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Melanoma immunotherapy enabled by M2
macrophage targeted immunomodulatory
cowpea mosaic virus†

Zhongchao Zhao, ‡abc Young Hun Chung ‡cd and
Nicole F. Steinmetz *abcdefgh

We have developed nanoparticle formulations targeting M2 macro-

phages for cancer immunotherapy by conjugating high-affinity

binding peptides to cowpea mosaic virus as an immunostimulatory

adjuvant. We confirmed the targeting of and uptake by M2 macro-

phages in vitro and the therapeutic efficacy of the nanoparticles

against murine melanoma in vivo.

Main

Cancer immunotherapy is now the fourth pillar of cancer
treatment following the approval of immune checkpoint block-
ade drugs targeting PD-1, PD-L1, and CTLA-4.1–3 However, its
efficacy is hindered by primary resistance, acquired resistance,
poor CD8+ T-cell infiltration, and irreversible T-cell exhaustion,4,5

which can be attributed to the immunosuppressive tumor micro-
environment (TME).6 The TME is composed of tumor cells, tumor
associated macrophages (TAMs), and various secreted immuno-
suppressive factors.7 Notably, M2-type pro-tumor TAMs (hereafter,
referred to as M2 macrophages) play a pivotal role in the

immunosuppressive TME by hindering antigen presentation, pro-
moting angiogenesis, tissue remodeling, and repair, suppressing
the anti-tumor immune response, and promoting tumor progres-
sion and metastasis.7–9 M2 macrophages have therefore become a
major target for the development of cancer immunotherapy.10,11

Next-generation nanomedicines that target M2 macro-
phages can be based on synthetic or inorganic nanoparticles
such as PLGA, chitosan, dextran, silica, gold, lipids and
carbon.12 One key mechanism is to reprogram pro-tumor M2
macrophages into anti-tumor M1 macrophages by incorporat-
ing Toll-like receptor (TLR) agonists, cytokines, antibodies, or
RNAs.13 Many such formulations achieve the effective polariza-
tion of M2 macrophages, including b-cyclodextrin nano-
particles loaded with TLR7/8 agonists such as R848,14 poly(b-
amino ester) nanoparticles loaded with IL-1215 or mRNA,10 and
hyaluronic acid nanoparticles loaded with microRNA.16 We
have developed nanoparticles based on the plant virus cowpea
mosaic virus (CPMV), leveraging its natural immunostimula-
tory potential.17,18 While non-infectious toward mammals, the
nucleoprotein assemblies are immunogenic and stimulate
innate immune cells through multiple pathways: the highly
organized and repetitive nature of the viral capsid assembly
itself can be viewed as a pathogen-associated geometric pattern
similar to pathogen-associated molecular patterns (PAMPs);
further immunostimulation is provided through engagement
with complement, presentation of Thelper epitopes, and engage-
ment with TLRs.19–21

Here we describe the development of an intratumorally
injected immunotherapy based on CPMV, which we modified
to target M2 macrophages. CPMV has shown promising efficacy
as an intra-tumoral agent for the treatment of murine mela-
noma, breast cancer, colorectal cancer, glioma, and ovarian
cancer, as well as canine patients with oral melanoma and
breast cancer.22–27 Mechanistic studies have shown that CPMV
acts as a triple TLR agonist (TLRs 2, 4, and 7) to stimulate the
innate immune system, thereby inducing an anti-tumor
immune response.28,29 Intratumorally injected CPMV can
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reprogram the immunosuppressive TME into immunostimula-
tory by recruiting and activating N1-type neutrophils, natural
killer (NK), dendritic cells, and converting M2 macrophages to
M1 macrophages.23 These activated and mature innate immune
cells process tumor-associated antigens and neoantigens in the
tumor to generate tumor-specific CD4+ and CD8+ effector and
memory T cells.29–33 Therefore, to further improve efficacy by
targeting and repolarization of M2 macrophages, we selected
high-affinity peptides that target these cells34–38 and conjugated
them to the surface of CPMV. We focused on two such linear
peptides that bind strongly to the M2 macrophage mannose
receptor, namely CSPGAK (CD206s, 561.7 Da) and CSPGAKVRC
(CD206, 920.1 Da).39 We evaluated CMPV particles conjugated
with CD206s and CD206 for their efficacy in the treatment of
murine melanoma through intra-tumoral administration.

CPMV was propagated in black eyed pea plants and purified
as previously described.40,41 CPMV is 30 nm in diameter and
consists of 60 copies of the small (S, 24 kDa) and large (L, 42 kDa)
coat proteins encapsulating genomic single-stranded RNAs. Each
particle also has 300 surface-exposed lysine residues suitable for
bioconjugation via N-hydroxysuccinimide (NHS) chemistry.42 A
two-step conjugation approach was used to attach the CD206s and
CD206 peptides (Scheme 1). CD206s has a C-terminal cysteine
residue allowing us to use a thiol-maleimide reaction in the
second step for CD206s conjugation. First, CPMV was conjugated
to the bispecific linker SM(PEG)8 to introduce maleimide groups,
and the subsequent cysteine and maleimide reaction allowed the
formation of CPMV-CD206s particles. CD206 has cysteine resi-
dues at both the C-terminus and N-terminus, so we introduced a
C-terminal azide group to ensure conjugation of CPMV to the
CD206 C-terminus. CPMV was conjugated to the bispecific linker
DBCO-PEG4-NHS ester to introduce DBCO groups, and DBCO-
azide click chemistry43 then allowed the formation of CPMV-
CD206 particles. To enable us to track particles in cell interaction
studies, we also conjugated Cy5 to the surface using the same
NHS chemistry with the SM(PEG)8 and DBCO-PEG4-NHS ester
linkers. Accordingly, we produced five modified CPMV particles:

CPMV-CD206, CPMV-CD206s, CPMV-Cy5, CPMV-CD206-Cy5, and
CPMV-CD206s-Cy5. Detailed conjugation protocols are provided
in the ESI.†

Successful conjugation was confirmed by conducting a
range of analytical tests, described in more detail in the ESI.†
Native agarose gel electrophoresis confirmed the particles were
intact because RNA bands detected under UV light co-migrated
with protein bands detected by staining with Coomassie Bril-
liant Blue (Fig. 1a and b). Denaturing NuPAGE revealed
two native bands (representing the S and L coat proteins at
B24 kDa and 42 kDa, respectively) – additional higher mole-
cular weight bands were observed that corresponded to
CD206(s)-modified CPMV. CD206s has a molecular weight of
561.1 Da and CD206 has a molecular weight of 920.1 Da. CPMV-
CD206 resulted in two bands are around 25 kDa and 26 kDa
which corresponds to S with one or two peptides conjugated.
The CD206s formulation resulted in an additional band at
B24.5 kDa indicating that one peptide per S was conjugated
(Fig. 1a and b). No additional bands were observed for the L
protein, which is a phenomenon we often observe for modified
CPMV and may indicate that the total number of peptides per
CPMV is underestimated, i.e. the resolution of the NuPAGE is not
sufficient to quantify the peptides on the L protein – or peptides
were preferably conjugated to the S protein. Densitometry
revealed that B39 CD206 peptides and B21 CD206s peptides
were conjugated per CPMV particle (Fig. S1, ESI†). The elution
profiles of the modified particles in size exclusion chromatogra-
phy (SEC) experiments were similar to native CPMV, with a single
absorbance peak synchronizing the 260 and 280 nm signals
(representing RNA and proteins, respectively) thus indicating no
broken particles in the column volume (Fig. 1c). However, CPMV-
CD206 and CPMV-CD206s eluted at B9 mL compared to 11 mL
for native CPMV, reflecting the size increase due to peptide
conjugation. The absorbance ratio at 260/280 nm was B1.7 in
all cases, indicating intact particles with packaged RNAs.44 The
size increase was confirmed by dynamic light scattering (Fig. 1d).
Although the size distribution of CPMV-CD206 and CPMV-CD206s

Scheme 1 Overview of the two-step conjugation methods to produce CMPV particles displaying the peptides CD206s and CD206.
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was similar to native CPMV, the diameter increased from 38.2 nm
to 62.1 nm for CPMV-CD206 and to 46.6 nm for CPMV-CD206s.
This was concordant with the SEC data, again confirming that
peptide conjugation increased the particle size. Specifically for the
size increase for CPMV-CD206, it was possible that there is some
degree of interparticle crosslinking – which may be possible
through disulfide formation between the N-terminal cystines of
conjugated CD206 peptides. As demonstrated by transmission
electron microscopy (Fig. 1e), all formulations showed intact
particles and most CPMV and CPMV-CD206s remained mono-
disperse, however, more CPMV-CD206s were associated together
possibly due to the interparticle crosslinking. The Cy5-labeled
particles were characterized in the same manner. The Cy5 signal

co-migrated with the CPMV proteins in agarose gel electrophor-
esis and NuPAGE experiments (Fig. S2a and b, ESI†) and the
absorbance peak at 647 nm corresponded to the 260 and 280 nm
peaks in SEC experiments (Fig. S2c, ESI†). UV-Vis spectrophoto-
metry confirmed that B32 Cy5 molecules were conjugated per
CPMV particle, B17 per CPMV-CD206-Cy5 particle, and B15 per
CPMV-CD206s-Cy5 particle (Fig. S2d, ESI†).

Having confirmed the integrity of the conjugated particles,
we next evaluated their ability to target M2 macrophages
in vitro. We prepared M1 and M2 macrophages by polarizing
murine RAW264.7 cells (M0) in vitro using lipopolysaccharide
(LPS) or interleukins IL-4 and IL-13, respectively.45 First,
we confirmed the identity of the polarized M1 and M2

Fig. 1 Characterization of modified CPMV particles. (a) and (b) Comparison of CPMV to (a) CPMV-CD206 and (b) CPMV-CD206s by agarose gel
electrophoresis and NuPAGE. (c) Analysis of CPMV, CPMV-CD206, and CPMV-CD206s by size exclusion chromatography. (d) Analysis of CPMV, CPMV-
CD206, and CPMV-CD206s by dynamic light scattering. (e) Transmission electron microscopy images of CPMV, CPMV-CD206, and CPMV-CD206s.
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macrophages by assessment of nitric oxide synthase (iNOS)
expression which is characteristic for the M1 phenotype and
Arginase 1 which is characteristic for the M2 phenotype.46

The M1/M2 polarization was confirmed (Fig. 2a and b); we
also observed that only M2 macrophages expressed CD206 on
the cell surface post IL-4 and IL-13 simulation (Fig. 2c). M0, M1
and M2 macrophages were then incubated with the same
quantity of CPMV-Cy5, CPMV-CD206-Cy5 or CPMV-CD206s-
Cy5 particles in 12-well plates. After 24 h, the cells were
harvested and analyzed by flow cytometry. CPMV-CD206-Cy5

and CPMV-CD206s-Cy5 were able to target M2 macrophages
more efficiently than M0 and M1 macrophages as confirmed
by the right-shift in Cy5 fluorescence (Fig. 2d and e). The
mean fluorescence intensities (MFIs) confirmed that both
peptides targeted M2 macrophages preferentially, increasing
the Cy5 signal (Fig. 2g and h). CPMV-CD206s-Cy5 was taken
up more efficiently than CPMV-CD206-Cy5 (Fig. 2f), as con-
firmed by comparing the MFIs (Fig. 2i), even though
more CD206 peptides were conjugated per CPMV particle.
Overall, in vitro analysis confirmed that the conjugation of

Fig. 2 Flow cytometry. (a) iNOS, (b) arginase 1, and (c) CD206 expression within or on the surface of M0, M1, and M2 macrophages. (d) and (e) Analysis of
M0, M1 and M2 macrophages incubated with (d) CPMV-CD206-Cy5 and (e) CPMV-CD206s-Cy5 particles. (f) Analysis of M2 macrophages incubated with
CPMV-Cy5, CPMV-CD206-Cy5 and CPMV-CD206s-Cy5 particles. (g)–(i) Mean fluorescence intensities (MFIs) of each sample in (d) and (e) plotted as bar
graphs. Statistical significance was determined by ordinary one-way ANOVA (*p o 0.05, **p o 0.01, ***p o 0.001, ****p o 0.0001).

Communication Materials Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
/1

6/
20

25
 1

:1
8:

33
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ma00820g


© 2024 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2024, 5, 1473–1479 |  1477

CD206s and CD206 to CPMV promoted the targeting of M2
macrophages.

Next, we evaluated the efficacy of the formulations in the
treatment of dermal B16F10-OVA melanoma in C57BL/6J mice.
On day 0, 2 � 105 B16F10-OVA cells were intra-dermally (i.d.)
injected into the right flank of each mouse to inoculate tumors.
Starting on day 9, when all tumors had grown to B30 mm3,
mice received three weekly intra-tumoral (i.t.) doses of the
formulations in six treatment groups (n = 7 mice per group).
The treatments were (1) CPMV, (2) CPMV-CD206, and (3)
CPMV-CD206s (in each case, 100 mg CPMV in 30 mL PBS); (4)
CD206 and (5) CD206s as free peptides matched to the peptide
dose in groups (2) and (3); and (6) PBS as a control (Fig. 3a).
Tumor sizes were measured every 2 days and mice were
euthanized when the tumor exceeded 1000 mm3 (Fig. S3, ESI†).
The CPMV, CPMV-CD206, and CPMV-CD206s treatments slo-
wed the tumor growth and improved the survival rate (Fig. 3b
and c). There was no significant difference in tumor growth
between the CPMV, CPMV-CD206, and CPMV-CD206s groups,
but 3/7 mice (43%) in the CPMV-CD206 group remained alive at
the end of the study on day 60, compared to 1/7 (14%) in the
CPMV group and 0/7 (0%) in the CPMV-CD206s group. More
importantly, tumors were completely eradicated in two mice
from the CPMV-CD206 group, with no sign of tumors at the end
of the study. The CD206 and CD206s peptides did not inhibit
tumor growth, with similar results to the PBS group. Detailed
analysis of the survival data revealed that CPMV-CD206 treat-
ment prolonged the median survival to 43 days compared to
37 days for CPMV treatment, 30 days for CPMV-CD206s
treatment, and 20 days for PBS and the free peptides. Overall,
CPMV conjugated to the CD206 peptide was shown to
improve treatment efficacy in vivo by slowing down the growth
of murine melanoma and prolonging median survival. More
importantly, by targeting M2 macrophages using CPMV-CD206

particles, it was possible to completely eradicate the inoculated
tumors.

In conclusion, we found that CPMV-CD206 and CPMV-
CD206s significantly improved the efficiency of M2 macro-
phage targeting and uptake in vitro, and that CPMV formula-
tions inhibited murine melanoma. CPMV-CD206 appeared
somewhat more efficacious in vivo compared to native CPMV
and CPMV-CD206s. In contrast, CPMV-CD206s was less effec-
tive at targeting M2 macrophages in vitro; therefore this data
indicates that treatment efficacy is not solely dependent on
targeting or uptake. Differences in in vitro and in vivo targeting
also must be considered. Further work is therefore required to
determine the factors that contributed to the observed treat-
ment efficacy of CPMV-CD206. We have demonstrated that the
conjugation of peptides (CD206 and CD206s) to a plant virus
(CPMV) provides the basis of a promising cancer immunother-
apy that targets M2 macrophages.
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K. Kilk, P. Säälik, K. Kurm, M. L. Squadrito, V. R.
Kotamraju and A. Rinken, Precision targeting of tumor
macrophages with a CD206 binding peptide, Sci. Rep.,
2017, 7(1), 14655.

40 A. M. Wen, K. L. Lee, I. Yildiz, M. A. Bruckman, S. Shukla
and N. F. Steinmetz, Viral nanoparticles for in vivo tumor
imaging, J. Visualized Exp., 2012, (69), e4352.

41 Z. Zhao, O. A. Ortega-Rivera, Y. H. Chung, A. Simms and
N. F. Steinmetz, A co-formulated vaccine of irradiated
cancer cells and cowpea mosaic virus improves ovarian
cancer rejection, J. Mater. Chem. B, 2023, 11(24), 5429–5441.

42 A. Chatterji, W. F. Ochoa, M. Paine, B. R. Ratna,
J. E. Johnson and T. Lin, New addresses on an addressable
virus nanoblock; uniquely reactive Lys residues on cowpea
mosaic virus, Chem. Biol., 2004, 11(6), 855–863.

43 J. Park, P. L. Chariou and N. F. Steinmetz, Site-specific
antibody conjugation strategy to functionalize virus-based
nanoparticles, Bioconjugate Chem., 2020, 31(5), 1408–1416.

44 I. Yildiz, K. L. Lee, K. Chen, S. Shukla and N. F. Steinmetz,
Infusion of imaging and therapeutic molecules into the
plant virus-based carrier cowpea mosaic virus: cargo-
loading and delivery, J. Controlled Release, 2013, 172(2),
568–578.

45 C. Lee, H. Jeong, Y. Bae, K. Shin, S. Kang, H. Kim, J. Oh and
H. Bae, Targeting of M2-like tumor-associated macrophages
with a melittin-based pro-apoptotic peptide, J. Immunotherapy
Cancer, 2019, 7, 1–14.

46 H. Cai, S. Shukla and N. F. Steinmetz, The antitumor
efficacy of CpG oligonucleotides is improved by encapsula-
tion in plant virus-like particles, Adv. Funct. Mater., 2020,
30(15), 1908743.

Materials Advances Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
/1

6/
20

25
 1

:1
8:

33
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ma00820g



