted to logits by the
Categorical distribution function) for point xk belonging to
phase region label r. Here, each functional property is described
by a N-dimensional GP.

4.2.3. Additional Models. In this work, we compare SAGE to
a set of algorithms including off-the-shelf GP regression and
classication, modied versions of SAGE, and CAMEO. As the
space of machine learning algorithms is vast, we down selected
comparisons for the following reasons. There are no other
algorithms that perform the same joint task as SAGE, i.e., cor-
egionalized joint segmentation and piecewise regression from
disparate classication and regression datasets. However,
CAMEO works toward the same multitask goal through non-
joint learning, and as a result, is one benchmark algorithm.
SAGE is also compared to off-the-shelf GP regression and clas-
sication algorithms as it shares the assumptions of each of
these algorithms, though SAGE also contains the assumption of
coregionalization across data sources. By benchmarking against
these algorithms, we demonstrate SAGE's improvements over
algorithms with shared set of (reduced) assumptions. Similarly,
we benchmark SAGE's benets of coregionalization against
limited versions of SAGE, e.g., where SAGE is provided data from
only one of the data sources.

We compare SAGE to off the shelf GP algorithms and
modied versions of SAGE. We compare SAGE's phase mapping
(PM) performance with a version of SAGE which only takes
structure data input. For 1D challenges this is Model 4 ‘SAGE-
1D-PM’ and for 2D challenges this is Model 6 ‘SAGE-ND-PM’.
We compare SAGE's functional property (FP) prediction
performance with versions that only take in functional property
data, i.e., piecewise Gaussian process regression. For 1D chal-
lenges this is Model 5 ‘SAGE-1D-FP’ and for 2D challenges
Model 7 ‘SAGE-ND-FP’. For these algorithms that rely on just
one input data type, it is expected that for exhaustive data,
performance will be high, while for partial data, the joint SAGE
model will outperform these models. These additional algo-
rithms are available as part of the SAGE library.

�Model 4, SAGE-1D-PM: this algorithmmirrors SAGE-1D but
excludes functional property regression. The algorithm is
described the same as Model 2 lines 1–4 and returns Ls.

� Model 5, SAGE-1D-FP: this algorithm mirrors SAGE-1D but
excludes the phase mapping loss term. It is thus a 1-dimen-
sional piecewise GP. The algorithm is described the same as
Model 2 lines 1–3 and 5–11 and returns Lp.

� Model 6, SAGE-ND-PM: this algorithm mirrors SAGE-ND
but excludes the task of functional property regression. The
2222 | Digital Discovery, 2024, 3, 2211–2225
algorithm is described the same as Model 3 lines 1–6 and
returns Ls.

�Model 7, SAGE-ND-FP: this algorithmmirrors SAGE-ND but
excludes the phase mapping loss term. It is thus an N-
dimensional piecewise GP. The mode is described the same
as Model 3 lines 1–5 and 7–14 and returns Lp.

�GP-CP; GPR; GPC: the implementations use the radial basis
function kernel for regression and the Matern 5/2 kernel and
MultiClass likelihood for classication. All use the truncated
Newton method for optimization.

� CAMEO – only piecewise regression task. This model
follows that of []. A Gaussian random eld (GRF) is dened for
the material system including both characterized and poten-
tially characterized materials. The GRF is applied to the struc-
ture data to segment the material system and that segmentation
is then combined with off-the-shelf Gaussian process regres-
sion, using different hyperparameters for each phase region.

4.2.4. Performance measures
4.2.4.1. Regression: coefficient of determination, R2.

R2 ¼ 1�
P
i

ðyi � fiÞ2P
i

ðyi � yÞ2 ;

where yi is a ground truth value of target y(xi) located at point xi
indexed with i, fi is the associated algorithm-based predicted
value, and �y is the mean over all y values. Implemented with
scikit-learn's r2_score function.

4.2.4.2. Phase mapping: micro F1-Score.

mF1 ¼
P
r

TPrP
r

ðTPr þ FPr þ FNrÞ;

where TPr, FPr, and FNr are the count of true positive, false
positive, and false negative classication values for each region
r. Here positive denes points in X predicted to have label r and
negative denes points predicted to not have label r, i.e., one-vs-
all classication.

4.2.5. Implementation. The provided SAGE implementa-
tions are designed for parallel computation across systems with
multiple CPUs, allowing for easy scalability for large datasets.
Implementations include: SAGE-1D; SAGE-ND for one structure
data stream input and multiple functional property data stream
inputs, where the functional property data streams are
measured over the same materials (though potentially different
materials than the structure data stream); and SAGE-ND-MULTI
for multiple structure and functional property data streams
where materials investigated can be different for all data
streams.

SAGE was run on a laptop (6 core 2.7 GHz, 32 GB memory,
NVIDIA‡ Quadro P620) and runs within a few minutes, e.g., less
than 2 minutes for the (Bi,Sm)(Sc,Fe)O3 material system
are necessarily the best available for the purpose.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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example. All implementations are built to boost performance
through parallelization across multiple CPUs by changing the
“number of available cores” and “number of chains”. This
dramatically accelerates computation. For example, using par-
allelization across a 100 CPU node allows MCMC samples for
each CPU to be reduced by an order of 100. The choices of
MCMC sample number indicated below were found to provide
convergence in the posterior predictions.

Here we provide initial values or uniform prior ranges for the
implementation. If a parameter is not mentioned, it is the
default initial value or range of the library used.

� GPs
B All GP implementations are written in gpow.45

B 1D CP-GP: initial length scale = 0.2; initial change point
steepness= 100; noise variance= 0.01; max iterations= 10 000;

B 2D GPR: initial lengthscales = 1; noise variance = 0.005
and range [0.001, 0.01]; max iterations = 1000;

B 1D and 2D GPC: max iterations = 1000;
� All MCMC algorithms
B Number warmup samples = 100; number samples =

1000; target acceptance probability = 0.8; max tree depth = 5;
jitter = 1 × 10−6

B SAGE-1D, SAGE-1D-PM, SAGE-1D-FP are written in num-
pyro46 with parameters: sr,j = [0.01, 2.]; lr,j [0.2,1.]; nj =

[0.001,0.01]; Change point bounds, i.e., qs = [0.5, 1.]
B SAGE-ND, SAGE-ND-PM, SAGE-ND-FP are written in

numpyro Jax with parameters.
- SVI initialization of phase map: number of samples= 100

000; Adam step size = 0.05;
- MCMC algorithm: ss = [5.,10.]; ls = [0.1,2.]; sr,j = [0.1, 2.];

lr,j = [1,2.]; nj = [0.001,0.1]; br,j = [−2., 2.]
B SAGE-ND Multiple data sources:
- SVI initialization of phase map: number of samples: 10

000; Adam step size = 0.01; ss = [5.,10.]; ls = [1.,2.];
-MCMC algorithm: number of warmup steps: 100; number

of samples: 2000; number of chains = 100; ss = [5.,10.]; ls =

[0.1,2.]; sr,j = [0.1, 2.]; lr,j = [0.1,5.]; nj= [0.001,0.1]; br,j= [−2., 2.]
� CAMEO: uses the same parameters as in ref. 16.
4.2.6. Gaussian processes. The Gaussian process assumes

that the task of regression or classication can be tied to
a function f over domain X. For common regression tasks f(x) is
the model for the target variable y(x), and for classication f is
a function (or a set of functions) used to identify classication
boundaries. f is described by a prior probability distribution f ∼
p(m, k), where m : X/ℝ is the prior mean function and
k : X � X/ℝ is a kernel function describing the relationship
between f(xi) and f(xj). The prior is combined with a likelihood
probability distribution p(yjf) used to describe the expected
relationship between y and f, typically used to describe the ex-
pected noise in y given f. The prior and likelihood are combined
using Bayes rule to identify a posterior given the data (x, y).
When the prior and likelihood are both multivariate normal
distributions, the posterior is also a multivariate normal
distribution and an analytical solution for the posterior exists.

Numerous kernel functions exist including the radial basis
function which is commonly used for regression and the
Matern kernels which are commonly used in classication
© 2024 The Author(s). Published by the Royal Society of Chemistry
tasks. These kernel functions have parameters (oen called
hyperparameters) and the GP algorithm typically uses
maximum likelihood to identify the most likely value of these
parameters given the data. Additionally, numerous likelihood
functions exist for various data challenges based on the ex-
pected noise in the data. For the regression case of expected
normally distributed noise, the likelihood may be amultivariate
normal distribution. Specic likelihood functions exist for the
challenges of binary and multi-class classication. For more
information on GPs, their theory, implementation, and use,
please see the excellent resource.4
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