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Bayesian optimization (BO) is an efficient method for solving complex optimization problems, including

those in chemical research, where it is gaining significant popularity. Although effective in guiding

experimental design, BO does not account for experimentation costs: testing readily available reagents

under different conditions could be more cost and time-effective than synthesizing or buying additional

ones. To address this issue, we present cost-informed BO (CIBO), an approach tailored for the rational

planning of chemical experimentation that prioritizes the most cost-effective experiments. Reagents are

used only when their anticipated improvement in reaction performance sufficiently outweighs their

costs. Our algorithm tracks available reagents, including those recently acquired, and dynamically

updates their cost during the optimization. Using literature data of Pd-catalyzed reactions, we show that

CIBO reduces the cost of reaction optimization by up to 90% compared to standard BO. Our approach

is compatible with any type of cost, e.g., of buying equipment or compounds, waiting time, as well as

environmental or security concerns. We believe CIBO extends the possibilities of BO in chemistry and

envision applications for both traditional and self-driving laboratories for experiment planning.
1 Introduction

Reaction optimization is a challenging task that is oen tackled
“one factor at a time” by sequentially optimizing individual
parameters such as catalyst, temperature, or additives. While
this strategy simplies the problem, it remains both time and
resource-intensive. Moreover, promising combinations of
parameters may be overlooked. For instance, an additive and
ligand, which were discarded when tested individually, may
yield optimal results when combined.

As an alternative, data-driven computational tools, such as
machine learning (ML), have recently been used to guide
experimental effort aimed at achieving the best possible
performance by predicting reaction yield or selectivity from
substrates, catalysts, and reaction conditions.1–6 Amongst
different ML frameworks, Bayesian optimization (BO) is ideally
suited for this task.7,8 Given initial data, BO leverages predic-
tions and their corresponding uncertainties to suggest the next
experiments evaluated as the most promising. As such, BO-
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the Royal Society of Chemistry
driven reaction optimization has seen notable success in the
last few years, especially in automated laboratory and high-
throughput experimentation (HTE) settings.3,9–16 In such situa-
tions, all materials being considered (i.e., substrates, catalysts,
additives, solvents) are typically procured prior to experimen-
tation, at which point BO is used to identify the best reagents
and reaction conditions.1,3,17,18

Yet, the implementation of BO and other ML frameworks in
more traditional (i.e., not high-throughput) laboratories is still
limited.19–22 In these settings, dening and acquiring all
necessary materials prior to the optimization, especially when
dealing with unexplored chemistry, is not ideal. A further
complication is that classical BO methods usually attribute the
same cost to all suggested experiments. In reaction optimiza-
tion, where e.g., catalyst ligands and reaction conditions have to
be adjusted simultaneously, this assumption is also unsuitable
as the cost of an experiment (in terms of money, time invest-
ment, or risk) can vary drastically depending on whether
a ligand is already available in the laboratory, commercially
available, reported in the literature, or has never been synthe-
sized before. Thus, experiments suggested by BO may be
impractical or even non-feasible and human ltering might be
necessary. On the other hand, testing already available ligands
with different reaction conditions may yield a comparable
improvement with lower cost, especially in the preliminary
stages of reaction optimization when less is known about the
chemistry.

To overcome this limitation, we introduce cost-informed
Bayesian optimization (CIBO), a BO framework that incorpo-
rates cost into the decision-making process to achieve practical
Digital Discovery, 2024, 3, 2289–2297 | 2289
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Fig. 1 Overview of standard BO (blue) vs. cost-informed Bayesian optimization (CIBO, orange) for yield optimization. (a) BO recommends
purchasing more materials. Meanwhile, CIBO balances purchases with their expected improvement of the experiment, at the cost of performing
more experiments (here five vs. four). (b) A closer look at the two acquisition functions of BO and CIBO for the selection of experiment two. In
CIBO, the BO acquisition function is modified to account for the cost by subtracting the latter. Following the blue BO curve, the next experiment
to perform uses green and red reactants (corresponding to the costly maximum on the right). Subtracting the price of the experiments results in
the orange CIBO curve, which instead suggests the more cost-effective experiment on the left (blue and red reactants).
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and rational batch experimentation planning. CIBO optimizes
a single objective by incorporating contextual information into
the decision-making process. For instance, if two equally
informative experiments are possible, CIBO suggests the one
with the lower cost (Fig. 1). Additionally, it maintains a digital
inventory that dynamically updates experiment costs based on
the resources currently available. For example, once a ligand is
purchased, it can be used for several experiments.

Previous methods aimed at optimizing reaction cost and
performance relied on multi-objective approaches or included
constraints on the overall cost.16,18,23,24 Multi-objective methods
typically balance competing objectives like yield, selectivity, and
cost, oen using complex scalarizing methods to manage trade-
offs (e.g., Pareto fronts). CIBO also contrasts with (non-multi-
objective) methods that have been proposed in chemistry (vide
infra), as well as in other elds, such as cost-aware BO in
computer science.25–27 Those are based on different strategies
and include, for instance, contextual BO,28 addressing envi-
ronmental effects, as well as direct modications of the acqui-
sition function.29–31 Methods that favor low-cost experiments for
a given budget have been suggested,32–36 but with the costs kept
xed throughout the optimization. Resource management
optimization is a related problem that has been investigated,
albeit not with BO.37–40 More recent works have focused on the
cost of changing between different experimental setups to
account for the associated expenses41–48 or on human-in-the-
loop strategies.49 Finding cost-efficient routes in the context of
retro-synthesis planning has also been explored50–54 although
the focus is placed on proposing plausible and practical path-
ways rather than on optimizing the conditions of individual
reactions.

To our knowledge, a reaction optimization framework
accounting for both the cost of experiments contextually and
the fact that these costs are dynamically updated over time has
not been introduced. Here, we demonstrate the performance of
CIBO using two HTE datasets of Pd-catalyzed reactions and nd
2290 | Digital Discovery, 2024, 3, 2289–2297
that, despite occasionally requiring additional experiments to
match standard BO, the overall cost of the optimization is
signicantly reduced. Our benchmarks evaluate cost using the
price of commercially available reagents. However, CIBO is
compatible with any cost denition, such as the number of
steps or estimated time required for synthesizing reported
ligands, as well as sustainability metrics for solvents or
compounds. In the latter case, the platform will prioritize
options with lower environmental impact.55–57 Overall, CIBO
promises an efficient and sustainable alternative to existing
design-of-experiment methods.58,59
2 Methods
2.1 Cost-informed Bayesian optimization

BO is an effective method for optimizing noisy functions that
are expensive or time-consuming to evaluate.60 At its core lies
a surrogate model that predicts the value of the function (mean
m) and the uncertainty of the prediction (standard deviation s).
Acquisition functions are used to identify promising experi-
ments in the design space.61 This is done by considering all
possible experiments and weighting their potential to maximize
m, balancing the trade-off between exploring uncertain areas of
the design space (exploration) and exploiting areas known to
yield high values (exploitation). In addition to performing one
experiment at a time, batch BO proposes a joined set (i.e.,
a batch of experiments) which provides the largest expected
improvement when performed in parallel.

Given the previous denition, BO does not account for the
varying costs of the resources involved in the optimization.
Instead of buying or synthesizing additional substances,
chemists may rst choose to vary easily controllable conditions
(e.g., temperature, reaction time), resulting in lower costs and
a better-informed decision before acquiring additional
compounds. Finding the best experimental conditions for the
smallest budget is different from identifying the best value–cost
© 2024 The Author(s). Published by the Royal Society of Chemistry
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trade-off in the optimized reaction. The latter is relevant when
large amounts of the compounds involved need to be acquired
repeatedly: e.g., large-scale synthesis. The former, and current
case, is relevant when the budget (in terms of cost, time, or
other) for the experimentation campaign itself is important.

Our method, cost-informed Bayesian optimization (CIBO),
balances minimizing experimentation cost with maximizing
measured improvement (see Fig. 1). It results in experiments
that more closely mimic the optimization process in a chemistry
lab, only acquiring a compound if the expected improvement
justies the cost. CIBO stands out from standard BO by
promoting the search for more cost-effective experiments while
not constraining its search space (i.e., an expensive ligand may
still be selected if its expected improvement is justied). We
account for experimentation costs by including them in the
acquisition function,62,63 scaling the cost adjustment with the
expected improvement values. Given the set of all possible
experiments {e}, we use the batch noisy expected improvement
(qNEI) acquisition function {ae}, computed from the predicted m

and s from the surrogate model to determine the next batch
B :¼ fe1;.; e5g3feg for each iteration.64,65 Here ej is the j-th
experiment in batch B with acquisition function value aj h aej.
Note that there is exactly one aj per experiment ej. For a batch of
experiments, here Ne= 5 per batch, we consider the current cost
of each compound involved. As user input, only the compound
prices per gram, per mol, per bottle, or other user-dened costs
pj are required.

For simplicity, we cover the case of one compound j per
experiment ej. Batches are ordered with respect to the norm of
B, dened by the sum of the acquisition function values ai in
each batch,

jBj :¼
XNe¼5

j¼1

aj: (1)

In standard batch BO, the batch with the highest rank (i.e., the
highest expected improvement, represented by the blue line in
Fig. 1b) is chosen for the next set of experiments, as it offers the
best combination of expected improvement and cost. In CIBO,
we modify qNEI of each experiment ej by subtracting
a term47,62,63 proportional to the cost CðejÞ as follows:

~aj ¼ aj � C
�
ej
�
$SðfagÞ; (2)

where C probes whether compound j was bought at price pj in
a previous iteration or added to the same batch before, i.e.,

C
�
ej
� ¼

(
0 if j bought or already in B;
pj otherwise:

(3)

This means that the cost is zero when j was obtained in some
previous iteration or appeared in the same batch B but under
different experimental conditions. For simplicity, throughout
this work we assume that compounds in the inventory are never
exhausted. However, our framework could be set to deduct exact
quantities from the inventory until nothing remains.

In eqn (2), we introduced a scaling function S that depends
on all acquisition function values {a} evaluated on all
© 2024 The Author(s). Published by the Royal Society of Chemistry
experiments not yet included in the surrogate model and the
current prices {p} for each ligand,

S:= l$max{a}/avg{p}, (4)

to update the magnitude of the prices that enter eqn (2) such
that the maximum value of the subtracted term has a compa-
rable value as the largest acquisition function value. The
purpose of this rescaling is to balance cost with the exploration–
exploitation trade-off dened by the original qNEI acquisition
function term a. The scaling function is updated aer each
iteration to ensure adapting to the current costs and acquisition
function values. Additionally, the scaling function removes the
cost units. Finally, l controls the weighting between yield
optimization and reducing the costs of the optimization. For l
= 0 CIBO is equivalent to normal BO, for l > 0 costs are taken
into account, increasing l puts more weight on reducing the
costs. If not mentioned otherwise, we set l= 1.0 (see ESI Section
S4 for additional details†).

Aer computing the modied acquisition values for each
potential experiment in a batch ~a1, . ~a5, we evaluate the
updated norm value,

��~B�� :¼ XNe¼5

j¼1

~aj : (5)

This corresponds to the orange line in Fig. 1b, which differs
from the blue line depending on the scaled cost term of eqn (2).
The batch with maximal value ~B, offering the best cost–benet
ratio, is then selected for the next iteration.

Note that our approach does not penalize exploration per se,
but rather favors the most inexpensive ways to explore before
committing to higher-cost experiments. Further details of our
implementation are available in the ESI Section S1.†
2.2 Datasets and models

To demonstrate the potential of CIBO, we attempt to maximize
reaction yield in the most cost-efficient manner for two litera-
ture datasets: Pd-catalyzed direct C–H arylation (DA, Fig. 2a)3

and Pd-catalyzed Buchwald–Hartwig cross-couplings of amine
nucleophiles using a droplet platform (CC, Fig. 2b).17 Being the
most expensive element of the optimization, CIBO should avoid
using unnecessary ligands to reach a high yield.

In both cases, we use Gaussian process regression with
a Jaccard–Tanimoto kernel (see ESI Section S2 for more details†)
as the surrogate model in the optimization. The batch size is
always xed to ve,3,18 but we note any other value could be used
according to the preferred experimental setup. As the cost, we
use the price per gram of material (dollars per gram $/g, see ESI
Section S3 for details†), since chemical suppliers provide most
chemicals gram-wise.

For consistency and to make the task challenging, we start
the optimization using models trained only on a small subset of
experiments performed with chemicals with low overall cost or
performance (iteration zero, vide infra). The cost of the initial
experiments is included in the total cost. For simplicity, we
assume that we never run out of chemicals in the inventory,
Digital Discovery, 2024, 3, 2289–2297 | 2291
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Fig. 2 Reaction schemes of the two datasets used in this work. (a)
Direct arylation (DA) with yields ranging from 0–100%.3 (b) Cross-
coupling (CC) with yields ranging from 0–100%.17 The four nucleo-
philes explored in the latter dataset are depicted below, each leading
to a subset (An, Mo, Ph, Be).

Fig. 3 The figure compares cost-informed Bayesian optimization
(CIBO, orange), standard BO (blue), and random sampling (RS, red) for
the DA dataset over 100 averaged runs. Shaded areas indicating the
standard deviation, representing the variability across runs. The best-
obtained yield in each batch iteration is shown in the top panel, and the
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which applies both to the reagents used in the initial experi-
ments and to newly acquired ones. The results are averaged over
100 separate runs using the same initialization.66

The DA dataset consists of 1728 measurements where the
monophosphine ligand, base, solvent, concentration, and
temperature are varied to optimize the formation of one
product. The cost of chemicals was reported previously18 and
was converted to dollars per gram for this work. We considered
concentration and temperature to be variables with no addi-
tional cost. In general, the costs of the base and solvent are
negligible compared to the ligand. The optimization begins
with the surrogate model trained exclusively on the 144 exper-
iments in the dataset that use the dimethylphenylphosphine
ligand, which is inexpensive and the worst-performing ligand
overall. The minimal spending to obtain the best results
corresponds to $144 for this dataset.

For the CC dataset, four different amine nucleophiles,
aniline (An), morpholine (Mo), phenethylamine (Ph), and ben-
zamide (Be), are each coupled with p-tolyl triate yielding
different products over 363 reactions (around 90 per nucleo-
phile). Each is considered an individual reaction in which the
ligand (precatalyst), base (concentration and equivalents),
2292 | Digital Discovery, 2024, 3, 2289–2297
solvent, temperature, and time all change.23 The prices for all
chemicals involved were obtained from supplier websites and
converted to dollars per gram if necessary. Concentrations,
equivalents, temperature, and time are varied without addi-
tional cost. On average, nine experiments are used at the start of
each optimization. For the Ph and Be subsets of CC we initialize
using tBuXPhos as a ligand (for the precatalyst) and DBU as
a base, the cheapest combination. For An, we chose to initialize
with EPhos and TEA as the cheapest initialization would have
resulted in perfect yield. For Mo no measurements with tBuX-
Phos were performed. Thus, we initialize with tBuBrettPhos and
DBU. For the CC experiments, the cost of the solvents and bases
were also taken into account, since the dataset contains only
a few different ligands per nucleophile. The minimal spending
to obtain the best results is $69 for An, $1382 forMo, $97 for Ph,
and $591 for Be respectively. A full list of chemical abbreviations
is presented in Table S1.†
3 Results
3.1 Direct arylation

Following the original publication, the optimization was run for
20 total iterations (100 experiments).3 The best-observed yield
for several batched iterations, as well as the total amount spent,
are shown in Fig. 3. CIBO achieves a yield of over 99% aer eight
iterations, compared to ve iterations in standard BO. However,
the total cost of running the ve iterations (25 experiments)
suggested by BO is, on average $1592, whereas the cost of
sum spent to acquire the ligands is shown below.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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running the eight iterations proposed by CIBO (40 experiments)
is, on average, $1156, 38% less. Aer 20 iterations, standard BO
bought all possible ligands (12), amounting to a cost of $2082,
while CIBO bought two fewer ligands (10), for a total spending
of $1221, thereby saving more than 40%. Considering the error
of the surrogate model (see ESI Section S1†) it is prudent not to
buy additional ligands aer reaching a yield above 99%.
Following this logic, past that point (in the tenth iteration),
CIBO suggests optimizing reaction conditions instead of buying
expensive ligands.

To study the difference in experimentation planning
between BO and CIBO, we visualize the ligand batch composi-
tion of the rst four iterations (see Fig. 4) for one of the ve
repetitions. CIBO batches are less diverse than BO in terms of
ligands: CIBO suggests at most two different ligands per batch.
In the rst iteration, BO suggests acquiring ve ligands in
addition to dimethylphenylphosphine, compared to only two
Fig. 4 Composition of the four first batches of ligands with different
reaction conditions for the DA dataset. We compare the total cost and
number of ligands after 20 (16 more) iterations for BO and CIBO. Every
colored symbol corresponds to one ligand shown on the right
respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
for CIBO. For a detailed analysis of the effect of initialization,
see ESI Section S5.†

Finally, we investigated the inuence of the weighting factor
l (see eqn (4)) on the results and found the expected behavior:
increasing l substantially decreases the costs and vice versa.
However, this comes with a trade-off in yield optimization and
an additional increase in the number of iterations required to
obtain the yield for a smaller cost weighting (see ESI Section S4
for details†).

3.2 Cross-coupling

The top row shows the best yield found as a function of the
batch iteration, and the bottom row displays the cumulative
costs. The black dotted line in the top row indicates the target
yield at 70%. The resulting terminal iteration (vertical black
line) in the bottom row indicates the total budget spent with
CIBO.

The dataset is split into subsets of the four different amine
nucleophiles (see Fig. 2b) resulting in four distinct optimization
problems. As before, we consider the best-observed yield and
total cost per iteration. The total dollar amount spent, listed in
the rst row of Table 1, depends on the nucleophile subset,
since not all ligand (precatalyst)/base combinations were tested
experimentally for each nucleophile. Due to the limited avail-
able data, the optimization is continued until the experimental
data is exhausted, and the results are averaged over 100
different runs.

As shown in the bottom row of Fig. 5 standard BO suggests
buying all available ligand and base combinations immediately
following the rst iteration – irrespective of their costs. CIBO
acquires less expensive reagents rst and recommends experi-
ments under varying conditions before nally buying all
reagents – if no other experiments are le in the dataset. By
inspecting the amount of money spent versus the number of
iterations, Fig. 5, it is apparent that CIBO suggests more
expensive molecules only as a last option. If possible, CIBO
optimizes the yield based on reagent/condition combinations
that can be performed withminimal or zero additional cost. The
case of Be is illustrative: aer iteration four, over 30 experiments
are performed without acquiring any additional reagents,
resulting in a cost plateau. Similar observations are made for An
and Ph (Fig. 5a and c) where the optimization achieved a yield of
Table 1 Comparison of the amounts spent with CIBO and classical BO
for each nucleophile subset of CC experiments. The first row lists the
total cost of all compounds that could be acquired, which equals the
amount spent by classical BO. The subsequent rows show the amount
spent with CIBO and the amount and percentage saved compared to
classical BO to achieve a yield above 70%. The last row indicates how
many compounds did not have to be obtained out of the available
ones

An Mo Ph Be

Cost all reagents $2474 $2105 $2170 $2144
CIBO spent $1124 $2105 $142 $690
Saved wrt. BO $1350 (54%) 0 $2028 (93%) $1454 (68%)
Saved reagents 5/9 0/7 4/8 3/8

Digital Discovery, 2024, 3, 2289–2297 | 2293
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Fig. 5 Yield optimization for the CC dataset with four different nucleophiles (An,Mo, Ph, Be). We compare cost-informed Bayesian optimization
(CIBO, orange), Bayesian optimization (BO, blue), and random sampling (RS, red). Average curves over 100 runs are shown. Error bars are not
shown due to the small variability in the selection of experiments across runs.
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100% aer only a few iterations, followed by iterations where
CIBO does not acquire additional reagents.

The goal of every experimentation series always depends on
the context. We dene a stopping criterion when at least 70%
yield is achieved, as this was deemed to be high yield in the
original CC publication.17 In Table 1 we show the cost and
reagent savings compared to standard BO when using this
criterion. In all cases, except for Mo, the cost is reduced by over
50%, and fewer compounds were acquired.

For Mo, CIBO performs as well as BO in terms of yield
optimization for the same cost, but only because the highest
performing ligand is also the most expensive that must be
acquired to achieve high yield. For Ph, CIBO requires no new
ligands but manages to nd a perfect yield by buying a much
cheaper base (BTTP). This results in a savings of 93% compared
to the standard BO experiments that acquire all ligands in
a single step.

4 Conclusion

We introduced cost-informed Bayesian optimization (CIBO),
a variant of BO that balances cost and ease of experimentation
with a global optimization objective. Akin to BO, the algorithm
retains the exibility to identify the most promising experi-
ments but takes a more cost-efficient optimization path by
updating the acquisition function according to the current
inventory status.

This work focuses on limiting the economic cost engendered
by the purchase of compounds needed to carry out an experi-
ment, but CIBO is general and amenable to any user-dened
cost, including logistical availability, synthesizability, number
2294 | Digital Discovery, 2024, 3, 2289–2297
of synthetic steps, structural complexity, safety, time, environ-
mental impact, and sustainability. The framework is also
compatible with evolving costs and could, for example, be
coupled with an online catalog. Finally, CIBO may also be
adapted to planning and optimizing successive reactions and
accounting for resource management.35,48,67

Overall CIBO is more broadly applicable than standard BO in
conditions for which the cost of each experiment extensively
varies (e.g., large ligand price differences). We envision the
method to be useful for the reaction optimization and devel-
opment in both traditional and self-driving laboratories.58,59
Data availability
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work are available at https://github.com/lcmd-ep/cibo.
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