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Abstract

Macroscopic deposit patterns resulting from dried solutions and dispersions are often perceived as 
random and without meaningful information. Their formation is governed by a bewildering interplay of 
evaporation, crystal nucleation and growth, capillary flows, Marangoni convection, diffusion, and heat 
exchange that severely hinders mechanistic studies. It is therefore remarkable that the patterns contain 
subtle clues about the chemical nature of the original solution. To utilize this information, extensive 
reference image libraries and advanced analysis methods are essential. For this purpose, we developed a 
robotic drop imager (RODI) that, under non-stop operation, produces up to 2,500 high-resolution images 
of sample deposits daily. Utilizing RODI, we have assembled an initial library of 23,417 images for seven 
inorganic salts and five concentration levels. Each image is analyzed and distilled into 47 metric values 
that capture distinct characteristics of the deposit patterns. This compact dataset is utilized for machine 
learning and artificial intelligence training, specifically with Random Forest, XGBoost, and a deep learning 
Multi-Layer Perceptron. We achieved prediction accuracies of 98.6% for the salt type and 92.5% for the 
combined salt type and initial concentration. Expanded databases will likely enable the rapid identification 
of broad compositional features from mere photographic images, with possible applications ranging from 
phone-based apps to field-based analytical and lab safety tools.

1 Introduction

Microscopic chemical processes can drive profound transformations in the macroscopic world that 
manifest as unexpected dynamics and complex patterns.1-4 However, chemistry’s ability to provoke and 
program such events remains largely unexplored and even modern biological research has deemphasized 
morphogenetic studies in favor of molecular and machine-like descriptions.5,6 This knowledge gap is in 
stark contrast to the intellectual and technological potential of this causal micro-to-macro chain that for 
living systems orchestrates cells and organisms from molecular events.7 The advent of laboratory 
automation and machine learning/artificial intelligence, however, provides powerful tools to study these 
intriguing connections.8-10

Two essential components of such length scale and complexity escalation are far from equilibrium 
conditions and transport processes such as diffusion, fluid flow, and active motion.11,12 The far from 
equilibrium thermodynamic state does not necessarily require the continuous supply of reactants or 
energy, but can often be reached as a long-lived transient along the system’s path toward equilibrium. 
The latter transport modes promote mixing and spatial homogenization but in conjunction with nonlinear 
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processes can create steep gradients and patterns. This counterintuitive effect is evident in the Turing 
instability1 and impacts crystal growth and other solidification events, such as periodic Liesegang bands, 
fingering instabilities during directional melt solidification, and dendritic electrodeposition.13-16

Another process that at first glance appears exceedingly simple, is the drying of solution and dispersion 
drops on nonporous, horizontal surfaces.17-19 However, certain salts such as NH4Cl induce salt creep during 
the drying of such sessile drops.20 Driven by evaporation, crystallization, and capillary action, this creeping 
phenomenon greatly increases the footprint of the drops and the resulting deposit.21 Another counter-
intuitive example is the coffee-ring effect that occurs when a drop with small suspended particles dries 
on a flat surface.22,23 The ring of dry particulate matter results from the pinning of the contact line and 
flow that transports particles to the edge of the evaporating drop. In many crystallizing solutions, the 
patterns formed can be complex, ranging from isolated small crystals to dendritic structures or featureless 
disks.19-21

Previous studies have demonstrated that the deposit patterns formed by drying droplets might reveal 
compositional features of the employed solution24,25, including tap water26 and alcoholic beverages27. For 
human tears, the drying patterns have been suggested as an inexpensive diagnostic tool for conditions 
such as dry-eye disease, where the resulting fern-like structures are indicative of the tear's composition.28 
Similarly, blood drops from patients with various medical conditions, including leukemia and anemia, tend 
to form distinctive patterns upon drying, potentially serving as diagnostic markers.29,30 In addition, 
mixtures of KCl or KCl/MgCl2 solutions with urine produce drop deposits that deep neural networks can 
potentially analyze to diagnose bladder cancer.31

Our team recently applied these ideas to a set of deposit patterns of 42 different, mainly inorganic salts.32 
Based on 7,500 images, we identified distinct pattern families including the NaCl-KCl-KBr group which 
shows compact deposits with small crystals and the RbCl-NaNO3-NH4Cl group of creeping salts. In addition, 
we showed that the chemical composition can be accurately predicted from the deposit pattern with a 
surprisingly high degree of accuracy reaching 75% even for small training sets of 14 images and >90% for 
larger sets. The study also revealed possible complications for the analysis of salt mixtures, which likely 
will require substantially large image libraries. 

The analysis employed in this earlier work was based on the extraction of 16 image metrics that allowed 
us to represent each deposit pattern as a characteristic point in a 16-dimensional morphospace. These 
metrics were calculated from binary image versions that only distinguished the dark background from the 
bright deposit. Specific metrics included the total salt area, the total area of salt-free holes, their ratio, the 
number of connected salt areas, and the eccentricity of the salt area based on a fitted ellipse. In the Z-
scored version of this morphospace, the deposits of different salts form well-separated regions despite 
the, sometimes strong, variations among individual deposit patterns.

While providing a relatively large set of images (available at ref. 33), our study was limited by the time 
required for manually pipetting the drops and positioning the resulting deposits for subsequent 
photography. In addition, the work is highly repetitive and prone to undesired variations in the release 
height and angle of the drop onto the sample substrates. For example, Lippi et al. reported a mean inter-
individual imprecision of 8.1% for pipetting 10 μL volumes.34 Further exploration of this morphogenic 
analysis method would therefore benefit from automated approaches. 
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Here, we report the construction of an automated system that creates 676 drops per run and 
subsequently records high-resolution photos of the deposit patterns. Using this robotic drop imager, we 
study the concentration-dependences of seven different salts based on a total of over 23,000 images. We 
also describe an expanded set of 47 metrics and demonstrate that machine learning (ML) methods can 
predict both the salt type and concentration with high fidelity.

2 Experimental methods

All salts were used as received. We prepared solutions in water by continuously adding and stirring the 
respective salt into high-purity water (Barnstead EASYpure UV, resistivity of 18.3 MΩ cm) until no further 
solute could be dissolved as indicated by the presence of undissolved salt particles. Then these saturated 
solutions were diluted to the desired percentages. The suppliers and purity levels for all salts were: 
Ammonium chloride (NH4Cl, Fisher Scientific: Certified A.C.S.); sodium chloride (NaCl, Sigma-Aldrich: 
A.C.S. reagent); potassium chloride (KCl, Fisher Scientific: Certified A.C.S.); sodium sulfate (Na2SO4, Fisher 
Chemical: Certified A.C.S.); potassium nitrate (KNO3, Sigma-Aldrich: A.C.S. reagent); sodium sulfite 
(Na2SO3, Sigma-Aldrich: 98%); sodium nitrate (NaNO3, Fisher Scientific: Certified A.C.S.).

We performed all experiments at ambient conditions in a climate-controlled laboratory. The temperature 
and relative humidity (RH) were monitored with two identical probes (ThermoPro sensors). The times 
required for solvent evaporation depended on the employed salt and sample drop, varying between 2 
and 18 h; the typical wait time was 3 h. These times were judged by visual inspection of the deposit 
patterns. 

3 Results and discussion

3.1 Robotic drop imager (RODI)

Basic components. RODI is housed in an air-conditioned laboratory ensuring temperatures of 21.0±0.5 C 
and a relative humidity between 40 and 50%. While not essential, it is mounted on an optical table that 
dampens mechanical vibrations. An overview photo is shown in Fig. 1. Excluding the PC, the construction 
cost was about US$5,000 of which US$2,000 was spent on RODI’s main camera and lens. A detailed list of 
RODI’s parts and suppliers is provided in the ESI (see also Fig. S1 and Table S1). All 3D printed parts were 
produced in-house on a Creality Ender 3 device from polylactic acid filaments. 

The main component of RODI is a two-dimensional positioning system consisting of three linear ball-screw 
guides with a stroke range of 1 m and an accuracy of up to ±0.03 mm (Fuyu FSK40). The table-mounted x-
drive uses two rails and stepper motors, while the elevated y-drive operates with one stepper motor. The 
three motors (NEMA 23) are connected to motor controllers (MECCANIXTY 4 A). The controllers are 
connected to an external power supply (Corsair RM1000E) and an Arduino Uno board (Rev 3). The Arduino 
is interfaced with a personal computer allowing full control of the set-up’s positioning via the Arduino IDE 
2.0.4 software. The corresponding Arduino control script and the Tinkercad OBJ files are available for 
download at GitHub.35 Four stop-contacts are mounted at the ends of the y-rail and one of the x-rails to 
avoid instrument damage.
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Mounted to the y-drive is the heart of the instrument, consisting of a camera and fluid-delivery unit, which 
appear rear- and front-mounted in Fig. 1, respectively. The 24.3 MP full-frame mirrorless camera (Nikon 
Z5) uses a high-quality macro lens (Nikkor Z MC 105 mm f/2.8). Mounted to the lens is a 3D-printed hood 
with 50 internal white LED lights, illuminating the drop deposit at a low angle from all directions. The 
delivery unit consists of a disposable pipette tip (10 μL, Corning microvolume pipet tips) with a conical 
shape and an approximate hole diameter of 400 μm. It is connected to a syringe pump (New Era Pump 
Systems, Inc.) located on a small adjacent table.  The pump’s syringe (20 mL, NORM-JECT Luer Solo) 
connects to the pipette tip via a ~3 m long tubing (Saint-Gobain, Tygon, ID 1/16”, OD 1/8”, wall 1/32”) and 
a disposable glass capillary (Pasteur style). The connection between tip and glass capillary is secured by a 
3D-printed adapter. If excessive pressure builds up in the injection system, leakage will occur at this 
adapter and will not contaminate the y-rail or other sensitive components.

A small 3D-printed case positions a white LED (5 mm) and a photocell (GL5516, 5 mm CdS photoresistor) 
at a distance of 7 mm from the location of the growing drops (Fig. 2). This holder moves with the delivery 
system and measures the light reflected from the drop if present. The voltage of the photocell is 
monitored by the Arduino board. The tubing and the electric wires for all LEDs and the photocell are 
contained in a towline (two black drag chains, see Fig. 1) above the y-rail that prevents sharp bends and 
minimizes wear.

RODI delivers the solution drops onto four glass panes (HOME4, fulfilled by Amazon), each measuring 
40.540.50.3 cm3.  The use of four units allows for easier removal and washing of the glass substrate in 
between runs. They are held by 16 3D-printed posts, secured within the holes of the optical table. These 
posts create a gap of 10 mm to a black cardboard background which is slightly out-of-focus for the main 
camera. Additional components include a large post next to the optical table for guiding the moving wires 
and tubing as well as a webcam on top of this post that we occasionally use for live streaming of 
experiments.36

 

Page 4 of 20Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
6/

20
25

 1
0:

40
:1

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00333K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00333k


5

Fig. 1  Photo of the robotic drop imager RODI. The main components include a motorized two-dimensional 
positioning system to which a camera and a dispensing system are mounted. The photo also shows the 
electronic control interface (top) and the syringe pump (right). The width of the optical table is 1.2 m.

Operation. RODI has two main modes of operation, drop production and deposit imaging. The delivery of 
the drops utilizes the principle of a “dripping faucet”, which is much simpler than alternative techniques 
based on automatic pipettes that load and eject predetermined volumes.

As a controlled experiment, the dripping faucet is a classic physics problem. For decreasing flow rates, its 
flow behavior changes from the release of a steady jet to individual droplets.37 While the rhythm of the 
drop detachment can show deterministic chaos and quasi-periodic behavior, it is typically periodic.38 The 
critical drop volume Vc at detachment follows from the balance of the downward directed weight force 
and the force due to the surface tension γ, which holds the pendant liquid to the faucet’s orifice of radius 
r. This balance is expressed by Tate’s law39

     2 π r γ = F ρ Vc g      ,                                                                   (1)

where ρ and g are the solution density and the acceleration due to gravity, respectively. Empirical 
equations for the correction factor F  ⪅ 1 have been reported elsewhere and also include minor flow-rate 
dependencies.40-42

During drop production, the main camera is off and the pump delivers solution to the pipette tip at a 
constant flow rate of typically 12 mL/h. This rate causes drops to form at the tip, expand, and detach at a 
frequency of 12-16 drops/min (Fig. 2A). The vertical distance between the pipette tip and the glass 
substrate is 7.5 mm. The detachment event is detected by the aforementioned photocell (Fig. 2B) as a 
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sudden drop in voltage (Fig. 2C) or precisely a voltage below a threshold value around 2.5 V. Once this 
decrease is registered by our control software, the motors move the solution dispenser to the next target 
site. This movement step requires 2.4 s, which is sufficiently short to ensure that the next drop is released 
from a stationary pipette tip. The distance between the target sites is 3.0 cm in both the x- and y-direction. 
To avoid the drop release over or near the seams of the four glass panels, we carefully control the starting 
position, offsetting it by Δx = Δy = 1.5 cm from the outer corner.

Fig. 2  (a) Image sequence of pendant solution drops expanding and detaching. (b) Close-up photo showing 
RODI’s pipette tip and LED-photocell detector. (c) Voltage signal of the photocell (blue) and the drops’ 
local image intensity as recorded by an auxiliary video camera (red). The sharp decrease corresponds to 
the detachment of a drop.

Following the drop production stage, we wait for at least 2 h for all drops to dry. Depending on the salt 
solution’s equilibrium relative humidity43 and the deposit characteristics, some samples require longer 
drying times (see Fig. S2 for such an example). Once no visual changes in the deposit patterns are detected 
anymore, we proceed to the imaging stage which commences with the manual positioning of the camera 
over the first deposit pattern. Then, our software moves to the 3-cm spaced target sites, waits 2.6 s for 
minor vibrations of the camera and set-up to diminish, and then automatically acquires a photo. The 
image acquisition software (digiCamControl) and Arduino script are currently not integrated and require 
appropriately timed initiation. The total imaging phase lasts 1 h.

Performance. As our facile drop delivery method differs from conventional approaches, we performed 
numerous measurements of the generated drop volumes. For these tests, individual drops were collected 
on microscope slides and quickly transferred to a microbalance (Mettler-Toledo XSR105). Results for all 
salt solutions studied are shown in Fig. S3. Overall, the drop weight distributions yield small standard 
deviations of not more than 4% of the mean volume, which is significantly smaller than the errors 
generated by humans pipetting comparable volumes.34

 After measurement of the solution densities and 
conversion of weights to volumes, we also noticed small but statistically significant differences between 
the average volumes of the salts. We attribute this finding to slightly different surface tensions and 
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densities of the solutions that affect the volume Vc of the drops detaching from the pipette tip (see eq. 1). 
To compensate at least partially for this small but undesired effect, we decrease the pump rate from 12 
mL/h to values as low as 10 mL/h for Na2SO3. This semi-quantitative adjustment is performed based on 
measuring the weight of a few drops prior to the run. We also note that the dependence of Vc on the tip 
radius r should allow for variations of the drop volumes if desired.

Excluding early tests, we performed over 30 runs with RODI to date. While all of these runs completed 
satisfactorily, yielding over 600 images each, we noticed one undesired performance issue. On occasion, 
we observed a smeared-out appearance of the deposit, which indicates a millimeter-scale movement of 
the solution drop prior to settling as well as occasional small satellite deposits that were caused by 
splashing. These data correspond to less than 1% of all drops imaged and were removed by visual 
inspection (see Fig. S4 and Table S2), although automatic exclusion during image processing could easily 
be integrated by demanding a sufficiently centered deposit centroid. Furthermore, we believe that careful 
reduction of the drops’ fall height (currently 3.0 mm) could further reduce the already low image rejection 
rate.

Fig. 3  Representative deposit patterns formed by seven different salts (columns) at five different initial 
concentrations (rows). The concentration values are given as vol/vol percent of the saturated salt solution. 
Saturation concentrations are given in Table S3. The scale bar (lower right) denotes 1 cm and applies to 
all panels.

Page 7 of 20 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
6/

20
25

 1
0:

40
:1

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00333K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00333k


8

3.2  A 23,000-image dataset

Over only two months, we used RODI to collect a library of over 23,000 high-resolution photos of dried 
salt solutions. On a typical day, two runs were performed, requiring intervention only for the preparation 
of the solution and the clean-up of the four glass panes. The resulting image library comprises data for 
seven salts at five concentrations each. These 35 categories are represented by a maximum of 676 images, 
corresponding to the 2626 layout of drops created by RODI during one run. After the removal of 
smeared-out drop deposits, the image library is comprised of 23,417 photos. These high-resolution, 
uncropped, and unprocessed images are available for free downloading at ref. 44. The photos are 
organized by salt with each zipped set equaling about 14 GB (average).

Figure 3 shows representative sample images for the different experimental categories with the initial salt 
concentration increasing in the downward direction and each column representing the specified salt. The 
first impression confirms the expectation that higher concentrations create more precipitate than lower 
ones. For each given salt, a qualitative comparison of the images further suggests that the main 
characteristics are preserved regardless of the employed concentration. For example, NaCl and KCl form 
small crystallites that often appear cubic and either clump together near the original drop center or 
arrange along a ring-like curve. NH4Cl shows the strongest tendency to creep, meaning that its deposit 
area is much larger than the footprint of the initial solution drop. Na2SO4 forms a dense ring-like deposit 
for all concentrations studied while the ring diameter increases with increasing concentration. A similar 
feature in KNO3, however, emerges only for higher concentrations while its needle-like appearance is 
always discernible.

 

Fig. 4  Magnified views of deposit patterns created by the seven salts at 90% concentration. These 
examples demonstrate the intricate nature of the patterns and high quality of RODI’s image data. Samples 
are not identical to those in Fig. 3. Field of view: 55 mm2.  

While the photos in Fig. 3 aim to represent the most common pattern types for each salt and 
concentration, differences exist between the individual samples. These differences are predominantly due 
to the stochastic nature of crystallization, the sensitivity of Marangoni flow patterns, and possibly other 
minor factors such as imperfections of the glass substrate, vibrations, and airflow. To provide a qualitative 
indication of the pattern variations, randomly selected sets of ten deposit photos are shown for each salt 
and concentration in Figs. S5-S11. 

RODI’s camera system acquires photos of the deposit patterns at a high spatial resolution (see Table S4) 
and quality that is not discernible in the image collection of Fig. 3. In Fig. 4, we therefore show magnified 
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views of the deposits obtained at the highest concentration of 90%. These images confirm the presence 
of cubic crystallites in the deposit patterns of NaCl and KCl, but also reveal intricate details for the other 
salts. For example, NH4Cl features a multitude of very small, cell-like structures (most likely crystals) that 
scatter light at their grain boundaries. This architecture is visually reminiscent of a web or foam and 
dominant in the periphery of the overall deposit (compare Fig. 3). The brighter core consists of larger 
need-like crystals that can be aligned locally and create larger salt-free inclusion that appear as dark holes. 
Na2SO4 shows dendritic features that are reminiscent of tiny brushes. These and other characteristics at 
small length scales contribute to the fingerprint-like nature of the salts’ deposit patterns.

3.3  Dimensional reduction

In our earlier study32, we reduced each deposit photo to a binary image and then to a vector containing 
16 numbers, representing different aspects of the pattern. Here, we expand the information content of 
this metric vector by adding 31 new characteristics to yield a 47-dimensional description of each photo. 
Notice that each new vector still requires less than 328 bytes, yielding a compression factor of over 30,000 
compared to the 10-megabyte raw image. A complete description of the old and new metrics is given in 
the ESI (Table S4), but a few key features are summarized in the following. All image analyses and machine 
learning tasks were performed using custom MATLAB scripts developed in-house.

3.3.1  Original metrics

The 16 original image metrics were derived after converting the raw photo to a grayscale image and 
applying a constant intensity threshold. This process yields a binary image distinguishing the dark 
background (“0”) from the brighter deposit regions (“1”). Four key metrics specify the overall deposit area 
(numWhitePixels), total boundary length, the number of connected bright regions, and the overall 
deposit’s eccentricity. We also compute the distribution of the bright pixel distances from the deposit’s 
centroid. From this radial distribution, five metrics are derived, namely the mean, median, mode, standard 
deviation, and skewness. Two additional values characterize the image erosion behavior, while the 
remaining five are related to the dark regions embedded within the bright regions.

3.3.2  New metrics

The 31 additional metrics derived from the images enhance our understanding of the deposit's structural 
and textural properties. These metrics, computed from either grayscale or thresholded images, offer 
detailed insights into various aspects of the pattern:

Edge Characteristics: By measuring the density of edge points at both low and high thresholds, we gain 
insights into the boundary's jaggedness or smoothness. Comparisons between the total area of the 
precipitate and the number of edge points further elucidate the boundary's complexity relative to the 
overall size of the deposit.

Statistical Analyses: We explore the uniformity or heterogeneity within the deposit by evaluating the 
standard deviation of pixel intensities across different thresholds. This analysis is complemented by 
metrics that focus on the shapes and sizes of the more distinct, brighter regions. These metrics provide 
median values for the eccentricity and area of these regions, highlighting typical dimensions and 
elongation.
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Spatial Distribution: Metrics assessing the concentration and brightness within a central defined area shed 
light on the core density and luminance of the deposit. Additionally, the proportion of darker areas within 
this zone highlights the internal contrast and composition of the frequently encountered core.

Radial Variations: We capture the distribution's 'tailedness' and asymmetry of intensity distributions, 
alongside comparisons of average intensities between different sections. This provides a detailed view of 
radial intensity variations throughout the deposit.

Structural Complexity: The relationships between the deposit's skeletonization and its area are computed 
to assess connectivity, branching, and terminal structures. We also provide an estimate of the deposit's 
fractal dimension to quantify its structural complexity.

Textural Analysis: The expanded analysis includes entropy measures that quantify the randomness and 
complexity of textures at multiple scales. Intensity variations along radial directions reveal differences in 
boundary distances and the structural highlights near the center. Moreover, texture consistency and 
uniformity are analyzed using correlation and energy metrics from the gray-level co-occurrence matrix, 
which explore the spatial dependencies of pixel intensities.

Detailed Textural Variations: A comprehensive examination of textural variations across different scales 
is presented, along with a quantification of the complexity of distinct regions within the deposit at high 
thresholds. This reveals the diversity and intricacy of the deposit's textural features, providing a deeper 
understanding of its unique characteristics.

While guided by the visual appearance of various deposit patterns, the process of developing and selecting 
these metrics is partly intuitive. During this process, however, we performed cursory correlation analyses 
on a small set of 18 images to avoid the introduction of metrics that correlate strongly with existing ones. 
In this context, we often found strong correlations or anti-correlations with the deposit area (i.e. 
numWhitePixels) and, for ten cases, minimized this connection by simple division. These metrics are 
log10Entropy, meanStd5, meanStd25, numContours, skeletonBranchPoints, skeletonEndPoints, 
skeletonLength, sumEdgesHigh, sumEdgesLow, and waveletEntropy. Future work could further expand 
and refine this approach by inclusion of additional metrics such as Hu moments and other methods for 
computer vision.45,46

3.4  Basic analysis results

In this section, we characterize the new, expanded set of metrics in terms of averages and correlations. 
After extraction of the 47-dimensional metric vectors (see Fig. S12 and Table S5 for representative 
examples), the next processing step is the Z-scoring of each metric over the entire data set. This step sets 
the global mean for each metric to zero and expresses distances from this mean as multiples of the 
metric’s standard deviation. Notice that for a given category (i.e. a salt at a specific concentration) the 
average of the Z-scored metrics differs from the global average. 

Page 10 of 20Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
6/

20
25

 1
0:

40
:1

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00333K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00333k


11

 

Fig. 5. Correlation analysis of the metrics based on the Z-scored data. (a) Heatmap of the reordered 
absolute correlation coefficient matrix. The color scale represents the absolute value of the correlation 
coefficients. Metrics are sorted according to their average absolute correlations with the other metrics. 
Metrics listed near the bottom stand out as having little similarity to the other metrics. (b) Alternative 
grouping of the metrics using hierarchical clustering. The dendrogram shows relationships and groupings 
of the metrics. The x-axis represents the Euclidean distance calculated from the absolute correlation 
values, where shorter distances indicate stronger relationships and higher similarity between metrics.

Figure 5a shows a heatmap of the metrics' absolute correlation matrix with red colors indicating strong 
correlation or anti-correlation between the respective metrics pair. Notice that the matrix is symmetric. 
The metrics are sorted according to their average absolute correlation with all other metrics. This ordering 
places metrics that are closely coupled or similar to other metrics near the top (and left), while displaying 
distinct metrics—that on average are unlike other metrics—near the bottom (and right). Notice that the 
diagonal corresponds to self-correlations which equal 1.0. Numerous details can be discerned from the 
heatmap in Fig. 5a. For example, we see that the metrics meanStd25 and meanStd5 are tightly correlated 
and hence capture closely related features of the images. More surprisingly, both of these metrics also 
correlate strongly with waveletEntropy.

Figure 5b explores a different sorting approach that follows hierarchical clustering, placing the metrics 
into various families and super-families. We identify nine main groups in the dendrogram, highlighted by 
different colors. Revisiting the earlier example, meanStd25 and meanStd5 fall within the lowest level 
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bracket of the blue group, indicating close similarity, and waveletEntropy joins this pair at the next bracket 
level. Even closer relationships are observed for the mean, median, and mode of the bright pixels’ (i.e., 
deposit’s) radial distribution around the overall pattern’s centroid. A heatmap similar to Fig. 5a that 
reflects this hierarchical clustering is shown in Fig. S13.

While rationalizing these groupings in detail is challenging, we can outline some underlying similarities 
within these families. For example, the blue family focuses on overall texture, entropy, and spatial 
distribution, the pink family emphasizes structural and geometrical features such as skeletonization and 
edge detection, and the cyan family examines intensity and compactness within the core region of the 
precipitate. These insights into the metrics’ categories provide a possible basis for future attempts to 
expand or reduce the number of metrics and the information they provide.

We re-state that the global average of each metric is zero for the Z-scored data set, whereas the averages 
for individual salts and different concentrations deviate from zero. These deviations provide additional 
insights into the nature of the metrics and their potential for predicting the salt type and concentration 
for test images. Figure 6a shows a heatmap of the averages for the seven salts by metric, disregarding the 
concentration information. The metrics are sorted from top to bottom by how strongly they vary between 
the different salts. This ordering reveals that sumEdgesHigh, fractalDim, and numWhitePixels show the 
largest variability, while areaOverEdgeHigh and medianLargeHoleAreas barely distinguish between the 
selected salts. Furthermore, numWhitePixels, which measures the deposit area, is the largest for the 
expansive patterns formed by the creeping salt NH4Cl.

Fig. 6. Category averages of the Z-scored data. Heatmaps of the averages for (a) the seven salt types 
regardless of concentration and (b) the 75 salts and concentrations. For each salt in (b), the 
concentration increases in the right direction. The metrics are sorted according to their standard 
deviations, with the most variable metrics appearing at the bottom.
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Applying the same sorting approach, the heatmap in Fig. 6b shows the averages for all 35 categories (i.e. 
the seven salts and their five concentrations). Notice that, within the columns delimited by dashed lines, 
concentration increases from left to right. The five most varied metrics show a systematic increase with 
increasing concentration for all salts, most strikingly for NH4Cl. The metrics sumEdgesHigh and 
numLargeBlobs are similar indicators for Na2SO4. These results suggest a possible determination of the 
solution’s initial concentration solely from the final deposit pattern.

3.5  Machine learning

We employed three different ML/AI techniques to evaluate whether the salt type and original 
concentration can be determined from single photos of the dried deposit. The first one, Random Forest, 
is an ensemble learning method that constructs multiple decision trees during training and outputs the 
mode of the classes for classification tasks.47 The second, XGBoost (Extreme Gradient Boosting), is an 
optimized gradient boosting framework that builds additive prediction models in a sequential manner.48 
This method is known for its speed and performance, but the interpretation of its results is more difficult 
than for Random Forest. Finally, we used a Multilayer Perceptron (MLP), which belongs to the class of 
feedforward artificial neural networks that consist of at least three layers of nodes: an input layer, one or 
more hidden layers, and an output layer, which can capture complex patterns in the data through 
backpropagation.49 In all analyses, the total image library was split into 16,392 photos for training (70%) 
and 7,025 photos for testing (30%).

First, we investigated the possible identification of the salt type while disregarding the different solution 
concentrations. Figure 7 shows the results of these analyses as confusion matrices for the corresponding 
seven categories. The two panels differ in the applied method with (a) being the results from Random 
Forest and (b) from XGBoost. The dark blue columns right of the two matrices show the accuracies of 
predicting the correct salt type that are listed along the left edge of each matrix. We find mean accuracies 
of (98.1±0.1)% and (98.6±0.1)% for (a) and (b), respectively. For the Random Forest method, most 
misidentifications occurred for KCl patterns which were misrepresented as either NaCl or NaNO3. Out-of-
bag error estimates indicate the use of an appropriate number of trees (N=100, Fig. S14). For XGBoost, 
the few misassignments are more equally spread out among the categories. Overall, these results are 
excellent, demonstrating that salt identification is possible despite varying concentrations. 

Next, we used MLP, a deep learning model, to classify our data into the 35 categories that not only 
distinguish between the different salts but also the initial solution concentrations. The model architecture 
of the MLP included an input layer, followed by four fully connected layers with 1024, 512, 256, and 128 
neurons, respectively. Each fully connected layer was followed by batch normalization, ReLU activation, 
and a dropout layer with a 50% dropout rate to prevent overfitting. The final output layer was a fully 
connected layer corresponding to the number of unique categories, followed by a softmax layer for 
classification. The model was trained using the Adam optimizer50 with a mini-batch size of 128, an initial 
learning rate of 0.001, and a piecewise learning rate schedule. Early stopping was implemented with a 
patience of 10 epochs to avoid overfitting. The performance of the model was evaluated over 20 runs, 
achieving a mean accuracy of (92.5±0.4)%. 
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Fig. 7. Confusion matrices for identifying the salt type regardless of concentration. The results follow from 
the ML classifier (a) “Random Forest” with 100 decision trees and (b) XGBoost. Both sets of results are 
based on 20 repeats with different random number seeds. We used 70% of the 23,417 sample entries for 
training and 30% (N = 7025) for testing. The numbers in the matrix cells denote the averages per run and 
the right column shows the correct predictions per salt. As obtained from the mean and standard 
deviation of the repeated runs, the overall accuracy is (a) (98.1±0.1)% and (b) (98.6±0.1)%.

Additional details are provided by the confusion matrix in Fig. 8 where the labels along the axes indicate 
the salt name and the percent concentration. The submatrices along the diagonal that correspond to the 
particular salts, are highlighted by blue boxes and show that most of the overall infrequent 
misassignments occur within the correct salt category. Very infrequent exceptions include KCl patterns 
that are misidentified as NaCl. In addition, we find that the concentration assignment is most challenging 
for NaNO3. A comparison to the image examples in Fig. 3 shows that the NaNO3 deposits for the higher 
concentrations are indeed very similar. 

We also performed the same 35-category analysis using the Random Forest and XGBoost methods. The 
corresponding confusion matrices are shown in Figs. S15,S16 and indicate results of slightly lower quality; 
the mean accuracies are (89.2±0.4)% and (90.1±0.3)%, respectively. Interestingly, XGBoost performs 
better at resolving the initial concentrations of NaNO3 patterns, but worse for NaCl. Overall, all three 
methods are suitable approaches, with Random Forest offering rather straightforward interpretability and 
MLP providing the best performance.
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Fig. 8.  Confusion matrix for identifying the salt type and the initial concentration. The results are obtained 
from deep learning using a Multi-Layer Perceptron (MLP) architecture. We used 70% (N = 16392) of the 
23,417 sample entries for training and 30% (N = 7025) for testing. The confusion matrix presented here 
represents the average results over 20 runs. The numbers in the matrix cells denote the average 
occurrences per run. As determined by the mean and standard deviation across the repeated runs, the 
overall accuracy of the model is (92.5±0.4)%.

Lastly, we computed the feature importance of our 47 metrics in the context of our Random Forest 
analyses (Fig. S17). This analysis yields the highest scores for intensitySkewness, areaHigh, and stdHigh, 
which are scattered in the mid-section of the map in our correlation analysis (Fig. 5a), possibly indicating 
a compromise of uniqueness and broad coverage with respect to the features captured by the other 
metrics. Regarding the category averages in Fig. 6a, they fall in the lower third of the map, indicating 
strong variations across the salt types. These characteristics of important features might be helpful for 
the future formulation of further improved sets of metrics. However, since the performance of our 
workflow and ML/AI analysis depends on the specific salts involved, incorporating metrics that are 
currently of lesser importance might enhance the identification of additional salt types.

4 Conclusions

We have reported the construction of a robotic imaging setup (RODI) capable of generating large 
databases of patterns formed during the drying of sessile solution drops. Leveraging RODI's capabilities, 
we compiled a database of over 23,000 images featuring seven inorganic salts at five different 
concentrations. Building on earlier results, we also developed a workflow for compressing high-resolution 
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images into 47 metrics that capture essential textural and structural features of the patterns. This overall 
approach enabled us to accurately determine both the salt type and initial concentration with machine 
learning analyses, achieving an overall accuracy of 92%. Remarkably, when concentration is disregarded, 
the accuracy increases to 99%.

Given the complexity of the underlying physico-chemical processes and the sometimes striking variations 
in patterns formed from identical solution drops, these accuracies are particularly noteworthy. This 
suggests that high accuracies could also be achieved for much larger sets of salts, as well as for organic 
compounds and biological fluids. The integration of our feature-extraction workflow with RODI’s high-
throughput sample collection could democratize traditionally expensive (bio)analytical measurements 
that are often reliant on mass spectrometry and similar specialized instruments. In an ideal scenario, these 
applications could be performed using solely a phone camera and an app.

Finally, our results suggest that the complexities of crystallization in drying solution drops converge on 
reliable pattern attractors. These "Platonic ideals" of deposit patterns and stains provide tangible targets 
for theoretical studies aiming to describe the multitude of involved processes.
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Data availability

All images (~96.4 GB) are deposited at https://www.chem.fsu.edu/~steinbock/saltscapes2.php. All 
MATLAB scripts, files with all image metrics, the Arduino script, and 3D design files are available at 
https://github.com/osteinbock/RODI2024. The same files are also available at https://zenodo.org/ via 
https://doi.org/10.5281/zenodo.14860560
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Data availability

All images (~96.4 GB) are deposited at https://www.chem.fsu.edu/~steinbock/saltscapes2.php. All 
MATLAB scripts, files with all image metrics, the Arduino script, and 3D design files are available at 
https://github.com/osteinbock/RODI2024. The same files are also available at https://zenodo.org/ via 
https://doi.org/10.5281/zenodo.14860560
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