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Abstract

We consider a flat membrane containing pure lipid domains located in the membrane 
monolayers and separated in the membrane plane. We assume the partial energy of contact 
along the membrane mid-surface between a domain and the underlying monolayer to be 
different from that between the two monolayers. We theoretically analyse the effect of the 
differential contact energy on the elastic deformations of tilt and splay in the membrane 
monolayers and the resulting interaction between two domains situated in the apposed 
monolayers. We demonstrate that the character of this interaction depends on the ratio, 𝜂, 
between the domain rigidity and that of a regular membrane monolayer. For the rigidity ratio 
smaller than a critical value, 𝜂 < 𝜂∗ ≈ 3, the domain interaction is predicted to be attractive for 
all inter-monolayer distances. For the super-critical values of the rigidity ratio, 𝜂 > 𝜂∗, the 
interaction is repulsive for small and attractive for large distances with a certain equilibrium 
inter-domain separation corresponding to a vanishing interaction force.  The predicted 
attractive interaction is proposed to favor the registration in the membrane plane of apposed 
domains as observed in most domain-containing membranes. 

Introduction

Studies of the formation and organization of membrane domains whose physicochemical 
properties such as the lipid and protein composition and the lipid phase state differ from those 
of the regular membrane monolayers represent an extensive and, practically, self-standing field 
of Membrane Biophysics (1-4). In the context of cell membranes, the most familiar and 
extensively discussed are the domains which consist mainly of glycosphingolipids and 
cholesterol, contain specific proteins, and are referred to as the lipid rafts (5). In 
multicomponent pure lipid membranes, the domain formation results from the in-plane 
segregation of coexisting lipid phases, most commonly, the regions of liquid-ordered (Lo) (1) 
or gel (L) (6, 7) phase within the bulk of liquid-disordered (Ld) (8 and refs therein) phase.
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Theoretical modelling of domain formation in lipid bilayers was performed by various 
approaches ranging from sophisticated methods of Soft Matter Physics (9, 10) to state-of-the-
art numerical simulations (11). This led to understanding the molecular interactions in the lipid 
monolayer plane driving the domain formation (12, 13). Yet, one aspect of the domain 
arrangement within membranes remained largely open, namely, the forces responsible for the 
commonly observed strong spatial correlation between domains formed in the apposed 
membrane monolayers. In most of the experimental studies, the domains in one membrane 
monolayer were observed to be in register with those in the apposed monolayer so that both 
the lipid rafts in cell membranes and the regions of ordered lipid phases in pure lipid 
membranes were mostly seen to span the whole membrane thickness (see (14) for review). The 
origin of the trans-monolayer interactions mediating a cross-talk between domains in the 
apposed monolayers remained hypothetical. 

The major proposal for explaining this phenomenon is that the lipid phase separation and the 
resulting domain formation in one membrane monolayer trigger the same process right 
underneath in the second monolayer due to a hypothetical trans-membrane coupling interaction 
(9, 15, 16). At the same time, it was possible to experimentally separate the trans-bilayer 
domains into unregistered monolayer domains by applying tangential shear forces to the top 
and bottom membrane surfaces (17). This implied that the trans-membrane registration was not 
crucial for the monolayer domain stability and that an attractive interaction must exist between 
laterally separated domains located in apposed monolayers favoring their mutual approach and 
ultimate overlapping. While an effective interaction related to the domain line tension was 
suggested to be responsible for fine-tuning the relative positioning of the already overlaying 
domains (18), an understanding of interactions between separated non-overlapping domains 
has remained missing.

Here we propose a mechanism leading to an attractive interaction between domains formed in 
the apposed membrane monolayers and stemming from the membrane deformations. We 
suggest that the origin of the membrane deformations and, hence, the domain interaction is the 
difference in the energies of contact between a monolayer and a domain and that between two 
regular membrane monolayers. The physical essence of the differential contact energy is 
equivalent to that of the domain’s surface tension proposed in (15, 19) and discussed in (14). 
The same concept of differential contact energy was recently considered in the context of the 
membrane shaping by caveolin discs (20). Our theoretical analysis of flat membranes shows 
that the propensity of a domain-containing membrane to minimize the overall differential 
contact energy generates the deformations of tilt and splay of the membrane monolayers, which 
propagate along the membrane plane and mediate an interaction of separated membrane 
domains. We determine the conditions under which this interaction is attractive and 
demonstrate the feasibility of these conditions for realistic lipid membranes.

Qualitative essence of the model

Single domain
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To qualitatively explain the model's main idea, we first consider a lipid bilayer containing a 
single lipid domain in one of its monolayers (Fig.1). We use the following terminology 
illustrated in (Fig.1A). The monolayer lipid domain will be called simply the domain. The 
membrane monolayer containing the domain will be referred to as the proximal monolayer. 
The second monolayer apposed to the proximal one will be called the distal monolayer. The 
fragment of the distal monolayer whose lipid molecules touch by their hydrocarbon chains the 
hydrophobic surface of the domain will be called the contact zone. For simplicity, we assume 
that the physical properties of the distal monolayer, including the contact zone, are identical to 
those of the proximal monolayer but differ from those of the domain. For the bilayer with 
multiple domains (Fig.2), the bottom and top monolayers will be referred to as the proximal 
and the distal ones, respectively.  

Figure 1. A one-dimensional model of a flat membrane containing one lipid domain. The domain is shown in yellow. The lipid 
molecules in the contact zone are shown in red.  (A) 3D representation of the initial state of the system.  The dimension of the 
domain in the x-direction is 2𝑅 and in the y-direction is 𝐷. (B) The cross-section in the x-direction of the system in the initial 
state. The dashed lines represent the monolayer neutral surfaces, the dotted line represents the bilayer midplane; ℎ is the 
distance between the neutral surface and a monolayer midplane; 𝐴𝑐 and 𝐴𝐷 are the areas of the contact zone and the domain 
respectively, determined at the corresponding neutral surface; 𝑎 is the lipid molecular area at the neutral surface. (C) The tilt 
and splay deformations in the distal and proximal following the relaxation of the contact energy. Dashed arrows represent 
the normal to the neutral surface, solid arrows represent the lipid director. 

The central hypothesis of the model is that the contact interaction between the lipid molecules 
of the distal and the proximal monolayers along the bilayer mid-plane is different from that 
between the distal monolayer and the hydrophobic plane of the domain. This differential 
contact interaction is the origin of the domain surface tension introduced in (15, 19). To be 
specific, we consider the contact between the distal and proximal monolayers to be 
energetically more favorable than that between the distal monolayer and the domain. In the 
following, the energy of the contact interaction will be called the contact energy, for brevity.

Page 3 of 19 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 2
/2

1/
20

25
 1

2:
58

:2
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/D4FD00186A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00186a


To keep the computations simple, we consider the one-dimensional version of the model in 
which a domain has the shape of a strip of finite width, 2𝑅, and infinite length (Fig.1A). We 
choose the planar coordinates system in the bilayer mid-plane with the axes 𝑥 and 𝑦 directed 
perpendicularly and parallel to the domain’s length, respectively, (Fig.1A). For the one-domain 
system the origin of the 𝑥 coordinate, 𝑥 = 0, is chosen in the middle of the domain (Fig.1A). 
For the two-domain system the domains are oriented parallel to the axis 𝑦 and, hence, to each 
other, the distance between the domain edges is denoted by 𝐿 (Fig.2). The monolayer 
deformations depend only on the 𝑥-coordinate, simplifying the analysis to a one-dimensional 
model. Despite this simplification, the predictions must also be qualitatively valid for the 
realistic two-dimensional distributions of deformations. 

For the following, we need to briefly recall a few basic notions used to describe a lipid 
monolayer as an elastic surface (see for review (21)). While, generally, a lipid monolayer, as 
any interface, can be described by any surface parallel to the monolayer plane called the 
dividing surface (22), most conveniently it is represented by a specific dividing surface referred 
to as the monolayer neutral surface (23-25). The deformations of the monolayer stretching-
compression determined at the neutral surface are energetically decoupled from the 
deformations of the monolayer bending (23-25) and, hence, from the deformation of splaying 
the hydrocarbon chains of lipid molecules (26). According to the analysis of experimental data 
on lipid monolayers of different compositions, the monolayer neutral surface underlies the 
effective boundary between the region of the lipid polar heads and that of the hydrocarbon 
moieties of the lipid molecule.

The premise of our model is that the in-plane area per one lipid molecule, 𝑎, determined at the 
neutral surface of any of the membrane monolayers does not change upon the splaying and/or 
tilting of lipid molecules and/or generation of the monolayer tension. The constancy of 𝑎 upon 
splaying is the consequence of the above-mentioned property of the neutral surface. The 
invariance of 𝑎 upon tilting follows from the essence of the lipid tilt deformation as the 
transverse shear of the lipid material, that keeps constant the molecular volume and in-plane 
area (26, 27). Finally, the background for the constancy of 𝑎 upon the tension generation is the 
large stretching-compression modulus of a lipid monolayer whose typical value of about 
100mN/m (28) exceeds by a few orders of magnitude the experimentally feasible tension values 
of less than 1mN/m (see e.g.(29)). 

In addition, we will assume that the lipid molecular area, 𝑎, is equal for all lipid molecules of 
the system including those composing the regular monolayers and the domains. In real systems, 
the lipid molecular area at the neutral surface can vary within the range of about 30-40% 
depending on the lipid species and phase state  (25, 30-32). We neglect this variation meaning 
that the predictions of our modelling have qualitative rather than quantitative character. 

We consider, for simplicity, the bilayer to be flat, which implies that it is subjected to a lateral 
tension preventing its deviations from the planar shape. We denote by 𝐴𝐷 and 𝐴𝐶 the areas of, 
respectively, the domain and the contact zone determined at the neutral surfaces of the 
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corresponding monolayers (Fig.1B). The numbers of lipid molecules constituting the domain 

and the contact zone are, respectively, 𝑁𝐷 = 𝐴𝐷

𝑎  and 𝑁𝐶 = 𝐴𝐶

𝑎 .

We consider the initial state of the bilayer to exhibit no tilt of the lipid molecules in any part of 
the system (Fig.1A,B). In this state, the areas and the molecular numbers are equal for the 
contact zone and the domain, 𝐴𝐶 = 𝐴𝐷, and  𝑁𝐶 = 𝑁𝐷 (Fig.1B). 

The system tends to reduce the contact energy by decreasing the number of lipid molecules, 
𝑁𝐶, and, hence, the area, 𝐴𝐶, of the contact zone, while keeping constant the domain’s 
parameters, 𝐴𝐷  and 𝑁𝐷. This can be achieved by tilting the lipid molecules (26, 27, 33) at the 
domain’s boundary (Fig.1C). A simple geometrical consideration shows that the tilting of the 
lipid molecules of the contact zone inward and those of the domain outward from the domain’s 
center reduces 𝐴𝐶 and, hence, decreases 𝑁𝐶 (Fig.1C). The molecular tilt induced at the domain 
boundary propagates along the monolayer plains decaying with the distance from the boundary, 
which generates the splay deformation (Fig.1C)(26, 27, 33).

Hence, the reduction of the number of molecules in the contact zone, 𝑁𝐶, and, thus, the contact 
energy is accompanied by the cost of the elastic energy of the tilt and splay(26, 27, 33). The 
energetically most favorable and, therefore, equilibrium configuration of the system is 
characterized by a certain extent of the lipid tilt-splay that is set by the interplay between the 
contact energy driving the deformations and the elastic energy resisting it.

Multiple domains

In the case where the bilayer contains two (Fig.2) or more lipid domains, the factors driving 
the system’s deformations are the same as those described for a single domain. Yet, an 
additional important factor to be considered in this case is the overlap of membrane 
deformations generated by neighboring domains. This overlap results in a membrane-mediated 
interaction between the domains, which can be either repulsive or attractive depending on the 
system’s parameters.

Figure 2. Cross-section of a membrane with two domains located in apposed monolayers. Due to symmetry, the tilt angles in 
equivalent sections of the apposed monolayers are identical. The color scheme follows that of Fig.1. The inter-domain distance 
along the midplane is 𝐿. Dashed arrows represent the normal to the neutral surface, solid arrows represent the lipid director.
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Main definitions and equations

We consider a flat lipid bilayer whose monolayers contain domains. We analyse two systems: 
a lipid bilayer with one domain (Fig.1), and a bilayer with two domains located in apposed 
monolayers (Fig.2). 

For clarity, we introduce the main notions and equations for the system with one domain 
(Fig.1). They can be straightforwardly used in the two-domain case (Fig.2). In a few cases 
where such a direct usage is not possible, we provide below additional definitions.

The system will be described by three mutually parallel flat surfaces: the bilayer’s mid-plane 
and the neutral surfaces of the proximal and distal monolayers separated from the bilayer’s 
midplane by a distance, ℎ, approximately equal to the monolayer thickness (Fig.1B). 

The physical values of the domain and the contact zone will be denoted by the subscripts 𝐷 
and 𝐶, respectively , whereas those describing the distal or the proximal monolayers will be 
indicated by the superscripts 𝑑 and 𝑝. We will use no indices by introducing notations and 
relationships common for all parts of the system.

The system is characterized at every point of its neutral surface by the tilt, 𝑡, and splay, 𝐽, of 
the constituent lipid molecules. The notions of tilt and splay are introduced and discussed in 
(26, 27, 33). In brief, for the 1D system considered here, the lipid tilt, 𝑡, is equal to 𝑡 = tan 𝜙, 
where 𝜙 is the angle between the unit vector, 𝑛, describing the average orientation of the lipid 
hydrocarbon chains and the unit normal, 𝑁 , of the monolayer’s neutral surface (Fig.3). We 
define the tilt angle, 𝜙, to be positive if 𝑛 leans away from 𝑁 in the clockwise direction and 
negative otherwise. The values of the tilt angle in the domain, the contact zone, the proximal 
monolayer outside the domain, and the distal monolayer outside the contact zone will be 
denoted by 𝜙𝐷, 𝜙𝐶, 𝜙𝑝, and  𝜙𝑑, respectively.

The lipid splay, 𝐽,  quantifies the variation of the lipid chain orientation along the monolayer 
neutral plane (Fig.3). For the flat 1D bilayers considered here, the splay is defined by 𝐽 = 𝑑𝑡

𝑑𝑥. 

Figure 3. Tilt-splay deformations of a lipid monolayer. Left: initial undeformed state. Middle: tilt deformation. Right: splay 
deformation. The dashed arrows represent the normal to the neutral surface, the solid arrows represent the lipid director, 
and the dashed line shows the monolayer’s neutral surface.

For simplicity, we assume the monolayer deformations in all parts of the system to be weak 
leading to small tilt angles, 𝜙 < 1, so that tilt and splay can be approximated as 𝑡 = 𝜙 and 𝐽 =
𝑑𝜙
𝑑𝑥. The smallness of the splay is expressed by |𝑑𝜙

𝑑𝑥|ℎ < 1. 

Energy of the system
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Our goal is to find the equilibrium configuration of the system corresponding to the minimum 
of the system’s energy, 𝐹. The energy will be computed with respect to the initial state in which 
the tilt and, hence, the splay vanish, 𝜙 = 0, 𝑑𝜙

𝑑𝑥 = 0, in all parts of the system (Fig.1A,B). 

We consider the energy 𝐹 to consist of the contact energy, 𝐹𝑐𝑜𝑛𝑡, and the elastic energy of tilt-
splay, 𝐹𝑡. 

𝐹 = 𝐹𝑐𝑜𝑛𝑡 + ∑𝑖 𝐹𝑖
𝑡.  (1)

The meaning of Σ𝑖 in (Eq.1) is the summation of the contributions of all parts of the system. 

To introduce the contact energy, 𝐹𝑐𝑜𝑛𝑡, we first define the partial contact energies, 𝜀𝐷 and 𝜀𝐿. 
The value 𝜀𝐷 is the energy of contact between the contact zone and the domain related to the 
unit area of the contact zone’s neutral plane. The value 𝜀𝐿is the energy of contact between the 
distal and proximal monolayers related to the unit area of the neutral surface of the former. The 
contact energy, 𝐹𝑐𝑜𝑛𝑡, is proportional to the variation in the number of lipid molecules in the 
contact zone, 𝑁𝐶, resulting from the emerging tilt-splay deformations. Taking into account that 
in the initial state 𝑁𝐶 = 𝑁𝐷 and using the relationship 𝑁 = 𝐴

𝑎, the contact energy can be 
presented as

𝐹𝑐𝑜𝑛𝑡 = (𝐴𝐶 ― 𝐴𝐷)∆𝜀,  (2)

where ∆𝜀 = 𝜀𝐷 ― 𝜀𝐿 is assumed to be positive, ∆𝜀 > 0. We are not aware of any experimental 
data enabling evaluation of the differential contact energy, ∆𝜀. Taking it to be at least one order 
of magnitude smaller than the surface tension of oil-water interface, this value can be estimated 
as ∆𝜀 ≤ 1kBT

nm2, which is supported by the phenomenological and computational estimations 

providing values in the range (0.1 – 1) kBT
nm2 (14, 15, 19) (where kBT≈4 10―21Joule is the 

product of the Boltzmann constant and the absolute temperature).

For the one-dimensional model considered here, we will present the domain area as 𝐴𝐷 = 2 ∙ 𝐷
∙ 𝑅, where 2𝑅 is the domain width along the 𝑥  axis, as already mentioned, and 𝐷 is a constant 
multiplier whose meaning is the length along the direction of the system’s uniformity (Fig.1A). 
For estimations, we will use the minimal relevant value of the domain’s half-width, 𝑅 ≈ 100
nm.

The sum of the tilt and splay energies of a monolayer related to the unit area of its neutral 
surface, 𝑓𝑏 + 𝑓𝑡, can be expressed in the considered here case of small deformations as (26),

𝑓𝑏 + 𝑓𝑡 = 1
2  𝜅 𝑑𝜙

𝑑𝑥
 

2
+ 1

2𝜅𝑡𝜙2 , (3)

where 𝜅 is the monolayer splay (bending) modulus, and 𝜅𝑡 is the monolayer tilt modulus. The 
typical splay modulus of a monolayer is 𝜅 ≈ 10kBT≈4 10―20Joule (34, 35). The value of the 
monolayer’s tilt modulus constitutes a few tens of mN/m (26, 36) and will be taken 𝜅𝑡 ≈ 30
mN/m. This equation (Eq.3) implies that the monolayer spontaneous splay (spontaneous 
curvature) vanishes and there is no contribution of the energy of saddle splay (Gaussian 
curvature). The total energy of a monolayer tilt-splay, 𝐹𝑏 + 𝐹𝑡, is obtained by integration of 
(Eq.3) over the area of the neutral surface, 
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1
𝐷(𝐹𝑏 + 𝐹𝑡) = ∫ 1

2 
 𝜅 𝑑𝜙

𝑑𝑥
 

2
+ 1

2
𝜅𝑡𝜙2 𝑑𝑥  . (4)

The elastic moduli of splay and tilt of the domain denoted by 𝜅𝐷 and 𝜅𝑡𝐷  must be, generally, 
larger than the corresponding moduli, 𝜅 and 𝜅𝑡,  of the regular parts of the system’s monolayers. 
To keep the calculations simple, we assume the splay and tilt moduli of the domains to differ 
from those of the regular monolayers by the same factor, 𝜂 , 

 𝜅𝐷 = 𝜂 ∙ 𝜅,    𝜅𝑡𝐷 = 𝜂 ∙ 𝜅𝑡 .  (5)  

The factor 𝜂 will be referred to below as the relative rigidity of the domain and assumed to be 
𝜂 > 1.

Main equations

The distributions of the tilt angle, 𝜙(𝑥),  and, hence, of the splay, 𝑑𝜙(𝑥)
𝑑𝑥 , can be found either by 

minimizing the full energy (Eq.1) or by solving the related Lagrange equation, which for a flat 
monolayer and a small tilt-splay deformation is

 𝑑
2𝜙

𝑑𝑥2 = 1
𝜆2 ∙ 𝜙, (6)

where 𝜆 is  the characteristic relaxation length determined by 

𝜆 =  𝜅
𝜅𝑡

. (7)

Based on the cited above values of the elastic moduli, the relaxation length 𝜆 has a value in the 
range (1 - 2) nm .

Due to the simplifying assumption (Eq.5), the relaxation length (Eq.7) is the same for the 
domain, the contact zone and all other parts of the system. 

The solutions of Lagrange equations (Eq.6) must satisfy certain boundary conditions. For 
simplicity, we explicitly present here the boundary conditions for the system with one domain 
(Fig.1C). For the system with two domains, the boundary conditions can be found analogously.  
For symmetry reasons, in the middle of the domain, 𝑥 = 0, the tilt angles of the domain and the 
contact zone must vanish, 

 𝜙𝐷(𝑥 = 0) = 0, 𝜙𝐶(𝑥 = 0) = 0.  (8)

At large distances, 𝑥 = ∞, the tilt angles of the proximal and distal monolayers must vanish,

  𝜙𝑝(𝑥 = ∞) = 0, and  𝜙𝑑(𝑥 = ∞) = 0,  (9)

to avoid an infinite energy of tilt (Eq.4). 

Finally, a set of conditions has to be satisfied at the domain boundary,  𝑥 = 𝑅. The geometrical 
characteristics at this boundary will be denoted by asterisks and referred to as the boundary 
values (Fig.1C). First, the orientation of the hydrocarbon chains, 𝑛, in each leaflet must be 
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continuous. The continuity of 𝑛 can be expressed through the boundary tilt angles of the 
domain, 𝜙𝐷(𝑥 = 𝑅) = 𝜙∗

𝐷, the contact zone, 𝜙𝐶(𝑥 = 𝑅) = 𝜙∗
𝐶, the proximal monolayer 𝜙𝑝

(𝑥 = 𝑅) = 𝜙𝑝∗, and 𝜙𝑑(𝑥 = 𝑅) = 𝜙𝑑∗, by

𝜙𝑝∗ = 𝜙∗
𝐷,  𝜙𝑑∗ = 𝜙∗

𝐶.  (10)

Using the tilt boundary values, the contact energy (Eq.2) related to unit length of 𝑦 axis can be 
expressed as

1
𝐷𝐹𝑐𝑜𝑛𝑡 = ℎ(𝜙∗

𝐶 + 𝜙∗
𝐷)∆𝜀. (11)

Way of computations

In the following, we find the distribution of tilt and splay in each part of the system by solving 
the Lagrange equation (Eq.6) with the boundary conditions (Eq.8,10). Inserting the resulting 
functions 𝜙(𝑥) in (Eq.4), performing the integration over the area of each part of the system, 
inserting the results into (Eq.1) and summing them along with (Eq.11) we obtain the full energy 
of the system as a function of the boundary tilt angles, 𝜙∗

𝐶 and 𝜙∗
𝐷. Minimizing the resulting 

energy with respect to 𝜙∗
𝐶 and 𝜙∗

𝐷 we find the equilibrium values of these angles and the energy 
of the equilibrium state. In the case of the two-domain system, the dependence of the 
equilibrium energy on the distance between the domains will enable the analysis of the domain 
interaction mediated by the membrane deformations. 

Because of the structure of the Lagrange equation (Eq.6), all the results depend on the 
dimensionless form of the system’s variables and parameters having units of length. 
Specifically, the dimensionless coordinate, domain half-width, and distance between the 
domains are, respectively, 

 𝜉 =
𝑥
𝜆,  𝜌 = 𝑅

𝜆,   𝑙 = 𝐿
𝜆 , (12)

where  𝜆 is the relaxation length (Eq.7).

Results

One domain

Due to the system’s symmetry with respect to the middle of the domain, 𝑥 = 0, we analyse half 
of the system, 𝑥 ≥ 0 (Fig.1C). The distribution of the tilt angle in the domain, the contact zone, 
and the proximal and distal monolayers resulting from our computations are given by

𝜙𝐷(𝜉) = 𝜙∗
𝐷 ∙

sinh (𝜉)
sinh (𝜌); 𝜙𝐶(𝜉) = 𝜙∗

𝐶 ∙
sinh (𝜉)
sinh (𝜌);

 𝜙𝑝(𝜉) = 𝜙∗
𝐷 ∙ 𝑒―(𝜉―𝜌); 𝜙𝑑(𝜉) = 𝜙∗

𝐶 ∙ 𝑒―(𝜉―𝜌). (13)

The equilibrium boundary angles in the contact zone and the domain are, respectively,
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𝜙∗
𝐶 =  ―

ℎ∙∆𝜀
𝜅𝜅𝑡

∙
1

cth(𝜌) 1, (14)

and

𝜙∗
𝐷 =  ―

ℎ∙∆𝜀
𝜅𝜅𝑡

∙
1

η∙cth(𝜌) 1∙. (15)

In (Eq.14) and below the function cth() = 1/tanh() is hyperbolic cotangent. 

The energy of the equilibrium state computed with respect to the initial state is

1
𝐷

𝐹
∗

= ― 1
2 ∙ (ℎ∙∆𝜀)2

𝜅𝜅𝑡
∙

2 (1 η)cth(𝜌)
[cth(𝜌) 1]∙[η∙cth(𝜌) 1]. (16)

Taking into account that a realistic value of the dimensionless half-width of the domain is large 
compared to the relaxation length, 𝜌 = 𝑅

𝜆 ≫ 1, so that cth(𝜌) ≈ 1, the expressions (Eqs.14-16) 
can be simplified. In particular, the energy is given by

1
𝐷

𝐹
∗

= ― 1
4 ∙ η 3

η 1
∙ (ℎ∙∆𝜀)2

𝜅𝜅𝑡
. (17)

The dependence of the equilibrium energy on the relative rigidity is presented in (Fig.4A), and 
the distribution along the 𝑥-axis of the tilt angles for both the distal and proximal monolayers 
is shown in (Fig.4B) for different values of the relative domain rigidity. The extent of tilting in 
the distal monolayer is independent of the relative domain rigidity.  The extent of tilting in the 
proximal monolayer including the domain decreases with growing domain rigidity. When the 
rigidity of the domain is equal to the rigidity of the membrane, 𝜂 = 1, the tilt angles in the distal 
and proximal monolayers are equal (Fig.4B orange and purple dashed lines). The energy 
relaxation is most effective if the domain is as flexible as the regular monolayers, η = 1 
(Fig.4A), but even if the domain is infinitely rigid, η→∞, the energy relaxes to a substantial 
extent due to the tilting in the distal monolayer.

Figure 4. Results for a single-domain system.  (A) The energy of the equilibrium state as a function of the relative domain 
rigidity, 𝜂. (B) The distribution of the tilt angles in the proximal (continuous lines) and distal (dashed line) monolayers for 
different values of the relative domain rigidity. Parameters used for all curves: ℎ = 2 𝑛𝑚, 𝛥𝜀 = 0.5 𝑘𝐵𝑇/𝑛𝑚2, 𝜅 = 10 𝑘𝐵𝑇, 𝜅𝑡
= 30 𝑚𝑁/𝑚, 𝑅 = 100 𝑛𝑚.
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Two domains in apposed monolayers

Now we consider a bilayer containing two domains. If the domains are inserted into the same 
membrane leaflet, they induce similar tilt-splay deformations in the proximal and distal 
monolayers. Based on the previous work on membrane deformations by caveolin discs (20) 
and cap-like inclusions (37), the overlap of the membrane deformations generated by the two 
similar domains located in the same monolayer must generate a repulsive interaction between 
the domains.

Here we consider a bilayer containing two domains located in the apposed monolayers and 
separated by a distance 𝐿 between the domains’ edges (Fig.2). 

Since the main goal of this section is to analyse the membrane-mediated interaction between 
the domains, we describe the monolayer deformations and the energy only of the mid part of 
the system located between the domains’ centers and dependent on the inter-domain distance, 
𝐿.  Since the relevant domain size, 𝑅, substantially exceeds the nanometer large relaxation 
length, 𝑅 ≫ 𝜆,  the deformations and energies of the left and right peripheral parts of the system 
do not depend on the separation, 𝐿, and, therefore, do not contribute to the domain interaction. 

Due to the system’s symmetry, the boundary tilt angles for the domain located in the distal, 
𝜙𝑑∗

𝐷 , and proximal, 𝜙𝑝∗
𝐷 , monolayers must be equal, 𝜙𝑑∗

𝐷 = 𝜙𝑝∗
𝐷 = 𝜙∗

𝐷 (Fig.2). The same is true 
for the boundary angles of the two contact zones, 𝜙𝑑∗

𝐶 = 𝜙𝑝∗
𝐶 = 𝜙∗

𝐶 .  

For the distal monolayer of the system, the computed distributions of the tilt angle in the contact 
zone, the domain, and the monolayer between them (Fig.2) are given by

𝜙𝑑
𝐶(𝜉) =  𝜙∗

𝐶 ∙ sinh (𝜌 𝑙
2

𝜉)
sinh (𝜌)

,

 𝜙𝑑
𝐷(𝜉) =  𝜙∗

𝐷 ∙ sinh (𝜌 𝑙
2

𝜉)
sinh (𝜌)

,

 𝜙𝑑(𝜉) =  12 ∙ (𝜙∗
𝐷 + 𝜙∗

𝐶) ∙ cosh(𝜉)

cosh 𝑙
2

+ (𝜙∗
𝐷 ― 𝜙∗

𝐶) ∙ sinh(𝜉)

sinh 𝑙
2

 . (17)

For the proximal monolayer, the distributions of the tilt angle are obtained by inversing the 
sign of the dimensionless coordinate, 𝜉, in (Eqs.17). 

To present the computed expressions for the boundary tilt angles and the energy, we first define 
two auxiliary functions of the dimensionless inter-domain distance 𝑙 = 𝐿/𝜆,

B1(𝑙) = 1 +
𝜂∙cth(𝜌) tanh ( 𝑙

2
) ∙[cth(𝜌) cth(𝑙/2)]

𝜂∙cth(𝜌) cth ( 𝑙
2

) ∙[cth(𝜌) tanh(𝑙/2)]
, (18)

and
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B2(𝑙) =
[cth(𝜌) cth(𝑙/2)]

𝜂∙cth(𝜌) cth ( 𝑙
2

) . (19)

The dependences of the boundary tilt angles of the contact zone and the domain on the 
dimensionless distance, 𝑙, are given by

𝜙∗
𝐶(𝑙) =  ―

2
B1(𝑙) ∙ 1

cth(𝜌) tanh(𝑙/2)
∙

ℎ∙∆𝜀
𝜅𝜅𝑡

, (20)

𝜙∗
𝐷(𝑙) = B2(𝑙) ∙ 𝜙∗

𝐶(𝑙). (21)

The energy of the middle part of the system is expressed through the boundary angles by

1
𝐷

𝐹
∗
(𝑙) = 𝜅𝜅𝑡 

cth(𝜌) ∙ 𝜙∗
𝐶(𝑙)2 +  𝜂 ∙ cth(𝜌) ∙ 𝜙∗

𝐷(𝑙)2 + 1
2

∙ (𝜙∗
𝐶(𝑙) + 𝜙∗

𝐷(𝑙))2 tanh 𝑙
2

+ 1
2

∙ (𝜙∗
𝐶(𝑙) ― 𝜙∗

𝐷(𝑙))2cth 𝑙
2

+2 ∙ ℎ ∙ ∆𝜀 ∙ [𝜙∗
𝐶(𝑙) + 𝜙∗

𝐷(𝑙)]. (22)

The dependence of the energy on the inter-domain distance, 𝐹∗ (𝑙), determined by (Eq.22) 
along with (Eqs.18-21) is presented in Fig.5 for different values of the relative domain’s 
rigidity 𝜂.

Figure 5. The membrane-mediated interaction between domains. The energy of the middle part of the system as a function 
of the dimensionless distance between the domains, 𝑙, for different values of the relative domain rigidity, 𝜂. Parameters used 
for all curves: ℎ = 2 𝑛𝑚, 𝛥𝜀 = 0.5 𝑘𝐵𝑇/𝑛𝑚2, 𝜅 = 10 𝑘𝐵𝑇, 𝜅𝑡 = 30 𝑚𝑁/𝑚, 𝑅 = 100 𝑛𝑚

There are two regimes of interaction. For values, 𝜂, larger than a critical value, 𝜂∗, the 
interaction is repulsive for small and attractive for large inter-domain distances. This regime is 
characterized by an equilibrium distance, 𝑙∗, between the domains, corresponding to the 
minimum of the energy (Fig.5). For the values of the relative rigidity smaller than the critical 
value, 𝜂 < 𝜂∗, the interaction is attractive for all distances. The critical relative rigidity, 𝜂∗, can 
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be found from the approximation of the energy function (Eq.22) valid for small distances, 𝑙 ≪ 1
, which is

1
𝐷

𝐹
∗

= ― 1
2 ∙ (ℎ∙∆𝜀)2

𝜅𝜅𝑡

12
(𝜂 1)

+ (𝜂 1)2∙cth(𝜌)2 4
(𝜂 1)2∙cth(𝜌)2 ∙ 𝑙 . (23)

The corresponding interaction force, ℱ = ― 𝑑𝐹∗

𝑑𝐿 , at a vanishing distance is given by

1
𝐷ℱ = 1

2 ∙ (ℎ∙∆𝜀)2

𝜅 ∙ (𝜂 1)2∙cth(𝜌)2 4
(𝜂 1)2∙cth(𝜌)2 . (24)

The critical value of the relative domain rigidity, 𝜂∗, separating the two regimes of the 
domain interaction is that for which the force (Eq.24) vanishes,

𝜂∗(𝜌) = 1 +
2

cth(𝜌). (25)

For the realistic values of the dimensionless half-width of the domain, 𝜌 ≫ 1, the critical value 
is 𝜂∗ ≈ 3. The dependence of the critical relative rigidity, 𝜂∗, on the dimensionless domain size, 
𝜌, is presented in the phase diagram in Fig.6.

Figure 6. Phase diagram of the regimes of interaction between domains located in apposed monolayers. The yellow-colored 
area represents the regime of attractive interaction for all inter-domain distances. The green-colored area represents the 
regime where the interaction is repulsive at short and attractive at large distances. The phase boundary corresponds to the 
critical  relative domain rigidity, 𝜂∗.Parameters used for all curves: ℎ = 2 𝑛𝑚, 𝛥𝜀 = 0.5 𝑘𝐵𝑇/𝑛𝑚2, 𝜅 = 10 𝑘𝐵𝑇, 𝜅𝑡 = 30 𝑚𝑁/
𝑚, 𝑅 = 100 𝑛𝑚.

The dependence of the equilibrium inter-domain distance, 𝑙∗, on the relative rigidity, 𝜂, is 
presented in Fig.7.
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Figure 7. The equilibrium separation between the domains for different values of the relative domain rigidity, 𝜂. For low 
relative rigidity, 𝜂 <  𝜂∗, the interaction is attractive for all separations.  For  𝜂 > , 𝜂∗ the interaction is repulsive at small and 
attractive at large distances creating a non-vanishing equilibrium separation. Parameters used for all curves: ℎ = 2 𝑛𝑚, 
𝛥𝜀 = 0.5 𝑘𝐵𝑇/𝑛𝑚2, 𝜅 = 10 𝑘𝐵𝑇, 𝜅𝑡 = 30 𝑚𝑁/𝑚, 𝑅 = 100 𝑛𝑚.

The maximal inter-domain attractive force corresponds to the case in which the domain rigidity 

is similar to that of the regular lipid monolayer, 𝜂 = 1, and is equal  1
𝐷ℱ𝑚𝑎𝑥 = 1

2 ∙ (ℎ∙∆𝜀)2

𝜅  . 

Discussion

We considered a flat membrane containing lipid domains in its monolayers. We hypothesized 
that the partial energy of contact between a monolayer and a domain along the membrane 
midplane differs from that between the two membrane monolayers. Such a differential contact 
energy is the origin of the domain’s surface tension proposed in (15, 19)  We demonstrated by 
computations that the differential contact energy generates the intra-membrane deformations 
of lipid tilt and splay which in turn give rise to a membrane-mediated interaction between the 
domains. The central finding of our analysis is that the character of the interaction between 
domains located in apposed membrane monolayers depends on the ratio between the domains’ 
and the monolayer’s rigidities. Assuming that the domains are more rigid than the regular 
monolayers we predict that domains whose rigidity is less than threefold that of a regular lipid 
monolayer exhibit an attractive interaction for any inter-domain separation (Fig.6,7). More 
rigid domains are predicted to mutually repel at small and attract at large separations, and 
infinitely rigid domains exhibit a repulsion for all distances. The scale of the interaction energy, 
𝐹0,  is set, according to (Eq.23), by the combination of the above-defined parameters of the 

system, 𝐹0 =  (ℎ∙∆𝜀)2

𝜅𝜅𝑡
𝐷. For the differential partial contact energy of  ∆𝜀 = 0.5 kBT/nm2, and 

the common values of the monolayer thickness, ℎ = 2nm, the monolayer splay (bending) 
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modulus 𝜅 = 10kBT, the monolayer tilt modulus, 𝜅𝑡 = 30mN/m, and the domain size, 
𝐷 = 100nm,  the energy scale is 𝐹0 ≈ 10kBT. The scale of the interaction force, (Eq.24), is set 

by ℱ0 = (ℎ∙∆𝜀)2

𝜅 𝐷, which for the above parameter values has a biologically reasonable value of 
ℱ0 ≈ 40pN. The range of the predicted inter-domain interaction is determined by the relaxation 
length,  𝜆 (Eq.7), and is therefore, relatively short.

The major limitation of the present analysis is the consideration of a flat membrane. This 
implies that the membrane is exposed to a stretching force generating a large lateral tension, 
𝛾 ≫ ∆𝜀, and preventing, therefore, membrane bending. In loose membranes subjected to 
relatively small membrane tensions, 𝛾 ≪ ∆𝜀, the differential contact energy is expected to 
generate, in addition to the tilt and splay deformation, the curvature of the domains and, hence, 
of the surrounding membrane. According to our preliminary analysis, the development of the 
domain’s curvature considerably reinforces the domain interaction and increases the interaction 

range to 𝜆𝛾 =  𝜅
𝛾
  which can be substantially larger than that given by (Eq.7) for biologically 

relevant tensions, 𝛾 ≤ 0.1mN/m, much smaller than the tilt modulus, 𝛾 ≪ 𝜅𝑡 ≈ 10mN/m. A 
detailed analysis of the domain interaction in loose membranes will be presented in a separate 
article.

Finally, our model does not account for the effects of proteins present in cell membranes in 
general and cell membrane domains in particular. Membrane proteins can substantially 
influence the domain interaction in case they are localized to the boundaries of the domains 
and/or contact zones and modify the degree of the lipid tilting. Therefore, our model is directly 
applicable to the domain interaction in purely lipid membranes but may miss some protein 
effects as far as lipid rafts are concerned.

Conclusions

According to our model, the differential energy of the intra-membrane contact between a lipid 
domain and the underlying lipid monolayers generates deformations of the membrane lipid 
matrix and the resulting domain interactions. The deformations for flat membranes considered 
here are those of tilt and splay of the constituent lipid molecules. The character of the 
interaction between two domains located in apposed monolayers depends on the domain’s 
relative rigidity. Moderately rigid domains attract each other at all inter-domain distances. 
Domains whose rigidities are more than threefold those of regular membrane monolayers 
mutually repel at small and attract at large distances, thus, exhibiting an equilibrium separation 
with a vanishing interaction force.
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