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The influence of higher order geometric terms on the
asymmetry and dynamics of membranes

Jan Magnus Sischka,a Ingo Nitschke,a and Axel Voigt∗a,b,c

We consider membranes as fluid deformable surfaces and allow for higher order geometric terms in
the bending energy related to the Gaussian curvature squared and the mean curvature minus the
spontaneous curvature to the fourth power. The evolution equations are derived and numerically
solved using surface finite elements. The two higher order geometric terms have different effects.
While the Gaussian curvature squared term has a tendency to stabilize tubes and enhance the evolu-
tion towards equilibrium shapes, thereby facilitating rapid shape changes, the mean curvature minus
the spontaneous curvature to the fourth power destabilizes tubes and leads to qualitatively different
equilibrium shapes but also enhances the evolution. This is demonstrated in axisymmetric settings
and fully three-dimensional simulations. We therefore postulate that not only surface viscosity but
also higher order geometric terms in the bending energy contribute to rapid shape changes which
are relevant for morphological changes of cells.

1 Introduction
Membranes are ubiquitous and essential in biology, they compart-
mentalize biomaterials, separate the cell from its exterior and or-
ganelles from the cytoplasm, dynamically remodel and change
conformation. Geometric properties of the membrane have been
identified as key players for such processes1–3. As the typical
thickness of a membrane is orders of magnitude smaller than its
lateral extension, treating the membrane as a two-dimensional
surface embedded in a three-dimensional space is a reasonable
approximation. This separation of length scales allows for a
mesoscopic modeling where details related to membrane molec-
ular structure are considered in effective material parameters
and geometric quantities and led to the success of the classical
Canham-Helfrich model4,5, which builds on a bending energy
FBE(H ,K ) =

∫
S k2,0(H −H0)

2 + k2,1K dS with mean curva-
ture H , Gaussian curvature K , bending rigidity parameters k2,0

and k2,1, a spontaneous curvature H0 and additional (local or
global) area and volume constraints. For definitions see Section
2.1. Assuming constant values of k2,1, the second term reduces to
a topological measure and thus a constant as long as the topology
does not change. We will therefore neglect this term.

Equilibrium shapes, resulting from minimizing the bending en-

a Faculty Mathematics, TU Dresden, 01062 Dresden, Germany.
b Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden,
Germany
c Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstr. 18, 01307 Dresden,
Germany.
† Supplementary Information available: Corresponding videos to shape evolutions
shown in Figs. 5 (a) - (c) and 6 (a) - (c). See DOI: 00.0000/00000000.

ergy FBE , have been extensively studied, see6 for a review. For
H0 = 0 and wide ranges of the reduced volume, which is the ratio
of the volume and the volume of an equivalent sphere with the
same area, they are dominated by prolate and oblate shapes7.
The spontaneous curvature H0, which accounts for the asymme-
try of the membrane is able to modify these shapes7. A wealth of
studies also aims to produce tubes as minimizing shapes. Tubes
are ubiquitous in membranes and play crucial roles in trafficking,
ion transport, and cellular motility. For idealized situations this
is rather simple as FBE = 0 if H = H0, which is achieved for an
infinite tube of radius r and H0 =−1/r. However, this solution is
not unique, a sphere of radius 2r also leads to FBE = 0. More real-
istic situations with finite volume and area require further consid-
erations, e.g., introducing a spontaneous curvature deviator8–10.
Also various ideas have been proposed to consider higher order
geometric terms in the bending energy FBE to enforce the stabil-
ity of tubes2,11–14. E.g., fourth order terms proportional to K 2

seem plausible as K = 0 for tubes.
Most of these studies only focus on equilibrium shapes, com-

paring the bending energy FBE of different configurations and
addressing their stability. But also the dynamic evolution of the
membrane and associated shape changes are of interest. E.g.
in the context of the formation of bulges with pinch-offs, which
can be associated with endocytosis and exocytosis15–17 or shape
changes associated with cell motility18–20. All these processes
require additional phenomena, which are not considered in the
Canham-Helfrich model. But there is growing interest in the role
of membranes in these processes. One striking example, where
membranes at least participate are frequently forming and re-
tracting filopodia21. This process requires rapid shape changes in
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cells and according to22 the membrane and the underlying cortex
act as an integrated system to globally coordinate such changes in
cell shape. To facilitate these rapid morphological changes, cells
maintain an excess of membrane that is organized in membrane
reservoirs and is available to the cell in the order of seconds23. To
understand such processes thus not only requires to unveil the se-
cretes of equilibrium shapes but also to consider the flow of mem-
branes which facilitates the rapid shape changes. To model such
processes is a different story and even if various models for the
cellular cortex exist24–27 and also first attempts to couple them
with membrane models to form the mentioned integrated system
have been proposed22,28, we here refrain from such couplings
and only aim first for a minimal model of the membrane alone,
which facilitates rapid shape changes.

Surface viscosity has been identified as a key player29 and con-
sidering membranes as fluid deformable surfaces30–33 opened
new perspectives on the description of the dynamics of mem-
branes. Fluid deformable surfaces can be viewed as two-
dimensional viscous fluids with bending elasticity. Due to this
solid-fluid duality, any shape change contributes to tangential
flow, and vice versa, any tangential flow on a curved surface in-
duces shape deformations. This tight coupling between shape and
flow makes curvature a natural element of the governing equa-
tions. As demonstrated by numerical studies of the equations
for fluid deformable surfaces, surface hydrodynamics can signifi-
cantly speed up the evolution34,35 and can enhance bulging and
furrow formation in membranes17.

Combined with higher order geometric terms in the bending
energy models for fluid deformable surfaces have the potential to
enable the rapid shape changes in the release and formation of
membrane reservoirs and the formation and retraction of filopo-
dia. We computationally explore the effect of these terms on the
equilibrium shapes and the dynamics to reach them and analyze
their impact to facilitate rapid shape changes. Any coupling with
the cortex22, interaction with proteins that induce curvature36 or
to forces exerted on the membrane37,38 are not considered. We
also neglect any interaction with the surrounding bulk phases.
This results from the theoretical interest to explore the mem-
brane properties without any additional influence and the limit
of a large Saffman–Delbrück number. This number describes the
relation between the viscosities of the membrane and the typi-
cally less viscous bulk fluid and if large allows the decoupling of
surface and bulk flows39.

The remaining of the paper is structured as follows. In Section
2 we introduce the full model and briefly mention the considered
numerical approach. More details on the derivation of the model
and on the numerical approach including convergence studies are
provided in Appendices 5.1, 5.2 and 5.3. Computational results
are described in Section 3. They contain axisymmetric and full
three-dimensional computations addressing the dynamic evolu-
tion and the equilibrium shapes. In Section 4 we draw conclu-
sions and mention possible directions to extend the described
model to enable simulations of rapid morphological changes of
cells.

2 Model

2.1 Notation

The considered mesoscale model requires basic notation from dif-
ferential geometry and geometric partial differential equations.
Besides classical mathematical text books in these fields we refer
to2 for an introduction in the context of membranes. We fol-
low the same notation as in17, which is here repeated for conve-
nience. We consider a time dependent smooth and oriented sur-
face S = S (t) without boundary, embedded in R3. The enclosed
volume is denoted by Ω = Ω(t). We denote by ννν the outward
pointing surface normal, the surface projection is PPP = III − ννν ⊗ ννν ,
with III the identity matrix, the shape operator is B = −∇PPPννν ,
the mean curvature H = trB, and the Gaussian curvature K =
1
2
(
H 2 −∥B∥2). We consider time-dependent Euclidean-based n-

tensor fields in T nR3|S . We call T 0R3|S = T 0S the space of
scalar fields, T 1R3|S = TR3|S the space of vector fields, and
T 2R3|S the space of 2-tensor fields. Important subtensor fields
are tangential n-tensor fields in T nS ≤ T nR3|S . Let p ∈ T 0S be
a continuously differentiable scalar field, uuu ∈ TR3|S a continu-
ously differentiable R3-vector field, and σσσ ∈ T 2R3|S a continu-
ously differentiable R3×3-tensor field defined on S . We define
the different surface gradients by ∇PPP p = PPP∇pe, ∇PPPuuu = PPP∇uuuePPP and
∇Cσσσ = ∇σσσ ePPP, where pe, uuue and σσσ e are arbitrary smooth exten-
sions of p, uuu and σσσ in the normal direction and ∇ is the gradient
of the embedding space R3. The corresponding divergence oper-
ators for a vector field uuu and a tensor field σσσ are divPPPuuu = tr(∇PPPuuu)
and divC(σσσPPP) = tr∇C(σσσPPP), where tr is the trace operator. The rela-
tions to the covariant derivatives ∇S and the covariant divergence
divS on S , with ∆S = divS ·∇S the Laplace-Beltrami operator,
read ∇PPP p = ∇S p and divPPPuuu = divS(PPPuuu)− (uuu ·ννν)H , respectively.

2.2 Governing equations

The material velocity uuu ∈ TR3|S can be decomposed into uuu =

uNννν+uuuT , with uN = uuu ·ννν and uuuT =PPPuuu, the normal and the tangen-
tial part, respectively. The pressure p ∈ T 0S serves as Lagrange
multiplier for the inextensibility constraint. The governing equa-
tions for these unknowns read

∂tu+∇wu =−∇S p− pH ννν +
2

Re
divCσσσ − γuuu+bbb−λννν (1)

divPPPuuu = 0 (2)∫
S

uuu ·ννν dS = 0 , (3)

where [∇wuuu]i = (∇S uuui,w), i = 1,2,3, with w = uuu− ∂tX is the rel-
ative velocity and X a parameterisation of S , σσσ(uuu) = 1

2 (∇PPPuuu+
(∇PPPuuu)T ) ∈ T 2R3|S is the rate of deformation tensor, Re > 0 is the
Reynolds number, γ ≥ 0 is a friction coefficient, λ ∈ R is a La-
grange multiplier to ensure a constant enclosed volume, and b
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denotes a bending force, defined by

bbb =−2k2,0

(
∆S H +(H −H0)

(
∥B∥2 − 1

2
H (H −H0)

))
ννν

−12k4,0divS

(
(H −H0)

2
∇S H

)
ννν

− k4,0

(
(H −H0)

3 ((3H +H0)H −8K )
)

ννν

− k4,2

(
2divS ((H PPP−B)∇S K )+H K 2

)
ννν , (4)

where H0 is a spontaneous curvature and k2,0,k4,0,k4,2 ∈ R are
bending rigidity parameters. The system of equations consider a
model for fluid deformable surfaces. Such models consist of in-
compressible surface Navier-Stokes equations with bending forces
and a constraint on the enclosed volume. The highly nonlinear
model accounts for the tight interplay between surface evolu-
tion, surface curvature and surface hydrodynamics and allows to
model membranes with surface viscosity. For derivations of the
model (with k4,0 = k4,2 = 0) we refer to17,31,34,40,41. They con-
sider different principle and build on a nonlinear Onsager formal-
ism31, thin film limits from three-dimensional models34,40 and a
Lagrange-D’Alembert approach17,41. For a comparison of deriva-
tions for bbb = 0 and without the constraint on the enclosed volume
we refer to42–44.

The mentioned solid-fluid duality of these models, which leads
to a tight coupling between shape and flow, and let any shape
change contribute to tangential flow, and vice versa, can best
be seen by rewriting eqs. (1) - (3) as coupled equations for
uN = uuu · ννν and uuuT = PPPuuu34,42,43. One out of several of the re-
sulting coupling terms results from eq. (2), which leads to
divPPPuuu = uNH + divPPPuuuT = 0 and explicitly demonstrates the re-
lation between the mean curvature and the tangential velocity.

Considering the overdamped limit, formally letting γ → ∞,
leads to the classical dynamic equations

u =−∇S p− pH ννν +bbb−λννν (5)

divPuuu = 0 (6)∫
S

uuu ·ννν dS = 0 , (7)

for an inextensible membrane with constant volume. Using (5)
in (6) provides the equation for the Lagrange multiplier for the
inextensibility constraint −∆S p+ pH 2 +λ = bbb · νννH and corre-
sponds to previous models, if bbb only contains second order geo-
metric terms45–49. Further relaxing the constraint on inextensi-
bility leads to the classical Canham-Helfrich models with area and
volume constraints48.

In contrast with previous approaches for fluid deformable sur-
faces17,31,34,35,50 the bending force bbb also contains higher order
geometric terms.

2.3 Bending forces

The bending force eq. (4) results from the bending energy

FBE(H ,K ) =
∫
S

fBE(H ,K )dS (8)

with bending energy density fBE . Formally we can derive fBE via
Taylor expansion at the spontaneous curvature H0 leading to

fBE(H ,K ) =
N

∑
n=0

⌊ n
2 ⌋

∑
α=0

kn,α (H −H0)
n−2αK α

= k0,0︸︷︷︸
n=0

+k1,0(H −H0)︸ ︷︷ ︸
n=1

+k2,0(H −H0)
2 + k2,1K︸ ︷︷ ︸

n=2

+ k3,0(H −H0)
3 + k3,1(H −H0)K︸ ︷︷ ︸

n=3

+ k4,0(H −H0)
4 + k4,1(H −H0)

2K + k4,2K
2︸ ︷︷ ︸

n=4

+ . . .

in terms of geometric orders n≤N ∈N for different bending rigid-
ity parameters kn,α ∈ R. This expression corresponds to the gen-
eralized form of the classical Canham-Helfrich energy (n = 2) in-
troduced in11 and also considered in2,12,13 if gradient terms are
neglected. It can be simplified assuming certain properties of the
bending energy: As we are interested in variations of the energy,
we can omit the constant contribution k0,0. We will further not
allow for topological changes, thus, we can omit the k2,1K term,
applying Gauss–Bonnet’s theorem. Furthermore, we only allow
for terms which guarantee boundedness from below. This ex-
cludes all odd geometric orders as well as k4,1. Considering these
points and only contributions up to geometric order N = 4 leads
to the following bending energy density

fBE(H ,K ) =k2,0(H −H0)
2 + k4,0(H −H0)

4 + k4,2K
2,

which has been considered in14 to study the stability of tubular
shapes considering k2,0 > 0, k4,0 = 0 and k4,2 ≷ 0 as parameters
to stabilize cylindrical shapes (k4,2 > 0) or to enforce pearling
(k4,2 < 0). The same form is also considered in12, arguing that
a cylinder with radius R is stable if k2,0 < 0 and k4,0 = −R2

2 k20

with k4,2 not determined. We here restrict the parameter space to
k2,0 > 0, k4,0 ≥ 0 and k4,2 ≥ 0. We would like to remark that more
general parameter combinations are possible, still leading to well-
posed bending energies and stable solutions. However, K = 0 is a
property of a tube and thus k4,2K

2 seems to be the most plausible
higher order extension in the bending energy to stabilize tubular
structures. k4,0(H −H0)

4 is considered for completeness. In any
case the bending force bbb is derived as the negative of the varia-
tional derivative of the bending energy (8)

bbb =−δFBE

δXXX
.

A detailed derivation of the bending force is done in Appendix
5.1.
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2.4 Numerical approach

The numerical approach extends the approach used in17,35,
which is based on surface finite elements51,52 and builds on
a Taylor-Hood element for the surface Navier-Stokes equations,
higher order surface parametrizations, appropriate approxima-
tions of the geometric quantities, mesh redistribution, a semi-
implicit discretization in time and an iterative approach to deal
with the non-local constraint on the enclosed volume. Additional
challenges emerge from the higher order geometric terms. In Ap-
pendix 5.2 we provide a detailed description and in Appendix
5.3 convergence studies for these terms. The implementation is
done in DUNE/AMDiS53,54. Throughout the paper we consider
Re = 1.0 and γ = 0 and only vary H0, k2,0, k4,0 and k4,2. Numer-
ical parameters, such as mesh size h and time step τ are chosen
to resolve the highest curvature values and to meet stability con-
straints, following35.

3 Results

3.1 Axialsymmetric simulation without surface viscosity

We begin by describing the membrane using cylindrical coordi-
nates (r,θ ,z) and consider a rotational symmetric tube with peri-
odic boundary conditions. With

H =
1√

1+(∂zr)2

(
∂zzr

1+(∂zr)2 − 1
r

)
, K =− ∂zzr

r(1+(∂zr)2)2 (9)

the bending energy density fBE(H ,K ) can be reformulated and
considered as a function of r(z, t), the radial distance of the ax-
isymmetric membrane from the cylindrical symmetry axis, where
z measures the coordinate along that axis and t is time. For the
evolution we consider the corresponding equations to eq. (5) -
(7) but drop the constraints on inextensibility and volume. The
resulting equation to solve reads

1√
1+(∂zr)2

∂tr = uN =−δFBE

δXXX
·ννν = b , (10)

with b = bbb · ννν . While lengthy if fully written down, the re-
sulting model can be solved using standard approaches. We
again use finite elements in space, a semi-implicit discretiza-
tion in time, smoothing of the geometric properties and consider
DUNE/AMDiS53,54 for the realization. Fig. 1 shows the time evo-
lution of a periodically perturbed tube for different values of k4,2

and k4,0 together with the evolution of the bending energy FBE

over time. For k4,2 = 0 and k4,0 = 0 this is a well studied prob-
lem of the stability of a tube55–57. The parameters are chosen
to remain within the stability region. The results clearly indicate
a stronger damping of the perturbations for increasing values of
k4,2 and k4,0. However, the behaviour slightly differs with respect
to the damping of the perturbations and adjustment of r(z). This
difference is also seen in the decrease of the bending energy.

Results of a linear stability analysis58 for the case of k4,2 = 0
and k4,0 = 0 but considering surface viscosity using a Stokes ap-
proximation of eq. (1) indicate a similar stability region as in the
overdamped limit and we assume this to hold also for k4,2 > 0 and
k4,0 > 0 and the full problem.

(a)

(b)

5

Fig. 1 (a) Time evolution of axialsymmetric simulations for different
parameters for k4,2 and k4,0 starting from the same periodic solution
r0(z) = 1

4 sin( π

4 z)+1 at t0. The evolution goes from dark to light converg-
ing to a tube with r(z) = 0.5. The depicted time instances are marked in
(b). (b) Corresponding time evolution of the bending energy for different
values of k4,2 and k4,0. Parameters are k2,0 = 0.05 and H0 =−2.

(a) (b)

Fig. 2 (a) As initial surface we consider a cylinder with hemispherical
caps. (b) The geometry is determined by the length of the cylinder l and
the radius r of the cylinder and hemispherical caps.
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3.2 Equilibrium shape of tubular cell

The shape of a tubular cell can be approximated by a cylinder with
hemispherical caps, as shown in Fig. 2. For this simple shape, we
can compute the bending energy as

FBE = k2,0

(
2πrl

(
−1

r
−H0

)2
+4πr2

(
−2

r
−H0

)2
)

+ k4,0

(
2πrl

(
−1

r
−H0

)4
+4πr2

(
−2

r
−H0

)4
)

+ k4,2
4π

r2

where r is the radius and l the length of the cylinder. For H0 =

− 1
r , the energy of the cylindrical part vanishes and the energy

simplifies to

FBE = 4π

(
k2,0 +

k4,0

r2 +
k4,2

r2

)
.

Note that this energy is independent of the length of the cylinder.
We consider this shape as the initial configuration and the energy
as a quantity for comparison.

Fig. 3 shows the final configurations achieved by solving the
full problem, eq. (1) - (3), for three different values l. In all cases,
the shape deviates from the initial configuration. For k4,2 = 0 and
k4,0 = 0 the resulting shapes correspond to the equilibrium pro-
late shapes in7. However, for k4,2 > 0 and k4,0 > 0, these shapes
deviate. For k4,2 > 0 the bending energy is reduced by increasing
l and the Hausdorff distance dH(S ,S0) to the idealized initial
shape of a cylinder with hemispherical caps S0 is reduced by in-
creasing k4,2, see Fig. 4. The Hausdorff distance is a measure
of the distance between sets of points, in our case the discretiza-
tion points of the equilibrium shape and the initial shape. For
a mathematical definition and implementational issues see Ap-
pendix 5.4. The observed trends are far from being general. This
can also not be expected due to the highly nonlinear coupling of
the geometric terms and the considered constraints on volume
and inextensibility. However, they confirm the intuition of the po-
tential impact of k4,2K

2 in the bending energy on the emerging
equilibrium shapes. The effect of k4,0 > 0 differs. The increased
tendency to enforce H = H0 leads to undulations with a wave-
length related to −2/H0. How well this can be achieved strongly
depends on the length l. Therefore also the Hausdorff distance
dH(S ,S0) to the idealized initial shape of a cylinder with hemi-
spherical caps S0 does not decrease but leads to a non-monotonic
behaviour if considered as a function of l. The dependency of l
on the bending energy FBE is negligible for the considered pa-
rameters. To summarize, within the stability region of the classi-
cal Canham-Helfrich model, higher order geometric terms related
to k4,2K

2 seem to stabilize tubular shapes and terms related to
k4,0(H −H0)

4 seem to destabilize these shapes.

3.3 Dynamic evolution

In order to further explore the influence of the higher order geo-
metric terms related to k4,2K

2 and k4,0(H −H0)
2 on the dynam-

ics, we consider an initial surface S0 as a perturbed unit sphere

S0 = {1+ r0Y m
l (φ ,ϑ) : φ ∈ [0,π],ϑ ∈ [−π,π]} , r0 > 0, (11)

Y m
l (φ ,ϑ) =

√
2l +1(l −m)!

4π(l +m)!
Pm

l (cosϑ)eimφ (12)

with spherical harmonics Y m
l and Legendre polynomials Pm

l and
the case l = 5, m = 3 and r0 = 0.5. The velocity field is initialized
with uuu0 = 0. The initial surface has non-zero mean and Gaussian
curvature and is out of equilibrium. It serves as a prototypical
examples to study the rapid shape changes featuring moderate
geometric properties of a cell with membrane reservoirs. The
resulting bending force induces shape deformations in normal
direction. However, the curvature terms also induce tangential
flows, which also contribute to shape deformations. This coupling
between tangential flow and shape deformations is well under-
stood and shown to enhance the evolution towards equilibrium
shapes35. Here, we explore the evolution for different values
of k4,2 and k4,0, which read k4,2 = 0, 0.06 and 0.12 and k4,0 = 0,
0.00625 and 0.0125, respectively. Figs. 5 and 6 show snapshots
of the evolutions. The color coding corresponds to shape defor-
mations (red - movement outwards, blue - movement inwards)
and the arrows indicate the tangential velocity, where the length
scales with the magnitude. Furthermore, the energy contribu-
tions are shown over time. Here, the bending energy is split into
the different contributions FBE =F2,0+F4,0+F4,2 and the total
energy F = FBE +FK is the sum of the bending energy and the
kinetic energy FK =

∫
S

1
2 uuu2 dS . All evolutions converge to an

equilibrium shape, which for the cases k4,2 = 0 and k4,0 = 0 cor-
respond to the associated Seifert shape7, which here corresponds
to an oblate. For k4,2 > 0 the equilibrium shapes only slightly dif-
fer. The difference in orientation might result from the different
dynamics. However, due to the decoupling from the surround-
ing bulk phases and the considered parameter γ = 0, force-free
rigid body rotations are also possible59. While the equilibrium
shapes are similar, significant changes can be observed in the dy-
namics. The close coupling between the bending energy FBE

and the kinetic energy FK can be observed and related to signif-
icant shape changes. But their appearance differs. The plateau
in FBE = F2,0 for k4,2 = 0 between t ≈ 2 and t ≈ 6 is reduced for
k4,2 = 0.06 and 0.12 and already ends at t ≈ 4.5 and t ≈ 3, respec-
tively. It should be noted that the absolute values of the energies
cannot be directly compared as k4,2 varies in the definition. The
situation changes for k4,0 > 0. The equilibrium shapes are pro-
late shapes. Besides this difference in the long time behavior also
the short time evolution changes. We observe similar behavior as
for k4,2 > 0 with an enhanced influence of the kinetic energy and
a faster evolution towards intermediate shapes. The final con-
vergence towards the equilibrium shape at late times probably
results form similar values for the local minima on the oblate and
prolate branch as also known for the classical Canham-Helfrich
model6. Again, the absolute values of the energies cannot be di-
rectly compared as k4,0 varies in the definition.

Qualitatively the higher order geometric terms further enhance
the evolution and lead to alternative pathways to dissipate en-
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(a)

(b)

(c)

Fig. 3 (a) Equilibrium shapes for k2,0 = 0.125, H0 =−2 and k4,2 = 0. As initial condition we consider a cylinder of radius r = 0.5 with hemispherical
caps and vary the length l of the cylindrical part. From left to right the lengths are l = 2, 3 and 4. The surfaces are colored by mean curvature H
(upper row) and Gaussian curvature K (lower row). (b) Equatorial cuts through the equilibrium shapes for different values of k4,2 and l, keeping
k2,0 = 0.125 and H0 =−2. (c) Equatorial cuts through the equilibrium shapes for different values of k4,0 and l, keeping k2,0 = 0.125 and H0 =−2.
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(a) (b)

(c) (d)

Fig. 4 (a), (b) Bending energy of the final shape for fixed values of k4,2
(a) and k4,0 (b) for different length l. (c), (d) Hausdorff distance between
the equilibrium shape and the initial shape for different lengths l = 2, 3
and 4 as a function of k4,2 (c) and k4,0 (d).

ergy. This is most pronounced in the inlets highlighting the initial
evolution, the drastic decrease of F4,2 and F4,0 is associated with
large fluctuation of FK . This behavior increases with increasing
values of k4,2 and k4,0. Furthermore, while F4,2 is roughly one
order of magnitude smaller than F2,0, the influence on the dy-
namics is dramatic. This is less pronounced for F4,0, which is at
the same order as F2,0. We expect these fast shape changes to
be even enhanced for less regular real geometries of membrane
reservoirs, due to the appearance of larger curvature gradients.

4 Conclusions
Motivated by rapid shape changes of cells, where an excess of
membrane that is organized in membrane reservoirs is made
available to the cell in the order of seconds23, we formulated
a minimal mesoscopic membrane model which helps to facilitates
this behavior. This, on the one side includes an extension of the
classical Canham-Helfrich model towards higher order geometric
terms, and on the other side the explicit treatment of the fluid
properties of the membrane by considering membranes as fluid
deformable surfaces. The first aspect adds to the classical bend-
ing energy F2,0 =

∫
S k2,0(H −H0)

2 dS , terms proportional to
the Gaussian curvature squared, F4,2 =

∫
S k4,2K

2 dS , and the
mean curvature minus the spontaneous curvature to the fourth
power, F4,0 =

∫
S k4,0(H −H0)

4 dS . The effects of these higher
order terms are different. While the one related to the Gaussian
curvature squared not only helps to damp perturbations of tubes,
it also has a tendency to stabilize them, the term related to the
mean curvature minus the spontaneous curvature to the fourth
power has a tendency to destabilize tubes. Both effects have
been considered in idealized rotational symmetric and full three-
dimensional situations by analyzing the evolution and the emerg-
ing equilibrium shapes. If combined with the second aspect,
which takes the surface viscosity of the membrane into account
and combines the bending in normal direction with the proper-

ties of an inextensible surface fluid, as a fluid deformable surface,
the dynamic drastically changes. Already for the classical bend-
ing energy F2,0 =

∫
S k2,0(H −H0)

2 dS an enhanced evolution
towards the equilibrium shape has been observed if the effects of
surface viscosity are taken into account35. With the higher order
geometric terms this is further enhanced. The considered numer-
ical experiments for the relaxation of a perturbed sphere showed
alternative pathways to dissipate energy and strong tangential
flows inducing fast shape changes. However, besides enabling
rapid shape changes, the evolution and also the emerging equi-
librium shapes qualitatively differ for the considered higher order
terms. While the model with the Gaussian curvature squared term
also converges to similar oblate like shapes as the correspond-
ing Seifert shapes6 for the classical Canham-Helfrich model, the
model with the mean curvature minus the spontaneous curvature
to the fourth power term converges to prolate like shapes.

However, the focus of this paper is not to classify the increased
phase space of equilibrium shapes resulting from the higher or-
der terms, but to address additional mechanisms which facilitate
rapid shape changes. While certainly more research is needed to
fully explore the potential of the higher order geometric terms,
e.g., with respect to the stability of tubes extending the analysis
in58, the numerical studies already clearly indicate the potential
for rapid shape changes. Even if only passive contributions of
a homogeneous membrane are considered, and a full model for
morphological changes of a cell requires to take inhomogeneities,
active processes of the underlying cortex, adhesion between the
membrane and the cortex and probably even more phenomena
into account, the study contributes to identifying underlying gen-
eral mechanical principles which might help to predict and con-
trol the dynamics of cells20. Surface viscosity and higher or-
der geometric terms in the bending energy provide mechanical
cues and probably support active processes to enable rapid shape
changes of cells.

A full model able to address the mentioned example of fre-
quently forming and retracting filopodia and the associated fast
shape changes of membrane reservoirs will require to couple
models for the cellular cortex24–27 with membrane models of the
considered type, which requires additional modeling and numer-
ical efforts. One intermediate step to link this research closer
to biology could be efforts to resolve the dynamics of membrane
reservoirs and compare them with simulations of the proposed
model.
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(a)

(b)

(c)

(d)

Fig. 5 Evolution of a perturbed sphere considering parameters k2,0 = 0.125, H0 = 0 and different values of k4,2. (a)-(c) Time instances for the evolution
for k4,2 = 0, 0.06 and 0.12, respectively. The color coding indicates movement in normal direction (red - movement outwards, blue - movement inwards)
and the arrows indicate the tangential velocity. The time evolves from left to right, the time instances except for the last one are equal and are
depicted in (d). (d) Evolution of the different energy contributions, F2,0 and F4,2 are the energies linked to the corresponding bending terms, FK is
the kinetic energy. The bending energy is FBE = F2,0 +F4,2 and the total energy F = FBE +FK . Shown is the evolution for k4,2 = 0, 0.06 and 0.12
(from left to right). Within †corresponding videos to the evolution in (a) - (c) are provided using a LIC filter for visualization of the tangential flow.
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(a)

(b)

(c)

(d)

Fig. 6 Evolution of a perturbed sphere considering parameters k2,0 = 0.125, H0 = 0 and different values of k4,0. (a)-(c) Time instances for the evolution
for k4,0 = 0, 0.00625 and 0.0125, respectively. The color coding indicates movement in normal direction (red - movement outwards, blue - movement
inwards) and the arrows indicate the tangential velocity. The time evolves from left to right, the time instances except for the last one are equal and
are depicted in (d). (d) Evolution of the different energy contributions, F2,0 and F4,0 are the energies linked to the corresponding bending terms, FK
is the kinetic energy. The bending energy is FBE = F2,0 +F4,0 and the total energy F = FBE +FK . Shown is the evolution for k4,0 = 0, 0.00625 and
0.0125 (from left to right). Within †corresponding videos to the evolution in (a) - (c) are provided using a LIC filter for visualization of the tangential
flow.
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5 Appendix

5.1 Model derivation

We here compute the variational derivatives of the higher order
geometric terms in the bending energy. We therefore write the
bending energy as

FBE =
∫
S

k2,0 f 2,0
BE + k4,0 f 4,0

BE + k4,2 f 4,2
BE dS

with bending density components f n,α
BE = (H −H0)

n−2αK α . The
corresponding forces bbbn,α ∈ TR3|S are given by

〈
bbbn,α ,WWW

〉
L2(T R3|S ) :=−

〈
δ

δXXX

∫
S

f n,α
BE dS ,WWW

〉
L2(T R3|S )

for all WWW ∈ TR3|S . The result for f 2,0
BE is well known

bbb2,0 =−2
(

∆S H +(H −H0)

(
∥B∥2 − 1

2
H (H −H0)

))
ννν .

For the remaining terms we use the deformation derivative ðWWW
60

and obtain the deformation formula〈
bbbn,α ,WWW

〉
L2(T R3|S ) =−

∫
S
ðWWW f n,α

BE + f n,α
BE divCWWW dS . (13)

Moreover, it is

PPP(ðWWW B)PPP = ∇S(ννν ·∇CWWW )−B ∇CWWW , (14)

ðWWW H = tr(PPP(ðWWW B)PPP) = divS(ννν ·∇CWWW )−B :∇CWWW (15)

valid60. As a consequence, the deformation formula (13) and
integrations by parts result in〈

bbb4,0,WWW
〉

L2(T R3|S )

=−
∫
S

4(H −H0)
3ðWWW H +(H −H0)

4 divCWWW dS

=
∫
S

12(H −H0)
2(∇S H ) · (ννν ·∇CWWW )

+(H −H0)
3(4B− (H −H0)PPP) :∇CWWW dS

Another application of integrations by parts w. r. t. ∇C, yields

bbb4,0 =−divC
(
12(H −H0)

2
ννν ⊗∇S H

+(H −H0)
3(4B− (H −H0)PPP)

)
,

where

divC(σσσPPP) = divS(PPPσσσPPP)−ννν ·σσσB+(divS(ννν ·σσσPPP)+B :σσσ)ννν (16)

holds for all σσσ ∈ T 2R3|S 41,60. Therefore, the tangential part of
bbb4,0 cancels out and we obtain

bbb4,0 =−
(
12divS((H −H0)

2
∇S H )

+(H −H0)
3((3H +H0)H −8K )

)
ννν .

With (14) and (15), the deformation derivative of K = 2(H 2 −
∥B∥2) reveals

ðWWW K = H ðWWW H −B :ðWWW B

= (H PPP−B) :(∇S(ννν ·∇CWWW )−B ∇CWWW ) .

As a consequence, the deformation formula (13), integrations by
parts, and B2 = H B−K PPP, result in〈

bbb4,2,WWW
〉

L2(T R3|S )

=−
∫
S

2K ðWWW K +K 2 divCWWW dS

=
∫
S

2divS (K (H PPP−B)) · (ννν ·∇CWWW )+K 2PPP :∇CWWW dS .

Since divS(H PPP−B) = 0 holds, integrations by parts yields

bbb4,2 =−divC

(
2ννν ⊗ (H PPP−B)∇S K +K 2PPP

)
.

Using (16), the tangential part of bbb4,2 cancels out and we obtain

bbb4,2 =−
(

2divS((H PPP−B)∇S K )+H K 2
)

ννν .

Putting everything together yields eq. (4). For the derivation of
the other parts of the model we refer to17,41.

5.2 Numerical method

We consider a surface finite element method (SFEM)51,52 to solve
the highly nonlinear set of geometric and surface partial differen-
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tial equations (1)-(3), using the approaches in17,35.
We combine the system (1)-(3) with a mesh redistribution ap-

proach61. These are equations for the parametrization

∂t XXX ·ννν = uuu ·ννν (17)

H ννν = ∆CXXX , (18)

which generate a tangential mesh movement to maintain the
shape regularity and additionally provide an implicit representa-
tion of the mean curvature H . We consider a discrete k-th order
approximation S k

h of S , with h the size of the mesh elements,
i.e. the longest edge of the mesh. We use the DUNECurvedGrid
library62 and consider each geometrical quantity like the normal
vector νννh, the shape operator Bh, the Gaussian curvature Kh, and
the inner products (·, ·)h with respect the S k

h . In the following, we

will drop the index k. We define the discrete function spaces for
scalar functions by Vk(Sh) = {ψ ∈ C0(Sh)|ψ|T ∈ Pk(T )} and for
vector fields by VVV k(S [h]) = [Vk(S [h])]3. Within these definitions
T is the mesh element and Pk are the polynomials of order k. We
consider uuuh,XXX ∈ VVV 3(Sh), Hh ∈ V3(Sh), and ph ∈ V2(Sh), which
leads to an isogeometric setting for the velocity and a P3 −P2

Taylor-Hood element for the surface Navier-Stokes-like equations.
We discretize in time using constant time stepping with step size
τ. In each time step we solve the surface Navier-Stokes-like equa-
tions and the mesh redistribution together. We define a discrete
surface update variable YYY n = XXXn −XXXn−1, which is considered as
unknown instead of the surface parametrization XXXn. The system
to solve reads:

Find (uuun
h, pn

h,H
n

h ,YYY n) ∈ [VVV 3 ×V2 ×V3 ×VVV 3](S
n−1
h ) such that:

1
τ

(
uuun

h −uuun−1
h , vvvh

)
h
+
(

∇wwwn−1
h

uuun
h , vvvh

)
h
=(pn

h , divPPPvvvh)h −
2

Re
(σσσ(uuun

h) , ∇PPPvvvh)h − γ (uuun
h , vvvh)h

+
((

2k2,0 ∇S H n
h
)
, ∇S(vvvh ·νννn−1

h )
)

h

+
(

2k2,0(H
n

h −H n−1
0 )Bn−1

ννν
n−1
h , vvvh

)
h
+λ

(
ννν

n−1
h , vvvh

)
h

+
(

k4,0(H
n

h −H n−1
0 )(H n−1

h −H n−1
0 )2

(
4Bn−1 − (H n−1

h −H n−1
0 )PPP

)
, ∇Cvvvh

)
h

+
(

12k4,0(H
n−1

h −H n−1
0 )2

ννν
n−1
h ⊗∇S H , ∇Cvvvh

)
h

+
(

2k4,2H
n

h ννν
n−1
h ⊗ (PPP∇S K n−1

h ) , ∇Cvvvh

)
h

−
(

2k4,2ννν
n−1
h ⊗ (Bn−1

∇S K n−1
h ) , ∇Cvvvh

)
h
+
(

k42(K
n−1

h )2PPP , ∇Cvvvh

)
h

(divPPPuuun
h , qh)h = 0

1
τ

(
YYY n ·νn−1

h , hh

)
h
=
(

uuun
h ·ν

n−1
h , hh

)
h(

H n
h ννν

n−1
h , Zh

)
h
+(∇CYYY n , ∇CZh)h =−

(
∇CXXXn−1 , ∇CZh

)
h

for all (vvvh,qh,hh,Zh) ∈ [VVV 3 ×V2 ×V3 ×VVV 3](S
n−1
h ), where Bn−1 =

(
∥Bn−1

h ∥2 − 1
2 trBn−1

h (trBn−1
h −H0(φ

n
h ))
)

.

In the above formulation we used the identity(
−∇S pn

h − pn
hH

n
h νννh , vvvh

)
h =

(
pn

h , divPPPvvvh

)
h. Note that the

Lagrange multiplier λ is unknown, which leads to an underdeter-
mined system. To resolve that problem, we follow the approach
introduced in35. In order to fulfill the volume constraint, λ has
to be chosen such that

Φ(λ ) :=
∫
S n−1

h

un
h(λ ) ·νννh dS = 0. (19)

We consider Φ(λ ) = 0 as an equation in λ and apply a New-
ton iteration λ j+1 = λ j − Φ(λ j)/Φ′(λ j). After convergence is
achieved the new surface S n

h needs to be computed by updat-
ing the paramerization XXXn = XXXn−1 +YYY n, lifting the solutions uuun

h,

pn
h and H n

h to the new surface and computing the remaining ge-
ometric quantities νννn

h, Bn
h , ∇S H n

h , K n
h and ∇S K n

h for the new
surface. While this approach showed the (expected) optimal or-
der of convergence35, with respect to computational and numer-
ical analysis results for the underlying surface Stokes equations
on stationary surfaces63,64 for bending terms up to second order,
the approach is not sufficient if higher order geometric terms are
included.

We therefore introduce a smoothing step of the surface quanti-
ties H n

h , ∇S H n
h , K n

h and ∇S K n
h . For each surface quantity or

its components ah =H n
h , [∇S H n

h ]i,K
n

h and [∇S K n
h ]i, i = 1,2 we

12 | 1–13Journal Name, [year], [vol.],
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(a)

(b)

Fig. 7 (a) Reference surface for the tests. Depicted are the mean curva-
ture H and Gaussian curvature K . (b) Errors of geometric quantities
with and without additional smoothing step for different grid widths h.
The orders of convergence are indicated by the dashed lines and are
optimal orders for the numerical implementation.

solve one time step of the diffusion equation

as − ε∆S as = ah,

where ε > 0 is a smoothing parameter and as the smoothed sur-
face quantity.

5.3 Validation

Instead of a full convergence study of the numerical approach we
only test the smoothing of surface quantities. We consider a sur-
face for which the surface quantities can be computed analytically.
The surface is parametrized by X : [0,2π)× [0,π)→ R2,

X(φ ,θ) =

 1
4 +

3
4 cos2 θ sinφ sinθ

cosφ
( 1

4 +
3
4 cos2 θ sinθ

)
cosθ

 .

We compute the L2-error of the surface quantities H ,K ,∇S H

and ∇S K for different grid width h. The smoothing parameter ε

is chosen experimentally such that it shows optimal results. Fig. 7
shows that for this test case the surface quantities converge with
the optimal orders and that the additional smoothing step for all
quantities improves the approximation. Together with the conver-
gence studies in17,35 these results provide enough confidence in
the numerical approach for the full problem including the higher
order geometric terms. They require an appropriate resolution of
K and ∇S K , which is achieved in O(h2) and O(h), respectively.
This motivated the considered discrete function spaces.

5.4 Hausdorff distance
For two sets X , Y ⊂ R3, we consider the Hausdorff distance given
by

dH(X ,Y ) = max

{
sup
x∈X

d(x,Y ),sup
y∈Y

d(X ,y)

}
,

where d(x,M) = supm∈M ∥x−m∥ and ∥ · ∥ the Euclidean norm. In
the implementation we use the VTK Hausdorff distance point set
filter65 with the target distance method point to cell.
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Data are available from Zenodo at https://10.5281/zenodo.14503545. 
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