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Developing the orthotropic linear-elastic model
for wood applications using the FE method†

Tarik Chakkour * and Patrick Perré

The purpose of this work is to develop the three-dimensional (3D) finite element (FE) modeling

approach for the linear mechanical behavior of the wood material. The developed framework consists of

implementing the 3D constitutive equations using the linear elasticity theory. Wood is a complex,

porous, fibrous, inhomogeneous, highly anisotropic material. Various wood materials are considered,

such as poplar, spruce, and maple specimens to validate the applicability of the FE modeling. The

framework is implemented in explicit code, written in Fortran language, and based on the PETSc library.

To that purpose, using up-scaling methods, such as the homogenization technique that allows the

prediction of the macroscopic property of materials, in our case the effective Young’s modulus, is

investigated. A numerical approach to control the equivalent micromechanical properties is presented

using a representative elementary volume (REV) concept. Here, we investigate the convergence trend of

material properties and structural geometries according to REV size. This framework aids considerably in

predicting the mechanical properties of a given material microstructure. In order to determine the

mechanical properties of the wood material in its anisotropic direction, the traction and compression

loadings were performed using numerical tests. The FE modeling of some cases is presented for the

final validation.

1 Introduction

Wood is a natural composite material with rich and excellent
mechanical properties such as its low density.1,2 Some wood is
hard, containing fibrous tissue due to physical hardness or
density. These fibers are robust in tension and emmersed in
matrix lignin to resist compression. Wood is also a hetero-
geneous, anisotropic, and variable material with a complex
structure which covers various length scales. This anisotropic
property3,4 explains the dependency of the mechanical proper-
ties on its material directions [radial (R), tangential (T), long-
itudinal (L)] and differs among species. This heterogeneity
means that huge stiffness changeability is encountered in
wood. In order to express this complex feature, multiscale
frameworks have been developed on finite element simulations
with computational homogenization aspects. This is used
for generation in numerous applications,5–7 such as building,
construction, transportation, and landscaping timbers. In
order to completely utilize the potentiality of the wood material,
ameliorating knowledge of its mechanical behavior and con-
stitutive frameworks is essential.

Over the last few years, wood has emerged as a promising
material due to its significant and practical applications.8,9

It has captivated many researchers due to its superior mechan-
ical properties. They have provided much effort to investigate
its large variability in these macroscopic material properties.
The objective is to avert the requirement for essential safety
factors derived from the highly unprofitable cost of timber
members in these applications. Providing comprehensive
knowledge about microstructural properties of individual wood
specimens is required to correspond to them at the macroscale.
The properties of these equivalent homogeneous materials are
determined by employing homogenization techniques.10,11 The
link between these scales prepares accurate and compatible
sets of macroscopic characteristics of wood in orthotropic
directions.

There are two main sorts of wood cell, earlywood and late-
wood, also specified as tracheids, and they are devoted consi-
derably to the volume of softwoods.12,13 When favourable
climatic conditions are met, there is a high growth rate of the
earlywood cells that are laid down in the spring season.14,15

However, the latewood cells are formed in the late summer,
when the rate of growth decreases.16,17 They provide mechan-
ical strength with different characteristics. The cell walls of
the earlywood cells are thin with a large open pore space, while
those of the latewood are thick with a smaller pore space.
Büyüksar et al.18 investigated the determination of the
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mechanical properties of earlywood and latewood sections in
standard size samples with comparing the computed and
measured mechanical properties.

Our primary motivation for developing the framework is to
exploit 3D imaging techniques, including X-ray computer tomo-
graphy (CT) and magnetic resonance imaging (MRI). These
techniques offer many conveniences, resulting from significant
improvements in high-resolution and reconstruction strategies.
One technology that has benefited from such improvements is
X-ray tomography. This technology is based on using different
radiographs from a given object, viewed at various angles, to
construct a bidimensional slice of that object. This paper will
consider the conventional mCT imaging19–21 to highlight many
aspects of wood anatomy, in particular, a comprehensive
characterization of the wood formation and its reconstruction
of the geometric structure.

When determining the homogenization approach estab-
lished on the finite elements method (FEM), the mechanical
behavior of wood materials is usually expressed by using
representative elementary volume (REV).22,23 This modeling is
aimed at analyzing the behavior of heterogeneous wood struc-
tures as it allows making the problem simple by examining a
sub-volume of a total structure, without influencing the preci-
sion of the results.24,25 In particular, the homogenized field
variables of a material wood on the macroscopic scale depend
on its size, making the effect of REV size questionable. The
definition of REV has remained difficult in the literature for
properties related to linear elastic models. The homogenization
approach highlights the mechanical behavior obtained here
since the micromechanical response at each sample point
relies on the macroscopic deformation. In the beginning, the
concept of REV analyses was presented by Hill (1963). Accord-
ing to a continuum mechanics viewpoint, the REV must contain
an adequately large number of heterogeneities. Therefore, this
work aims to investigate the convergence of the macroscopic
elastic properties26,27 by ensuring an appropriate choice of the
REV size. This volume REV is subjected to specific meshing
criteria to satisfy the convergence behavior. Some researchers
have investigated various types of REV; for example, Gonzalez
and Llorca,28 studied a square REV, which is composed of a
homogeneous and random dispersion of fibers included in the
polymeric matrix. Previous work29 was devoted to determining
the adequate characteristics of a REV to perfectly model the
mechanical behavior of a unidirectional glass fiber-reinforced
polymer composite.

The present contribution is aimed at providing a simplified
tool to determine the properties of the deformed microstructure
with high computational efficiency based on the PETSc library,30

widely used in various other packages.31,32 This library is consid-
ered popular and suitable for determining solutions of partial
differential equations (PDEs). It provides conveniently vast
flexibility for users, that includes parallel linear and nonlinear
solvers.33,34 Many previous works35–37 on deformation micro-
structure have been carried out in which the microstructure is
influenced by phase compositions and processing parameters.
In the present improvement, the global matrix associated with

this discretization is stored in the sparse format supported by
PETSc. This implementation focuses on the compressed sparse
row (CSR) storage,38–41 which defies scientific computing due
to its efficiency allowing robust storage. The computational
cost for this storage grows linearly depending on the system
size, with some benefits. These benefits consist of reducing
the memory overhead and avoiding storing zero elements.
This benchmark problem illustrates the accuracy42–44 of the
proposed strategy to linear elasticity.

The rest of the paper is structured as follows. Section 2
presents a simple way to obtain wood morphology from tomo-
graphic images. Then, image-analysis techniques are used to
give the morphology distributions and extract morphological
details. This section describes briefly the implemented FEM
framework for orthotropic elastic problems. Section 3 reports
the numerical results of testing a wood structure with high-
lighting 3D mechanical analysis. To illustrate the newly devel-
oped homogenization method, numerical results for a one-two-
phase wood species displaying the equivalent elastic behavior is
presented. Finally, Section 4 concludes this work.

2 Materials and methods

This section is devoted to describing the main workflow for how
to provide the binary representation of the wood morphology. The
choice of studying these wood sample species is motivated by the
porosity, anisotropy, and heterogeneity of the material character-
ized by some structural anomalies. All the specimens’ preparation
and conditioning will be detailed. For modeling the structures in
anisotropic materials, the tool most often used is the general
purpose FE tool. This section aims to describe mathematically
this tool which is specifically designed for anisotropic materials to
simulate small deformations.

2.1 Materials

In this study, the selection of the wood material was of the
upmost importance, as the goal was to prepare samples con-
taining only natural wood. The material wood samples involved
in this paper were poplar (Populus euroamericana Koster), spruce
(Picea abies) earlywood, spruce latewood, and maple specimens
(Acer rubrum L.). The poplar specimen is from a forest located
in Auménancourt-le-Petit (France). It was provided by the
Huberlant sawmill in Cormicy (France), which cut the tree into
boards and finally air-dried the wood. The spruce specimen is
derived from a plantation in the Le Châtaignier forest in
Riotord (France). These samples were provided from a single
defect-free board with a horizontal grain angle. Fig. 1 depicts
the scanned wood in three dimensional-space.

2.2 Tomography and segmentation

The scanning lab tomography is used to obtain a stack of
images to capture the structure of each morphology. X-ray
nano-tomography is exploited as one tool available to wood
anatomists to study the three-dimensional organization with
a high-resolution image result. In order to carry out the
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segmentation of the 3D representation from these stack images
by the reconstruction software, further processing is required
using various software. The image processing is conducted
by general software such as Avizo, Matlab, Python, etc. Fiji45

is one of the practical software packages used in the current
work to identify objects and study their properties based on the
acquired images. Fiji is an extension of the ImageJ46 and ICY47

software. It is a software package that offers a wide range
of plugins for enhancing image visibility. The purpose of this
study is to provide quick image treatment by selecting the
thresholding tool. The automatic thresholding method of
Otsu48 proposed by Fiji is one possible approach to get a binary
image. The Fiji process menu offers a wide range of easy-to-use
binary tools, such as a filter to remove noise or control a
threshold value.49,50 The aim is to identify and separate the
present two phases (gas and solid) and generate the morpho-
logy’s tetrahedral mesh.51

The wood samples are acquired by X-ray nano-tomography,
EasyTomXL Ultra 150–160, RX Solutions. 2D-projection images
are realized by measuring the X-ray attenuation originated from
a selection. The system is equipped with a nano-focus source
with different detector types for both fast and in situ (flat panel
detector) and high-resolution scanning (CCD camera). The
scanning resolution is on the order of 1 mm and takes at least
four hours. Fig. 1 depicts the full scan of the wood samples,
which have a diameter of about 1 mm, and the radius and
height of this cylinder are represented by 2.82 and 3.11 milli-
meters, respectively. The image file sizes are extremely large,
which forces an adequate ROI (Region of Interest) to be chosen
within the sample. This sub-volume is a parallelepiped whose
center and dimensions should be selected. Each parallelepiped
sample is treated with ImageJ-Python software to make 3D
volumic reconstruction possible. The post-processing of 3D
reconstructed wood specimens is presented in Fig. 2, which is
shared into six diagrams. The top three diagrams Fig. 2b–d
show that each sample is a randomized phase two study. The
first is associated with the gaseous phase, and the second is for
the solid phase (matrix). Since the free water occupied by the
gaseous phase does not interact with the solid one, the poros-
ities do not lead to mechanical variations. Then, the displace-
ment field basis of all the solid matrix nodes is considered to

neglect the gas distribution in the pore space. However, dia-
grams Fig. 2f–h depict the extracted solid phase from the same
3D reconstructed wood specimens. For this reason, only the
mesh of the solid phase has been implemented in the finite
element software.

2.3 Elastic properties for the model material

We assume that the mechanical properties used in the model
are considered constant and independent of the porosity. This
hypothesis is justified in simplifying the modeling work.
The aim is to find better parameters existing in the literature
for which the model is convergent and affects the numerical
results. The ultrastructural parameters reported for wood
materials are a collection of different values of engineering
elastic constants. These values are computed from molecular
models52,53 or predicted from the behavior of similar mate-
rials.54,55 Neagu and Gamstedt56 focus mainly on the knowledge
of the wood fiber structure by providing these hygroelastic proper-
ties from some wood samples. These properties are important
information used essentially in the FE calculations.57 The
mechanical parameters to identify the solid phase for these
species, poplar, spruce, and maple samples, are described as
follows. Note that the hygroelastic properties of the cell wall
layers computed with the recursive algorithm of Sutcu58 must
be given as input to the mechanical model presented in terms
of physical units Gigapascal (GPa). The longitudinal Young’s
moduli EL of wood specimens is equal to 64.0 GPa, while the
cell wall and lumen are obtained from the radial and tangential
Young’s modulus ER and ET using the same value of 6.08 GPa,
i.e., EL = 64.0 GPa, ER = ET = 6.08 GPa. Due to the transversely
isotropic elastic properties, the Poisson ratios nTL and nRL, and the
shear moduli GTL and GRL, are the same, i.e., nTL = nRL = 0.03, GTL =
GRL = 2.54. The Poisson ratio nRT and the shear moduli GRT, for
transverse strain in the tangential direction (T) when stress is
applied in the radial direction (R), are 0.42 GPa and 2.14 GPa,
respectively, formally, nRT = 0.42 GPa, GRT = 2.14 GPa.

2.4 Up-scaling procedure

One of the important challenges in the FEM framework is
enforcing the boundary conditions. The penalty method has
been proposed59,60 to control this problem. This method offers

Fig. 1 The 3D scanned samples of poplar (left), spruce (middle), and maple (right).
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an approximation for boundary conditions. The benefit of this
method is that there are no further global constraint equations
and only one unknown, which is the displacement field.61,62

Note that the penalty parameter involved in the implementa-
tion has to be larger, exceeding the other elements of the
stiffness matrix.63 Hadjicharalambous et al.64 showed the high
accuracy and good convergence from the present penalty
method with some concrete numerical examples. They tested
this convergence by increasing the degrees of freedom and
analyzing the global system matrix. This choice leads to good
convergence according to a refined mesh. Consider a 3D
material microstructure in the form of a cubic shape, subjected
to uniform displacement on its one particular face following
the orthotropic direction as shown in each diagram of Fig. 3.
In the following, the penalty method is applied and validated
under three computational homogenization scenarios in wood
materials. Each scenario means that a loading is applied taking
into account the boundary conditions for uniaxial loading

cases. When the displacement is applied at one face, for instance
the upper face normal to the longitudinal direction (L), as shown
in the left diagram, all the lateral and lower faces stay blocked to
capture much-averaged values. This means that the penalty
method is operated to apply a null displacement at these faces,
and also the targeted displacement. To validate the purpose of the
homogenization approach, this strategy is continued with impos-
ing the associate displacements in the transverse plane (R,T), as
illustrated in the middle and right diagrams.

Let O be the domain of a body and qO its boundary disjointly
defined by the surfaces Ou and Ot, which are related to
Dirichlet’s and Neumann’s boundary conditions. This means
that the boundary qO is subdivided into two parts Ou and Ot,
i.e., qO = Ou , Ot, Ou - Ot = +. The mixed fundamental
boundary value problem of the linear elastic model aims to
determine the distribution of stress s, strain e and displace-
ment u throughout the body, when it has constrained displace-
ments %u defined on Ou and is loaded by an external system of
distributed surface and body forces with densities denoted by
t on Ot and f in O, respectively. In what follows, we will
introduce the governing equations for solving the problem of
linear elasticity. These equations are used to solve the elasticity
problem on the REV model including the balance equation
interfaced with boundary conditions for non-homogeneous
materials. The REV occupies the computational domain. O is
denoted as the REV domain and V is the volume of the REV.
In the model, displacements and tensions are supposed to be
continuous across interfaces, meaning that all the phases

Fig. 3 A 3D cubic material microstructure subjected to a uniform dis-
placement on each particular face.

Fig. 2 The extracted solid phase from the 3D reconstructed wood specimens scanned by X-ray nano-tomography presented in Fig. 1 to model the
material microstructure. Each specimen having the same dimensions of 128 � 128 � 128 voxels is treated with ImageJ-Python software.
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presented in the REV model are superbly bonded. Thus, the
constitutive equations modeling the linear elastic problem can
be formulated as,

�divðsÞ ¼ f in O;

u ¼ �u on Ou;

s:n ¼ t on Ot:

8>>><
>>>:

(1)

In which s is the stress tensor and f is the body force vector.
The vector t represents the tension load on part of the static
boundary Ot prescribed by the value 8t8 and n is the exterior unit
normal on the boundary Ot. It is well established that the
mechanical properties of wood materials depend on their orienta-
tion. Mechanics of wood materials usually describe longitudinal
and transverse directions related to their structure, which are
described in Fig. 3. The orthotropic wood models consider differ-
ent material behavior for each orthogonally related direction.
Consequently, more parameters are requested to report material
behavior fully compared to isotropic materials. Unlike isotropic
materials that are parameterized by a unique Young’s modulus
and Poisson’s ratio, orthotropic materials have three various
Young’s moduli E1, E2, and E3, one for each orthogonal direction,
and six Poisson ratios nij, for i a j, only three of which are
independent. In order to keep the elasticity tensor matrix C
symmetric, the Poisson’s ratios have to satisfy

nij
Ei
¼ nji

Ej
; i; j ¼ 1; 2; 3: (2)

Assuming that the physical variables belong to the microscale
problem, that is, are related to the geometry and material of
the volume REV. C and B denote the matrices of elasticity
and partial derivatives of the interpolation functions. The stain e
and stress s tensors could be expressed in terms of the displace-
ment u as,

e = Bu. (3)

s = CBu. (4)

The stiffness matrix C, the fourth-order tensor of orthotropic wood
materials, shows elastic constants, which can be presented in the
following form: s = Ce,where the term Dc is defined as,

C is Hooke’s matrix associated with the stiffness form of linear
elastic Hooke’s law. The stiffness operator is represented by a
6 � 6 symmetric matrix whose elements are expressed in
equality (5). In our case of a fully anisotropic elastic material,
9 independent terms are required to fill the matrix C. V0

O is
denoted by a set of continuous and sufficiently regular func-
tions, zero-valued in Ou. The first expression of eqn (1) is
multiplied by a test function v lying in the space V0

O of
kinematically admissible displacements at zero, and next inte-
grated by parts. In this context, the resolution of the elasticity
problem consists of determining the displacement field u
corresponding to the solution of the following variational
problem, ð

O
CBu:Bv dO ¼

ð
O
f v dOþ

ð
O t

t � v ds: (7)

Based on the established micromechanical modeling, the
homogeneous finite element simulation of REV models is
carried out. The REV models of increased voxel size with
different volume fractions are established, and their effective
stiffnesses are calculated by using the numerical homogeniza-
tion calculation technique. By combining the numerical homo-
genization computation technique, the effective stiffness
property was predicted. To investigate the mechanical effects
from the homogenized behavior, uniaxial tests are considered.
This consists of doing uniaxial tensile tests. Fig. 3 depicts the
schematic diagram of building the loading method adopted in
the tensile test process. A constant displacement is applied to
the sides of the specimen following the direction loading. The
macroscopic stress and strain tensors �s and �e of the macro-
scopic homogeneous REV model can be computed by averaging
the microscopic variables or local stress and strain s and e over
the entire volume of REV, and expressed according to micro-
macro relation,

�s ¼ 1

V

ð
Os

sdV: (8)

�e ¼ 1

V

ð
Os

edV : (9)

s11

s22

s33

s12

s23

s13

2
66666666666664

3
77777777777775

¼

1� n32n23
E2E3Dc

n12 þ n13n32
E2E3Dc

n13 þ n12n23
E2E3Dc

0 0 0

n12 þ n13n32
E1E3Dc

1� n13n31
E1E3Dc

n23 þ n21n13
E1E3Dc

0 0 0

n13 þ n12n23
E1E2Dc

n23 þ n21n13
E1E2Dc

1� n21n12
E1E2Dc

0 0 0

0 0 0 2G12 0 0

0 0 0 0 2G23 0

0 0 0 0 0 2G13

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

e11

e22

e33

e12

e23

e13

2
66666666666664

3
77777777777775

: (5)

Dc ¼
1� n21n12 � n31n13 � n32n23 � n12n23n31 � n21n13n32

E1E2E3
: (6)
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In which Os is the solid phase of all the microstructure REV.
The homogenized strain �eTh is computed exactly from the
imposed displacement field. This choice is motivated by taking
into consideration the repartition of pores, particularly their
volumes. The macroscopic properties of a wood material, are
partially controlled by the material properties contrasting
between the solid and porosity phases. The macroscopic strain
yields a homogeneous deformation on the REV, which is
imposed by a displacement. The result �eTh is presented for
the average support displacement uDirechlet over the support
length Ls, defined as,

�eTh ¼
uDirechlet

Ls
: (10)

Let %C be the homogenized effective stiffness tensor. In
reality, %C should be considered as a 6 � 6 matrix. Since three
computed homogenized material constants of the shear moduli
are not involved in our computational homogenization proce-
dure, the effective elasticity matrix %C will be of 3 � 3 elements.
The numerical modeling effort is performed using three series
of computational homogenization analyses. Then, the homo-
genization method for heterogeneous media is carried out
meaningfully to estimate the three effective elastic properties.
The effective stress–strain relation for the averaged stress and
strain can be written as,

�s = %C�eTh. (11)

�sij denotes the volume average of the corresponding stress
component in REV. Under radial loading, the first line of the
averaged stiffness matrix %C can be calculated as,

C11 ¼
�s11
�eTh

; C12 ¼
�s22
�eTh

; C13 ¼
�s33
�eTh

: (12)

Similarly, from the tangential and longitudinal loadings, we
can completely fill the matrix %C,

�C ¼

C11 C12 C13

C21 C22 C23

C31 C32 C33

0
BBB@

1
CCCA: (13)

By inverting the constitutive matrix defined by (13), the com-
pliance matrix S is obtained. Then the effective elastic con-
stants of REV can be calculated according to the matrix S.
In particular, the effective Young’s moduli Eh

1, Eh
2, and Eh

3 are
exactly the inverse of the diagonal elements of %S,

Eh
1 ¼

1

C11
; Eh

2 ¼
1

C22
; Eh

3 ¼
1

C33
: (14)

The strictly lower triangular part from matrix %C is used to
obtain the three effective Poisson’s ratios nh

12, nh
13, and nh

32.
However, the normalized effective Young’s moduli nh

21, nh
31,

and nh
23 are deduced from the strictly upper triangular part.

Due to the symmetry of matrix %C, these ratios satisfy the
proportionality equation defined by (2). Formally,

nh
12 = �C21E1, nh

31 = �C13E1, nh
32 = �C32E3. (15)

The up-scaling procedure aims to train material wood models
for the homogenization responses. The microscale REVs are
then subjected to three various loadings, and the responses
are recorded and used to validate the macroscopic data-driven
model. For completeness, we give a summary of this procedure
and the applications to computational anisotropic mecha-
nics problems. Our computational process often involves the
following steps:
� First, the computational domain is decomposed into small

tetrahedral elements of four points, and each point has three
degrees of freedom.
� Then, the local stiffness matrix for each element is of size

12 � 12. Each local matrix is presented by three unidimen-
sional vectors satisfying the optimization procedure to avoid
storing the nonzero entries of the matrix. The local element
stiffness matrix can be determined in terms of the discrete
matrix B and C given in equalities (3)–(5).
� The assembly process consists of taking into account all

the elementary contributions. Each local system determines
each contribution to build a global linear system.
� The applied displacement on the boundary is considered

by updating the coefficient of the global matrix, which is
presented in a sparse format. These boundary conditions are
incorporated in the FE formulation via the invoked penalty
method. Finally, the global linear system is solved with PETSc
in parallel using a KSP (Krylov subspace accelerator) solver to
determine the unknown displacement field.
� The application of homogenization for stress–strain beha-

vior is demonstrated. The macroscopic elastic properties are
determined via micro-to-macro scale transition analysis. In
particular, the macroscopic stress �s and strain �e tensors are
estimated in a discrete assembly via relations (8) and (9).

The stages mentioned in Fig. 4 summarize the resulting
computational homogenization leading to the upscaling of
the microscopic scale towards a macroscopic one for specific
loading.65,66 During the loading process restricted to three
anisotropic directions, three homogenization schemes are
grouped and factorized67,68 via equality (11). The explicit
expressions of the effective elastic properties are computed
using equalities (14) and (15) based on the matrix %C.

3 Results and discussion

This section aims to demonstrate the capability of a finite
deformation approach for analyzing elastic orthotropic materials.
For modeling the structures in anisotropic materials, the tool
most often used is the general purpose FE tool described in
Section 2.4. This standard approach can be used for different
categories of materials and their properties. This model is
validated for the wood specimens. A realistic loading is applied
at the microstructure volume during the deformation process.
The deformed REV is exhibited and analyzed in terms of the
realistic microstructure. As a simple rule based on the pre-
sented curve shape, we used the range of deformation [0%,3%]
for all mechanical tests.
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3.1 Numerical test

This part is devoted to illustrating the ability of the finite
element method (FEM) framework to function. First, this
framework predicts the mechanical properties, particularly
the nodal displacements in the standard orthotropic directions
for the poplar, maple, and spruce wood specimens. This frame-
work is validated against some uniaxial mechanical testing
systems responding to the tensile loadings. Fig. 5 depicts the
displacement field at each test following the orthotropic direc-
tion. The material is assumed to be elastic and homogeneous,
and is determined by mechanical properties, including elastic
properties described in Section 2.3. The Dirichlet boundary
conditions have been defined by applying a horizontal displa-
cement on the top lateral face following the radial direction (R),
and by blocking the bottom lateral face, as shown in Fig. 5a.
There is a null displacement on the four rest faces. The strain
e11 in the R-direction is computed according to the strain-
displacement relation (3). From this, and according to the
stress–strain equality, the component of stress s11 is computed.
Next, the stiffness matrix S is utilized to evaluate the transverse
strains. Then, the elementary displacement field u is deter-
mined in terms of strain e, using an integral operator given by
equality (3). The component of the resulting displacement u11

is illustrated in Fig. 5a. Similarly, the same situation occurs

for the tangential u22 and longitudinal u33 displacements as
shown respectively in Fig. 5b and c. The displacements u11, u22,
and u33 in their orthotropic directions grow linearly with each
direction. The model demonstrates that it is consistent with
respect to the expected calculation proving the Poisson effect
consequently. Each displacement varies progressively from the
lower value, which is presented by the bottom color of the scale
to the higher value given by its top where the force is applied.

From a morphological point of view, the deformation intrin-
sically characterizes the new state of the object. It is necessary
to compare the transformation and shape between the original
object and the deformed one. For instance, in such fields as
neurosurgery,69,70 the deformed object permits predicting a
tumor’s growth. Furthermore, the behavior of forward defor-
mation models is investigated in ref. 71 and 72 to predict the
variations in human tissue characteristics in response to the
movement of bones. The current results are reported and used
to verify the proposed method by interpreting the deformation.
The main objective is to analyze deeply the deformed paths
with the simulation tests in three-dimensional viewing. Only
one typical test of these simulations is performed using the
uniaxial tensile test. Several influencing factors should be
considered when testing configurations are realized within
the framework model. These tests contribute to evaluating
the accuracy of the deformed field from the original micro-
structure.

Fig. 6 depicts the microscopic deformation subjected to the
orthotropic tensile loadings. Each mechanical test presents a
response under uniaxial loading. The loadings follow the radial
(R), tangential (T), and longitudinal (L) directions, corres-
ponding respectively to the poplar (see Fig. 6a), maple (see
Fig. 6b), and spruce (see Fig. 6c) wood specimens. The defor-
mation provides information about the new structure and its
visualization is an important step. The analyzed deformation
demonstrates that no enlargement occurs in the transversal
plane. The profile in the deformed state differs a little from the
original microstructure presented in the initial state since the
lateral faces are blocked. The enlargement is analyzed during
each test following the uniaxial orthotropic direction normal
to this transversal plane. The 3D observations bring a qualita-
tive overview of the poplar and maple microstructures,

Fig. 5 A series of mechanical tests demonstrating the validation of the orthotropic linear-elastic model for the poplar (left), maple (middle), and spruce
(right) wood specimens. Each nodal displacement is generated for the uniaxial tensile test.

Fig. 4 The computation process based on the homogenization scheme
employing a FE discretization with displacement.
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augmenting the shape and size of the porosity. The poplar’s
and maple’s pores elongate in the principal direction without
contracting perpendicularly. However, for the spruce specimen
loaded in the longitudinal direction, the distribution of pores
becomes uniform. This deformed structure has provided the
natural response of this expected elastic behavior. The defor-
mation of the specimen becomes considerable, and its
damage happens early when an important displacement field
is imposed.

3.2 Convergence test

Choosing a representative elementary volume (REV) is a crucial
step in modeling to correctly describe the material’s micro-
structure. There is not a unique and required concept of the
REV for a heterogeneous material with complex microstruc-
tures. That might explain the existence of different definitions
of the REV, see ref. 73 for a review. Many approaches have been
investigated in the literature to decide this size. According to
Hill,74 the REV must contain sufficient heterogeneity and its
size must be much larger than the characteristic length of the
microscale and small enough concerning the macroscopic scale
of the material. A statistical framework based on the conver-
gence of the effective properties is investigated in ref. 75 and 76
to determine the size of the volume REV. In this contribution,
our approach is made by evaluating the visible characteristics
of the material by executing various numerical computations
on different sizes of the microstructure.

The evaluation of the REV size in computational homogeni-
zation is approached by treating mechanical response quanti-
ties in terms of mesh type to utilize their properties. A novel
approach to determining the convergence of effective proper-
ties as a function of domain size is explained as follows. This
approach is often recommended in material science, since it
converges faster with increasing the number of tetrahedral
cells. Its accuracy is demonstrated through three main meshing
tests, which are carried out for each wood specimen with a fixed
REV size. To achieve higher accuracy and convergence rates of
the standard FE method, especially in the presence of complex
meshes,77–79 three types of mesh are investigated. In this
contribution, we study the convergence and stability from the
mesh research until the mechanical effective quantities
become stable. The flowchart of the proposed procedure is

shown in Fig. 7. Given a wood sample, we employ multiple
mesh types via a progressive refinement strategy, avoiding
morphology and topology modification. From a more practical
standpoint, the idea touched upon here is considered in the
smoothing stabilization and the FE discretization. According to
the wood specimen and its REV size, the adaptive mesh is
regulated following the refinement process to capture reason-
able convergent macroscopic values. Once the suitable com-
puted mesh has converged, the proportionality rule from a
given sample resolution is made to determine the convergent
mesh without running any simulation.

The numerical tests are selected by augmenting the grid
resolution, presented in Fig. 8 to show the convergence of the
numerical method. The pores are maintained to be sufficiently
smoothly meshed. The first is obtained with the coarse mesh;
the second is realized with the medium mesh; and finally, the
last is acquired with the refined mesh. A set of information
concerning the three meshes is given in Table 1 for the spruce
and poplar specimens. The microstructure of the intermediate
spruce species is displayed below. This states that the initial
mesh is around 228 791 volumic cells, and the final mesh
reaches around 540 729. It also displays the effective elastic
modulus in the radial and tangential directions. Since the
poplar and maple have the same characteristics of vessels,
the procedure testing is repeated sufficiently for the poplar
wood with REV size, which is 385 � 385 � 6 voxels.

In summary, the above study introduced an adaptive mesh-
ing framework that was based on a refinement technique to
guarantee convergence to corresponding values. The conver-
gence criteria of the two specimens were estimated following
the steps of the invoked strategy. First, these specimens were
homogenized in terms of a three-dimensional mesh of the REV
size. Three levels of refinements are investigated to converge
to the final solution. During the refinement process, the mesh
varies by conserving the same morphology and the volume
fraction of the aggregates. Then, in the second step, the effec-
tive mechanical values were compared. The variation of aggre-
gate meshing from coarse to medium impacts insignificantly
until stabilizing at the converged values. As a result, it can be
seen that the coarse mesh is sufficient in terms of the existing
domain size used in the calculations. The key idea is to inspire
from this study to the next one to choose according to the

Fig. 6 Typical small deformation for the poplar (left), maple (middle), and spruce (right) wood specimens in each traction testing presented in Fig. 5.
The original microstructure is presented in mesh by the orange color, while the deformed microstructure is presented by the blue color.
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REV size, the convergent mesh. The next study follows further
development, particularly complex block calculation with the
largest REV, which is much more time-consuming.

In this part, a convergence test was handled to determine
the REV sizes whose values satisfy the stability of the effective
mechanical property. The computation is carried out in the case

of the standard wood directions. The studied REVs are considered
within the full 3D image of each sample. P. Perré et al.80 have used
a similar approach to conduct a convergence test regarding
numerical experiments concerning thermal conductivity. In our
case of spruce, we will demonstrate that the established REV does
not impact the convergence behavior. Consider the user input
center (x0,y0,z0) to select the REV geometry. This REV is investi-
gated in parallelepiped form with dimensions (2Dx,2Dy,2Dz),
given as follows:

REVi ¼ ½x0 � Dx; x0 þ Dx� � ½y0 � Dy; y0 þ Dy�

� ½z0 � i � Dz; z0 þ i � Dz� i ¼ 1; . . . ; 20:
(16)

At each test, the volume of the REV is simultaneously increased in
the longitudinal direction following the same step Dz = 5, but
fixed in the transverse plane (R,T), i.e., Dx = Dy = 96. The
information concerning the mesh, such as the computed solid
fractions and the volumeric cell numbers, are presented in
Table 2. The predicted macroscopic Young’s moduli are given in
the same table. The convergence is noticed in the middle volumes
as the REV size is a bit important. Fig. 9 depicts the effective
Young’s modulus convergence following the longitudinal
direction as the REV size rises. This effective elastic property
is unstable on the first volumes. After the sixth volume, it becomes
stable since these volumes can be considered representative.
This successful convergence test permits us to consider this
REV size reasonably well for spruce. Notably, the transverse

Fig. 7 Flowchart to ensure the convergence and set-up scheduling the
REV size.

Fig. 8 An enlargement of coarse and refined mesh zones for the intermediate spruce specimen with dimensions 192 � 192 � 6.

Table 1 The effect of the meshing process on the spruce and poplar samples

Specimen Mesh type Cell number Voxels Volume fraction EEff
T (MPa) EEff

R (MPa)

Spruce Coarse 228.791 192 � 192 � 6 0.367 987 1050
Medium 311.938 192 � 192 � 6 0.367 900 987
Refine 540.729 192 � 192 � 6 0.361 862 932

Poplar Coarse 482.399 380 � 345 � 9 0.307 139 255
Medium 756.203 380 � 345 � 9 0.307 106 199
Refine 1.622.184 380 � 345 � 9 0.303 96 222
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values of spruce evolve in a quasi-similar way. However, since
poplar is presented here as one example of a dual-porosity
organization (vessel lumens and fiber lumens), its convergence
is open to question.

We have just assured the convergence behavior of spruce
along the longitudinal direction (L). The aim is devoted to
surveying the effects of the selected sizes of the REV on the
macroscopic mechanical properties of some wood species by
carrying out a series of homogenization analyses. The focus will
be on the convergence of the porosity from spruce, poplar, and
maple wood by increasing the REV size in the transverse plane
(R,T). For that purpose, the REV has to be representative of
porosity. A configuration on each considered REV for these
species with sufficiently suitable size is given by,

REVi ¼ ½x0 � iDx; x0 þ iDx� � ½y0 � iDy; y0 þ iDy�

� ½z0 � Dz; z0 þ Dz�; i ¼ 1; . . . ; 10:
(17)

The step following the longitudinal direction is fixed for each
wood sample, i.e., Dz = 3. Normally, the geometrical center
(x0,y0,z0) of the REV is fixed, but it is modified in some cases to
capture many vessels. This concerns the smallest element size
for poplar and maple samples. After each test, the volume of
the REV is concurrently raised in the radial and tangential
directions following the uniform steps Dx = Dy = 32. Table 3
reports the identified values of the macroscopic properties via
the computational homogenization of the spruce, poplar, and
maple species along the radial and tangential directions: this
table summarizes the main results of this work. From this set of
values, we obtained a data set that gave each sample the
macroscopic Young’s modulus as a function of the REV size
for the various solid fractions obtained by the mesher. Fig. 10
depicts the convergence trends associated with changing REV
sizes for the considered samples. As in previous convergence,
the homogenized elasticity property is sensitive in the first

volume of this series size. It can be seen from this figure that all
the homogenized values become close to each other as the REV
size increases. This result agrees with the strong and successful
convergence test. This convergence is noted in the last volumes
as the size of the REV is sufficiently large. Since the shape of
vessels for both poplar and maple species is extended in the
radial direction, the macroscopic transverse properties are
distinguished between these species. This difference is much
more significant compared to the spruce wood.

In light of Table 3, the predicted simulations were per-
formed in the two transverse directions of wood (radial and
tangential). The predicted macroscopic values are higher in the
radial direction than in the tangential direction for all samples,
including the intermediate spruce species. The cellular mor-
phology used here for the intermediate wood differs from other
species. However, its solid fraction corresponds more closely to
the poplar and maple ones, consequently justifying the inter-
esting outputs. It is clearly seen that the macroscopic mechan-
ical properties depend strongly on the porosity fraction and
morphological species. It is explained physically by the domi-
nated solid components on the model at different spatial
scales. Note that the convergence has reached a rapid level
for the spruce compared to other species.

The mechanical behavior of two wood tissues, poplar and
maple specimens, was simulated using the FE method in both
the radial and tangential directions. The FE modeling and
analytical analysis of energy stress in the microstructure were
performed for validation and confirmed the convergence
results. This analysis also contributes to the mechanical
response, as described in many works.81,82 Sretenovic et al.81

investigated the stress transfer from the matrix material to
reinforce discontinuous fibers for a wide range of composite
materials. For the same purpose, the mechanism of stress
transfer has been studied in ref. 82, when the wood is
embedded in a polymer matrix to provide a general

Table 2 The explanation of the longitudinal effective mechanical properties of the spruce sample in terms of the REV size and information from the
mesh

No. REV Size in voxel Cell number Volume fraction EEff
R (MPa) EEff

T (MPa)

1 192 � 192 � 10 75.263 0.563 2082 1556
2 192 � 192 � 20 81.339 0.563 2189 1706
3 192 � 192 � 30 101.753 0.475 1736 1362
4 192 � 192 � 40 109.242 0.477 1775 1398
5 192 � 192 � 50 115.370 0.479 1804 1427
6 192 � 192 � 60 120.401 0.483 1844 1466
7 192 � 192 � 70 134.473 0.478 1810 1432
8 192 � 192 � 80 151.955 0.479 1814 1431
9 192 � 192 � 90 183.737 0.479 1820 1437
10 192 � 192 � 100 223.411 0.479 1820 1433
11 192 � 192 � 110 274.278 0.476 1806 1414
12 192 � 192 � 120 335.900 0.472 1784 1390
13 192 � 192 � 130 377.461 0.472 1775 1378
14 192 � 192 � 140 445.745 0.472 1782 1377
15 192 � 192 � 150 604.740 0.470 1763 1350
16 192 � 192 � 160 532.384 0.474 1796 1381
17 192 � 192 � 170 557.400 0.489 1831 1453
18 192 � 192 � 180 598.147 0.487 1795 1409
19 192 � 192 � 190 650.010 0.489 1836 1452
20 192 � 192 � 200 699.557 0.486 1790 1399
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understanding of its mechanical properties and microscale
deformation process. Fig. 11 depicts the transfer properties of

the wood species. To clarify this transfer, we adopt a strategy
that assumes two REV types can be chosen. The figure is shared

Table 3 The macroscopic Young’s modulus and solid fraction of spruce, poplar, and maple in the orthotropic directions as a function of the REV size

Specimen No. REV Size in voxels Cell number Volume fraction EEff
T (MPa) EEff

R (MPa)

Spruce 1 192 � 192 � 6 70.811 0.255 331 975
2 256 � 256 � 6 130.103 0.278 169 381
3 320 � 320 � 6 198.435 0.298 310 543
4 384 � 384 � 6 286.267 0.311 203 498
5 448 � 448 � 6 376.485 0.332 238 445
6 512 � 490 � 6 497.632 0.320 271 425
7 576 � 576 � 6 606.485 0.329 286 532
8 640 � 640 � 6 732.556 0.325 297 578
9 704 � 704 � 6 870.257 0.320 289 608
10 768 � 768 � 6 1.039.558 0.318 290 571

Poplar 1 192 � 192 � 6 133.723 0.284 353 482
2 256 � 256 � 6 247.039 0.301 168 585
3 320 � 320 � 6 401.630 0.314 204 660
4 384 � 384 � 6 597.862 0.298 220 562
5 448 � 448 � 6 838.734 0.344 278 827
6 512 � 512 � 6 1.049.153 0.335 324 773
7 576 � 576 � 6 1.278.623 0.319 364 816
8 640 � 640 � 6 1.590.835 0.322 343 827
9 704 � 704 � 6 3.176.169 0.346 410 828
10 768 � 768 � 6 3.653.953 0.345 266 799

Maple 1 192 � 192 � 6 1.609.65 0.313 487 916
2 256 � 256 � 6 246.450 0.310 583 658
3 320 � 320 � 6 418.806 0.307 465 864
4 384 � 384 � 6 556.532 0.337 443 620
5 448 � 448 � 6 919.130 0.339 523 953
6 512 � 512 � 6 1.143.100 0.340 527 972
7 576 � 576 � 6 1.470.580 0.334 479 935
8 640 � 640 � 6 1.849.768 0.340 522 976
9 704 � 704 � 6 2.178.739 0.346 500 938
10 768 � 768 � 6 2.587.940 0.345 492 905

Fig. 9 Convergence of the macroscopic Young’s modulus in the case of the spruce wood. This convergence is aimed in the longitudinal direction (L) in
terms of REV defined by (16).
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into two lines in which the minimal REV presented in the top
diagrams is of 192 � 192 � 6 voxels, while the maximal REV
presented in the bottom diagrams is of 640 � 640 � 6 voxels.
We can see in the top diagrams that the energy grew radially

from the left side and gradually extended to the right side of the
sample. The same behavior was observed in the bottom dia-
grams. The energy spreads from the top to the bottom, follow-
ing the tangential direction. We report that the energy transfer
stays valid tangentially for the smallest domain size that
complies with the minimum REV size, and radially for well-
distributed pores across the microstructure with the maximum
REV size. Note that the size of the REV varies spatially and
depends on the presented quantity. A better largely quantitative
REV size compared to the dimensions of the pores satisfies
convergence. This occurs for the selected specimens since they
have considerable variability in vessel dimensions compared to
the spruce species. The presented simulations are consistent
with our visual observation, mainly, there is a relationship
between the domain size and convergence.

The framework’s straightforward application is illustrated in
Fig. 11, which shows the formation and development of a stress
transfer zone across the microstructure. In all simulation tests,
a great variety of high stresses is observed. The red color scales
the higher values, whereas the blue color presents the lower
values. At first sight, the value of this stress transfer depends on
the loading direction. Again, following this analysis, the simu-
lated stress transfer resulting from the FE model demonstrated
a good agreement. The transfer starts forming energy zones,
increasing this energy from the contact zone, where the stress
force is enforced, until the end zone, where it is free. Under
these radial (respectively tangential) loading conditions, the
transfer propagates so that the radial (respectively tangential)
stress always has higher values. In this case, when the radial
component is excessive, the tangential component is low, and
vice versa. In the same situation, as the load is increased, the
radial transfer will be much more important, and the tangential
transfer will be reduced significantly.

In what follows, we will carry out several numerical simula-
tions to achieve the validation of the prediction approach by
the framework. The homogenization approaches discussed
below yield the estimated macroscopic elastic properties from
the microscopic structure of heterogeneous materials. Indeed,
the microscopic characterization at each tetrahedral cell scale
is a necessary step that allows the anticipation of the material’s
macroscopic behavior. Generally, the homogenized model
regarded as a two-phase model made up of a gas brick
embedded in a connected solid phase provides the effective
transverse modulus Eh expressed as follows:

1

Eh
Series

¼ ag
E

g
Eff

þ as
Es
Eff

; Eh
Parallel ¼ agE

g
Eff þ asEs

Eff : (18)

This novel parallel-series model consisting of a series model
and a parallel model is introduced, to compute the averaged
mechanical constants in the transverse plane from the averaged
stiffness matrix %C introduced previously by the relationship
(11). This model given by (18) is formulated in terms of Eg

Eff,
Es

Eff, ag, and as which are the effective Young’s modulus and
volume fraction for gas and solid, respectively, while the sub-
scripts g and s indicate the phase for gas and solid states,

Fig. 10 Convergence of the macroscopic Young’s modulus in the case of
the spruce, poplar, and maple species. This convergence is conducted in
the transverse plane (R,T) in terms of REV defined in relation (17).
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respectively. Since the choice of a homogenization scheme
to model the wood material depends on its microstructure,
the poplar, spruce, and maple wood specimens are investi-
gated. In addition to the intermediate spruce specimen treated
through this paper, the earlywood and latewood are considered
here to present much variability among wood species. The aim

is to enrich this investigation by varying the solid fraction. The
analysis of the dimensionless equivalent elasticity leads to
illustration of the advantages of the proposed specimens.
The present homogenization technique provides the transition
of earlywood and latewood information. In particular, its
minimal and maximal solid fractions indicate the capability
of determining the transition using these specimens. The
literature83–85 offers several contributions concerning the dis-
tinction between earlywood and latewood regarding their
homogenized properties. From these specimens, a homogeni-
zation strategy of only the solid phase is proposed to describe
the mechanical and physical properties of macroscopic struc-
tures with heterogeneous microstructures. This proposed
homogenization is based on the assumption that the micro-
stress/micro-strain distribution is homogeneous in the solid
matrix. We refer to the macroscopic and microscopic stress
measures �s and s, and their associated work-conjugate strains �e
and e in Section 2.4.

A series of mechanical uniaxial traction and compression
tests of invoked material samples are carried out to determine
the homogenized Young’s moduli. During these tests, the
lateral faces remain blocked to capture much-averaged values.
However, the face in which the force is applied stays free for the
mechanical uniaxial testing. The mean homogenized Young’s
moduli Eh

R, Eh
T, and Eh

L are determined following respectively the
radial, tangential, and longitudinal directions. In this study,
the REV microstructures are presented with large voxel size.
The real brick specimens in three-dimensional space are cho-
sen in such a way as to cover different values of solid fractions.
The significant reference of volume is subject to good precision
of the macroscopic components. Following the procedure
established above, the effective elastic properties of single-
phase microstructures without pores are obtained. Fig. 12
provides these results for various microstructure realizations
that are presented in terms of volume fractions. First, it can
legibly be seen that the REVs with greater volumic fraction have
bigger radial and tangential Young’s moduli. The effective
Young’s modulus Eh

L has much higher values compared to
homogenized Young’s moduli Eh

R and Eh
T, as shown in

Fig. 12a and b. These radial and tangential averaged values
have a declined tendency of effective material properties due to
the influence of material property uncertainties. The radial
Young’s moduli Eh

R are higher than the tangential Young’s
moduli Eh

T for all the wood species. Note that the macroscopic
value is very close to the series model concerning the spruce
earlywood. However, the value becomes close to the parallel
model for the spruce latewood. The anisotropic ratio is inverted
if the porosity is dilated slightly for these specimens. In this
situation, it becomes the opposite due to the morphological
reasons and connected phase. Mainly, it is caused by the
flattened cells. This means the solid fraction is augmented by
around 0.2 for these specimens. Then, the effective elastic
modulus is lower in the radial direction than in the tangential
direction. These results confirm those obtained by Perré et al.86

for thermal/mass diffusivity and mechanical properties of the
real wood tissue structure.

Fig. 11 Snapshots of radial and tangential transfers of some wood species
under tension.
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The consistency of the survey estimated macroscopic values
following the longitudinal direction is examined as follows.
Fig. 12c and d illustrate the effective macroscopic values Eh

L

corresponding approximately to the fundamental parallel
model. If these values are exactly the same as the parallel
model, then it means that the obtained result can be false.
Nevertheless, this approximation is a great sign of result
conformity. Generally, these results show consistency concern-
ing our macroscopic numerical predictions of the homogeniza-
tion aspect. It confirms the capacity framework to forecast the
homogenized elastic properties using the FE method.

3.3 Heterogeneity overview of wood

This work aims to develop a realistic heterogeneous micro-
mechanical model of wood by taking into account its micro-
structures in two regions and applying this model to analyze
the effect of wood microstructure on the homogenization

aspect. In this regard, the numerical homogenization techni-
que is used to estimate the effective physical properties of dual-
phase heterogeneous wood materials.87,88 The mechanical
computational leads bring out the influence of the porosity
on the physical properties. This is achieved using two different
homogeneous materials. The global microstructure and com-
position are examined as heterogeneous, where each phase
is homogeneous with uniform characteristics. The physical
characteristics affecting the solid structure are preserved, as
described in part 2.3. Recalling that cellulose and hemicellulose
are the two fundamental constituents of wood at the ultrastruc-
tural scale, these constituents presented by the second phase
are treated as an equivalent material and subjected to 2% for
the solid elastic properties. Note that many research works89–92

have explored the relationship between microstructure with
heterogeneous multiple layers and mechanical properties in
cellulose-based materials. For instance, a multiscale

Fig. 12 The passage from the microscopic scale to the macroscopic one is realized thanks to the homogenization approach. The effective material
properties of wood species in their orthotropic directions are presented in each diagram. The solid line refers to the parallel model.
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mechanical framework for analyzing the elastic properties of
densified wood, considering its chemical component, is devel-
oped in ref. 89 and 90 using analytical and FE approaches.
Additionally, the aim of the investigations in ref. 91 and 92 is to
study the mechanical properties of cellulose interactions on the
anisotropic structure in food and medical applications. Due to
the complex imbrication of structural parameters on wood
elasticity, our feature of the 2% chain composition leads to
simplifying and highlighting the generality of the heterogeneity
procedure.

Previously, the classical homogeneous model provided a
clear and comprehensive overview of the importance and
impact of treating the local wood properties. The heterogeneity
approach is useful for understanding which structural para-
meters control the material properties, such as the realistic
stiffness and failure analysis. The mechanical behavior of the
anisotropy and heterogeneity (Fig. 13) was simulated using our
FE framework in both the radial and tangential directions.
Running heterogeneous wood materials is time-consuming and
consists of tensile and compression tests at small deformations
scale. The investigated materials, such as the poplar and maple
species, have regularities in the cell shape and large sizes.
Because meshes made with interconnecting pores are required
via porous meshes, the FE framework is extended so that the
effect of material heterogeneity is explored within the possibi-
lities offered by this model. The effect of wood microstructures
on its elastic properties was studied within the systematic
computational modeling. In our studies, this model will be
used to predict the wood response while mechanical loading is
applied. The same figure shows two exhibit diagrams covering
the stress tensor at each material point under tensile loading
conditions applied to the REV. This contribution establishes a
transfer of tensorial stress data, radially and tangentially,
respectively, in the left and right diagrams. This result is
consistent with the energy transfer illustrated in Fig. 11. The

ultimate stress with higher values evolves radially when a
tensile force is applied in this direction, and vice versa while
following another direction. The improved framework contri-
butes through the porous structure a weak mechanical energy
during the deformation. From a physical point of view, one
must expect to obtain a smoother response, rather than this
non-variability. This is explained by attributing the low
mechanical properties and other characteristics of the pore
structure.

We believe that the present framework can provide further
investigations on complex heterogeneous wood materials. More
numerical simulations are demanded to provide information
on the basic constituents. The homogenization-based multi-
scale techniques are adopted to physically treat the intricate
mechanisms of wood at the macroscopic level. The results
provided by the homogeneous and heterogeneous wood mate-
rials via the FE method are performed on a suitable REV.93

A series-parallel mixture model via relation (18) is proposed to
predict the overall properties. As shown in Fig. 13, the two
elastic materials are connected together in parallel to form the
investigated wood material. To further understand the effect of
cellulose components on the mechanical properties of wood,
we have compared the average tensile Young’s modulus along
the anisotropic direction (Fig. 14). To this aim, recall that
the overall Young’s modulus is the average of the moduli of
the constituents weighted by the volume fraction of each
phase.94–96 The assumed porosity highly influences the predic-
tion of effective properties in the case of heterogeneous against
the homogeneous framework.97–99 First, it can clearly be seen
that the REVs with greater porosities have smaller predictive
effective elastic properties that must remain in the physical
ranges. At the same time, the radial Young’s moduli Eh

R are
greater than the tangential Young’s moduli Eh

T for all hetero-
geneous samples. This remark is expanded for the spruce
specimen. As expected, the radial and tangential heterogeneous

Fig. 13 (a) and (b) Design of respectively the radial and tangential tensile stresses for maple and poplar specimens via heterogeneous FE modeling.
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homogenized Young’s moduli Eh
R and Eh

T are markedly greater
than the homogeneous ones. The wood cellulose effect demon-
strates superior performance over homogeneous, so practically,
higher values indicate better mechanical properties of hetero-
geneous materials. We conclude that the results obtained via
the presented methodology with the FE tool yield simulation of
any wood microstructure with great accuracy.100–102

4 Discussion and concluding remarks

The wood elements are still known for multi-scale and aniso-
tropic aspects. The scientific interest of this work consists of
understanding the wood microstructures utilizing the X-ray
tomography technique. This technique is based on scan para-
meters with specific environmental conditions to access their
real morphology. The poplar, spruce, and maple wood speci-
mens with representative dimensions are scanned using the
tomograph and analyzed. Next, image processing is carried out
to provide a 3D digital morphology of these samples. The aim is
to use this representation to generate a 3D unstructured mesh
that is the necessary input data for the finite element method
(FEM) framework.

In the scope of computer science, we have shown that
the FEM is a numerical procedure that aims to describe the
physical structure in a three-dimensional space, respecting the
mathematical approach. This framework of FEM was consistent
with the structure topologies of different phases species. The
mechanical model of the 3D real structure has been further
validated, through a numerical procedure. In particular, the
numerical results highlight the effect of wood’s anisotropy at
the microscopic scale. The higher mechanical properties of
these tested samples are presented by showing the stress–strain
curves. The summarized results for each sample provide a very
realistic microstructure deformation.

Solving the linear system in parallel was implemented to
exemplify the improvement of the computational efficiency and
speed of the code on the computer architecture. Indeed, the
post-processing of mechanical modelling of these microstruc-
tures can be very time consuming. The coefficient of the global
matrix is presented in a sparse format, which makes this
method more accurate in performing small deformation scales.
We would like to show that the parallel computing using
Message Passing Interface (MPI), and Compute Unified Device
Architecture (CUDA), can greatly increase the computational
efficiency of the modelling framework. The presented work will
be extended for multi-scale simulation of 3D fiber-reinforced
composite modelling. Then we will investigate the influence of
fiber distribution on the simulation, in which multiple fibers
with different orientations are presented. We will carry out
experimental tests using a universal testing machine. The
studied specimens with fibers will be placed in this machine
according to the standard of these structures.
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Fig. 14 An upscaling strategy, such as the homogenization approach, is used to obtain the effective material properties of wood species over all phases
compared with the homogeneous model at the macroscale.
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