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Stefan Bräse *ab

Digital chemistry represents a transformative approach integrating computational methods, digital data, and

automation within the chemical sciences. It is defined by using digital toolkits and algorithms to simulate,

predict, accelerate, and analyze chemical processes and properties, augmenting traditional experimental

methods. The current status quo of digital chemistry is marked by rapid advancements in several key

areas: high-throughput screening, machine learning models, quantum chemistry, and laboratory

automation. These technologies have enabled unprecedented speeds in discovering and optimizing new

molecules, materials, and reactions. Digital retrosynthesis and structure–active prediction tools have

supported these endeavors. Furthermore, integrating large-language models and robotics in chemistry

labs (e.g. demonstrated in self-driving labs) have begun to automate routine tasks and complex decision-

making processes. Looking forward, the future of digital and digitalized chemistry is poised for significant

growth, driven by the increasing accessibility of computational resources, the expansion of chemical

databases, and the refinement of artificial intelligence algorithms. This evolution promises to accelerate

innovation in drug discovery, materials science, and sustainable manufacturing, ultimately leading to

more efficient, cost-effective, and environmentally friendly chemical research and production. The

challenge lies in advancing the technology itself, fostering interdisciplinary collaboration, and ensuring

the ethical use of digital tools in chemical research.
1. Introduction

We live in the digital age. The history of digital chemistry1 –

a eld of research that advances chemistry through methods
from computational and data science,2 machine learning, and
robotics – traces its roots back to the mid-20th century, evolving
through several key stages shaped by technological and theo-
retical advances:

(I) Early computational models (1950s–1960s):
The inception of digital chemistry can be traced back to the

development of early computational models and the applica-
tion of quantum mechanics to solve chemical problems.
Pioneers like Robert S. Mulliken,3 Linus Pauling,4 and Walter
Kohn5 laid the groundwork with their contributions to theo-
retical and quantum chemistry and molecular orbital theory.
The advent of computers provided the necessary tools to
calculate molecular structures and properties, albeit in a very
limited capacity due to the computational power available at the
time.

(II) Growth of computational power (the 1970s–1980s):
Institute of Technology, Kaiserstrasse 12,

kit.edu
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the Royal Society of Chemistry
As computers becamemore powerful and accessible (see also
the Moore law),6 the 1970s and 1980s saw a signicant expan-
sion in computational (and computer) chemistry. Soware
packages capable of performing semi-empirical and ab initio
calculations became widespread, enabling chemists to predict
molecular geometries, electronic structures, and reactivity with
increasing accuracy,7–10 for example, with the density functional
theory (DFT).11 During this decade, E. J. Corey's digital retro-
synthetic analyses,12 Ivar Ugi's chemical computer analysis (in
particular for multicomponent reactions),13,14 Johann Gas-
teiger's neural networks,15 and the Harvard ChemDraw project
emerged.16 This period also marked the beginning of molecular
dynamics simulations, allowing for the exploration of the
behavior of molecules in motion.

(III) Introduction of quantitative structure–activity relation-
ships (QSAR) (1980s):

The 1980s saw the emergence of QSAR models (coined in
1967 (ref. 17)), which correlated the structure of chemical
compounds with their biological activities. This was a major
step forward in drug design, allowing for the prediction of the
activity of new compounds before their synthesis.

(IV) Rise of high-throughput screening and robotics (1990s–
2000s):

The integration of high-throughput experimentation (HTE)
and screening (HTS) technologies and robotics in the 1990s and
Digital Discovery, 2024, 3, 1923–1932 | 1923
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2000s marked a shi towards automation in chemical research
(Fig. 1). This period enabled the rapid screening of vast libraries
of compounds for pharmaceutical research, signicantly
accelerating the drug discovery process.18

(V) Integration of machine learning and big data (2010s–
present):

The most recent phase in the history of digital chemistry
involves incorporating digital retrosynthesis19–21 tools for pre-
dicting reactions, machine learning (ML), and big data
analytics. Data sciences include interdisciplinary questions
about data integration and harmonization from different
disciplines. For example, in the pharmaceutical sector, it is
important to link clinical study data with drug development
data. The rapid increase of chemical data available from liter-
ature, databases,22 and experimental results, combined with
advanced ML algorithms, has led to unprecedented capabilities
in predicting material properties, reaction outcomes, and even
designing new molecules. The Human Genome Project,23 the
over-exponential use of large language models,24 and the rise of
chemical biology, for example, with click chemistry,25 also
triggered the exploration of the chemical26 and process space,
oen with the aid of supercomputers.27
1.1. Prelude: future perspective

Digital chemistry is poised to become evenmore integrated with
advancements in articial intelligence, quantum computing,
and laboratory automation technologies, such as self-driving
laboratories.28,29 These developments promise to improvement
the way chemical research is conducted, making it faster, more
efficient, more reliable in terms of quality, more reproducible,
and more sustainable.30

Throughout its history, digital chemistry has continually
transformed the landscape of chemical research, moving from
simple computational models to complex systems capable of
simulating and predicting intricate chemical phenomena. As
computational power and algorithms evolve, digital chemistry
stands at the forefront of the next generation of scientic
discovery and innovation.
Fig. 1 High-throughput screening platform. © Frederique Menard-
Aubin.

1924 | Digital Discovery, 2024, 3, 1923–1932
2. Definition

Digital chemistry is the combination of chemical science, data
sciences, and digital technologies, where computational tools
and algorithms are employed to simulate, understand, accel-
erate, and predict chemical processes and molecular behaviors
(Fig. 2).31 This approach harnesses the power of computers to
model reactions, design new molecules, and explore the vast
chemical space more efficiently than traditional experimental
methods alone. Digital chemistry encompasses several key
areas, including computational chemistry,32 together with
molecular modeling,33 cheminformatics,34–36 virtual screening,37

machine learning,38 articial intelligence applications,39

quantum computing, and dedicated soware and devices such
as electronic lab notebooks and nally robotics.40 It aims to
accelerate discovery and innovation in various elds, such as
drug development, materials science, and sustainable chem-
istry, by providing insights that are difficult, if possible, to
obtain through conventional laboratory experiments. Some key
elements of digital chemistry and their incorporation with
related sciences, such as informatics and engineering, are
sketched in Fig. 2.

The brief descriptions of the seven key components of digital
chemistry are:

(I) Computational chemistry (since 1975 (ref. 41)): Under-
stand the behavior of molecules and reactions at the atomic
level using quantum mechanical calculations and molecular
dynamics simulations (see 4.1.).41,42 This is in combination with
molecular modeling (since 1970 (ref. 43)): creating 3Dmodels of
molecules and materials to visualize their structure and prop-
erties and to optimize their design for specic applications (see
4.1.).33

(II) Cheminformatics (since 1998 (ref. 44)): Analyzing and
managing large datasets of chemical compounds using
computational techniques, such as data mining, to identify
patterns and properties that can guide drug discovery45,46 and
materials science (see 4.2.).44,47
Fig. 2 Some of the components of digital chemistry are embedded in
chemistry and related sciences. Digital life sciences and material
sciences use many of the sameworkflows andmethods; thus, they are
colored the same.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(III) Virtual screening (since 1989 (ref. 37)), together with
experimental screening: Employing computational methods to
screen vast libraries of chemical compounds for potential drug
candidates or materials with desired properties, thereby
reducing the time and cost of experimental screening (see 4.3.).

(IV) Machine learning (since 1990 (ref. 48)) and articial
intelligence (since 1972 (ref. 49)) in Chemistry: Utilizing
machine learning algorithms, deep learning,50 and articial
intelligence techniques to predict molecular properties, opti-
mize chemical reactions, and assist in designing newmolecules
and materials (see 4.4.).39,51

(V) Dedicated soware tools52,53 and toolkits: Streamline and
enhance the documentation, management, and analysis of
chemical experiments, data, and workows, ensuring efficiency,
compliance, and collaboration in scientic research (see 4.6).

(VI) Quantum computing (since 1989 (ref. 54)): Exploring the
potential of quantum computing to solve complex chemical
problems more efficiently than classical computers, particularly
for simulating quantum systems and optimizing molecular
structures (see 4.5.).46,55

(VII) Chemical lab robotics,40,56,57 automatization, and self-
driving chemical labs:12 Streamline experimental processes by
employing robotic systems and advanced algorithms to perform
tasks such as sample preparation, analysis, and data interpre-
tation with minimal human intervention (see 4.7.).
3. “Digital chemistry,” “digitalized
chemistry,” or “digitized chemistry”?

The terms Digital chemistry, digitalized chemistry, and digi-
tized chemistry oen overlap in usage but can imply slightly
different nuances in the context of integrating chemistry with
digital technology – to make chemistry digital.58

(I) Digital chemistry typically refers to the broad application
of digital technologies and computational methods to solve
chemical problems, encompassing everything from quantum
chemistry simulations to articial intelligence for predicting
chemical reactions. It implies an inherent integration of digital
tools into the chemical research and development fabric.59–62

(II) Digitalized chemistry suggests transforming traditional
chemistry practices and workows into digital formats,
emphasizing changing or transitioning towards digital
methods. It focuses on adopting and integrating digital tools
and technologies to enhance the efficiency, accessibility, and
effectiveness of chemical research and industrial processes.63,64

(III) Digitized chemistry oen converts analog chemical data
and information (e.g., paper lab notebooks, printed spectra) and
seamless digital workows into digital formats. It focuses on
the initial step of making chemical informationmore accessible
andmanageable through digital means, which is a foundational
aspect of enabling further digital analysis and computational
work.65

While these terms are closely related and sometimes used
interchangeably, the subtle differences lie in their emphasis:
“Digital Chemistry” on the broad use of digital approaches,
“Digitalized Chemistry” on the process of adopting these digital
© 2024 The Author(s). Published by the Royal Society of Chemistry
methods, and “Digitized Chemistry” on the initial step of con-
verting analog information into digital form.
4. Elaboration, explanations, and
examples of key components in digital
chemistry

Expanding on the concept of digital chemistry involves delving
deeper into its components, applications, and transformative
impact on research, development, and industry.
4.1. Computational chemistry66 and molecular modeling

4.1.1 Quantum mechanical calculations. At the heart of
computational chemistry are quantum mechanical (QM)
calculations, which predict the electronic structure, energy
levels, and molecular geometries based on the principles of
quantum mechanics. Techniques like density functional theory
(DFT) and ab initio methods allow scientists to explore the
fundamental properties of molecules with high precision.

4.1.2 Molecular dynamics (MD) simulations. MD simula-
tions provide dynamic insights into molecular systems,
showing how atoms andmolecules move and interact over time,
nowadays with machine learning models. This is crucial for
understanding processes like protein folding, chemical reac-
tions in solutions, and material behaviours under different
conditions.33

4.1.3 3D visualization. Tools for 3D visualization of mole-
cules and materials enable researchers to explore structural
features, simulate docking (how two molecules t together),
and design molecules with tailored properties.

4.1.4 Design and optimization. Advanced soware pack-
ages allow for manipulating molecular structures to optimize
binding affinity, stability, or other desired characteristics,
facilitating the design of better drugs and materials.67,68
4.2. Cheminformatics

4.2.1 Molecular descriptors and ngerprints. Chem-
informatics involves the calculation of molecular descriptors
and ngerprints, which are numerical or graphical representa-
tions of molecular structures and properties. These are used in
machine learning models to predict chemical compounds'
activities, properties, or toxicities.69

4.2.2 Database mining and virtual libraries. With the
proliferation of chemical databases (e.g., PubChem, ChEMBL,
Scinder (see also 4.5.), scientists can mine vast amounts of
data to identify compounds with desirable properties or struc-
tural motifs, signicantly speeding up the discovery process.70,71

However, measures and open-access properties annotated to
structures are lacking and holding everyone back.

4.2.3 Toolkits in chemistry. Numerous toolkits have
emerged, such as OpenBabel,72,73 RDkit,74 CDK,75 Molles,76,77

Cinfony,78 and the Indigo toolkit.79

Cheminformatics will also deal with patents, standard
operation procedures, and GHS/EHS Management.
Digital Discovery, 2024, 3, 1923–1932 | 1925
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Fig. 4 Large language model in chemistry by Gomes et al.99
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4.3. Virtual (and experimental) screening of libraries

4.3.1 High-throughput screening (HTS). Digital chemistry
complements experimental HTS (or recently HPS – high power
screening with billions of entities,80 originally invented by the
late Richard Lerner)81 by predicting which compounds are most
likely to be active against a target, thus prioritizing those for
laboratory synthesis and testing, saving resources. The rise of
combinatorial chemistry and a (massive)82–84 parallelization of
virtual or real chemical experiments led to his.

4.3.2 Structure-based drug design (SBDD). Virtual
screening is integral to SBDD, where the 3D structure of a target
(oen a protein) is used to screen and design compounds that
can bind to it effectively, guiding the development of new
drugs.85 Some notable examples are BioNeMo (NVIDIA)86 and
Alphafold (Google).87
4.4. Machine learning and articial intelligence in chemistry

4.4.1 Predictive models. AI algorithms can learn from
chemical data to predict outcomes of reactions, properties of
compounds, or biological activities, making the design process
faster and more efficient (Fig. 3).38

Digital reticular chemistry – pioneered by Omar Yaghi – is
a complete cycle consisting of a comprehensive database for
metal–organic—frameworks (MOFs), computational and experi-
mental discovery cycles, and a human–digital interface (Fig. 3).88–92

4.4.2 Semantic data and ontologies. Semantic data are
structured for machine understanding through metadata and
standardized formats, while ontologies93,94 provide a formal
framework of concepts and relationships to organize and
interpret this data.95

4.4.3 Autonomous optimization and decision making;
design-of-experiments in chemistry (DoE). Conventionally
design-of-experiments, Bayesian optimization,96 or recently
Fig. 3 Digital reticular chemistry explored by Yaghi et al. The two
cycles – computation and experimental – together with a human
interface interacted and built the database, from ref. 88.

1926 | Digital Discovery, 2024, 3, 1923–1932
Bandit optimization,97 systematically plans and conducts
experimental investigations using statistical methods to effi-
ciently explore chemical processes, optimize parameters, and
understand the effects of multiple variables on outcomes.98

4.4.4 Large-language models. Large-language models for
chemistry utilize vast amounts of text data and advanced
natural language processing techniques (Fig. 4) to generate
insights, predict properties, and assist in drug discovery
(Fig. 5)100 and materials design101,102 within chemistry.103,104

Gabe Gomes recently showed that a large-language model
could be integrated into a chemical workow (Fig. 4).99

In a consortial effort, researchers from IBM, Oxford Univer-
sity, and Enamine drug target inhibitor discovery with a deep
generative foundation model. They target a protein sequence-
conditioned sampling on the generative foundation model to
design small-molecule inhibitors for two dissimilar targets: the
spike protein receptor-binding domain (RBD) and the main
protease from SARS-CoV-2 (Fig. 5).105

4.4.5 Analyze analytical data with articial intelligence.
Articial intelligence analyzes analytical data by employing
advanced algorithms and computational techniques to extract
insights, patterns, and correlations, enhancing decision-making
and predictive modeling capabilities. In particular, generative
models like Foundation Models such as LLMs and Articial
General Intelligence (AGI) will play a role in the future. Digital
retrosynthesis is an active application of these techniques.

4.4.6 Accelerated simulations. Machine-learned potentials
have emerged over the past 20 years as a new paradigm in
atomistic simulations106 Starting in 2007,107 neural network-
based potentials became an integral part in the acceleration
of ab initio molecular dynamics simulations, reaching new
records in data efficiency simulations106,107 and applicability to
complex systems.108
Fig. 5 Selected compounds from a large library identified for COVID.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.4.7 Inverse design. An active eld of development is
generative machine learning models that solve inverse design
challenges, i.e., the prediction of molecules given desired target
properties.109,110 Initial efforts of inverse design made use of
variational autoencoders,111 later replaced by generative adver-
sarial networks (GANs)112 and reinforcement learning.113,114

Currently, the main research focus lies on diffusion models.
Fig. 7 Screenshot of the Chemotion ELN.74
4.5. Dedicated soware tools and RDM

4.5.1 Research data management (RDM), the FAIR princi-
ples, and open digital chemistry. RDM involves the organized
and systematic handling of data throughout its lifecycle to
adhere to the FAIR principles (ndable, accessible, interoper-
able, and reusable (Fig. 6))115,116 and facilitates Open Digital
Chemistry, promoting transparent and collaborative research
practices in the eld.117,118 Cheminformatics will also deal with
patents, standard operation procedures, and GHS/EHS
Management.

The NFD4Chem119 is the national research data infrastruc-
ture for chemistry in Germany. This research data infrastruc-
ture initiative enables innovative services for research data to
collect, store, process, analyze, publish, and re-use research
data dedicated to chemistry. It provides a platform for RDM and
FAIR principles (Fig. 6).

4.5.2 Laboratory information management systems
(LIMS). These components are specialized soware solutions
that organize, track, and manage chemical samples, data, and
workows, facilitating streamlined operations and data integ-
rity in chemical laboratories. They support quality control,
regulatory compliance, and efficient research and development
processes by providing a centralized digital platform for
managing laboratory information.72,120–124

4.5.3 Electronic laboratory notebooks (ELN). Electronic lab
notebooks (or journals) for chemistry (Fig. 7) are digital plat-
forms that enable researchers to systematically document
experiments, observations, and results in a searchable, secure,
and shareable format, streamlining the research process and
enhancing collaboration.73

The open-source Electronic Lab Notebook Chemotion ELN
includes tools for molecular chemistry and supports the
Fig. 6 Infrastructure and the workflow provided with NFD4Chem.

© 2024 The Author(s). Published by the Royal Society of Chemistry
connection of devices (Fig. 7).74 It uses chemical ontologies to
semantically annotate,75,94 incorporates SMILES,76 uses
Ketcher,77 supports automated curation of analytical data,78 and
has a generic module called LabIMotion.

4.5.4 Repositories. The chemical community has relied on
general and abreacting databases (e.g., CAS, Beilstein/Reaxys,
see 4.2.) or specic (e.g., CCDC) for decades – but seemingly
not error-free.22 Nowadays, community-based repositories,
including raw data, play a major role (e.g., NIST Materials Data
Repository),125 preferentially in a curated manner,74 and
increase transparency and reproducibility.
4.6. Quantum computing in chemistry125,126

4.6.1 Solving complex problems. Quantum computers offer
the potential to perform intractable calculations for classical
computers, such as accurately simulating large quantum
systems, which could revolutionize how we design materials
and understand chemical reactions.

4.6.2 Optimization. Quantum algorithms are being devel-
oped for optimizing molecular structures, reaction paths, and
even experimental parameters, promising to unlock new fron-
tiers in chemistry and materials science.

Quantum computing could support solutions, for example,
molecular dynamics (MD) simulation, which oen fails in
practice on large problems due to lack of computing power; QM
calculations are only accurate to a limited extent; DFT is
dependent on functionals and basis sets, and only a rough
approximation; more accurate ab initio calculations such as
CCSD(T), full CI or quantum Monte Carlo methods already fail
at benzene with high accuracy.127

Quantum computing will make large database searches
signicantly better/more efficient, and molecular modeling –

a 3D structure of large molecules (protein folding, conformer
calculations128) or active side modeling/docking is raised to the
next level. The data sets required for machine learning – with
quantum machine learning – to train powerful models can be
drastically reduced (i.e., less experimental data is needed for the
same result, or better predictions can be made with the same
number of data). Automation/robotics benets from “path
optimization” and scheduling calculations (i.e., the same robot
has a higher throughput).
Digital Discovery, 2024, 3, 1923–1932 | 1927
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Fig. 8 A so-called Chemputer, designed by the Cronin lab.133

Fig. 9 The Robochem from the Noël group features continuous
flow.134
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4.7. Automation and robotics129,130

Integration with automated laboratory systems and
robotics131,132 for high-throughput experimentation enables
a seamless loop of design, synthesis, testing, and feedback,
accelerating the pace of discovery (Fig. 8 and 9).86,133,135 Liquid
handling is a must, but the progress of solid dosing was
remarkable.136

Lee Cronin and his team created a so-called Chemputer,133,137

which refers to a concept that combines chemistry with auto-
mated processes, specically using automated systems and
soware using a chemical programming language to synthesize
chemicals and materials (Fig. 8). A chemputer essentially
automates the chemical synthesis process, enabling researchers
to produce compounds quickly and precisely by following
digital protocols.

Robochem from the Noël group went in another direction
(Fig. 9). This is combined with ow chemistry and photo-
chemistry with integrated analytics.134

5. Embedding digital chemistry in
traditional chemistry and science

All branches of chemistry benet from digital chemistry,
including analytical, bio-, food, inorganic, material,138–140

medicinal,141,142 organic, pharmaceutical, physical, polymer,
quantum,143 radio-, technical, and theoretical chemistry.
1928 | Digital Discovery, 2024, 3, 1923–1932
Furthermore, the industrial impact of digital chemistry revo-
lutionizes manufacturing processes, product development, and
quality control by leveraging computational methods, automa-
tion, and data analytics to streamline operations,144 optimize
formulations, and accelerate innovation.145 Digital chemistry
also requires dedicated teaching on all levels.146–150 and specic
notations of entities151 while setting new benchmarks.

Digital chemistry, when integrated with digital biology,
creates a synergistic platform for simulating complex biological
systems and chemical interactions at the molecular level,
enhancing drug discovery and biomaterials development.
Coupling this with digital materials science, for example, with
nano and micro 3D prints of materials that require digital
blueprints,152 further expands the potential for designing novel
materials with tailored properties, revolutionizing elds from
sustainable energy to advanced manufacturing through
predictive modeling and high-throughput computational
experiments. Data harmonization and integration of semantic
web technologies will allow mapping and overarching data
analysis across disciplines.

Branching out digitalization – computer-aided chemistry153

and synthesis planning (CASP),154 pattern recognition in
chemistry,155 virtual chemistry labs,72 digital sustainable
chemistry,156 digital synthetic electrochemistry,157 digital
twins34,158–160 curiosity-driven discovery,161 iterative chemical
synthesizers,162 data-driven discovery,163 digitization of
synthesis and chemical programming,164 natural language
processing (NLP),165 chemical graph theory,166 computer-based
automatic indexing,167 Neural Networks in Chemistry and
Drug Design,15,168 chemometrics,169 chemical ‘Oracles’170 and
reinforcement learning,171 semantic in chemistry/chemical
semantic,172,173 knowledge graphs174 are other terms relevant
to digital chemistry.
6. Conclusions: impact of digital
chemistry and future directions

Digital chemistry transforms chemical research and enables
sustainable practices, such as more efficient catalysts, renew-
able energy materials, and reduced need for hazardous chem-
icals in drug synthesis. As computational power grows and
algorithms becomemore sophisticated, integrating digital tools
in chemistry promises to deepen our understanding of the
molecular world and accelerate the development of innovative
solutions to global challenges in health, energy, and materials
science.
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preprint, arXiv:2002.03842, DOI: 10.48550/
arXiv.2002.03842.

94 P. Strömert, J. Hunold, A. Castro, S. Neumann and
O. Koepler, Pure Appl. Chem., 2022, 94, 605–622.

95 J. Hastings, L. Chepelev, E. Willighagen, N. Adams,
C. Steinbeck and M. Dumontier, PLoS One, 2011, 6, e25513.

96 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani,
J. I. M. Alvarado, J. M. Janey, R. P. Adams and A. G. Doyle,
Nature, 2021, 590, 89–96.

97 J. Y. Wang, J. M. Stevens, S. K. Kariollis, M.-J. Tom,
D. L. Golden, J. Li, J. E. Tabora, M. Parasram,
B. J. Shields, D. N. Primer, B. Hao, D. Del Valle,
S. DiSomma, A. Furman, G. G. Zipp, S. Melnikov,
J. Paulson and A. G. Doyle, Nature, 2024, 626, 1025–1033.

98 S. A. Weissman and N. G. Anderson, Org. Process Res. Dev.,
2015, 19, 1605–1633.

99 D. A. Boiko, R. MacKnight, B. Kline and G. Gomes, Nature,
2023, 624, 570–578.

100 T. Burki, Lancet Digital Health, 2020, 2, e226–e227.
101 Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke,

P. Friederich andM. Tsotsalas, Angew. Chem., Int. Ed., 2022,
61, e202200242.

102 L. Pilz, C. Natzeck, J. Wohlgemuth, N. Scheuermann,
S. Spiegel, S. Oßwald, A. Knebel, S. Bräse, C. Wöll,
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eadj1817.

135 Other concepts include ChemASAP:https://
www.chemasap.kit.edu/.

136 M. Abolhasani and E. Kumacheva, Nat. Synth., 2023, 2, 483–
492.

137 Cronin also coined chemputation.
138 S. Okur, T. Hashem, E. Bogdanova, P. Hodapp, L. Heinke,
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