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The delivery of genes to the central nervous system (CNS) has been a persistent challenge due to various
biological barriers. The blood—-brain barrier (BBB), in particular, hampers the access of systemically
injected drugs to parenchymal cells, allowing only a minimal percentage (<1%) to pass through. Recent
scientific insights highlight the crucial role of the extracellular space (ECS) in governing drug diffusion.
Taking into account advancements in vectors, techniques, and knowledge, the discussion will center on
the most notable vectors utilized for gene delivery to the CNS. This review will explore the influence of
the ECS - a dynamically regulated barrier-on drug diffusion. Furthermore, we will underscore the
significance of employing remote-control technologies to facilitate BBB traversal and modulate the ECS.
Given the rapid progress in gene editing, our discussion will also encompass the latest advances focused
on delivering therapeutic editing in vivo to the CNS tissue. In the end, a brief summary on the impact of
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1. Introduction

Gene therapy holds significant potential for treating CNS
diseases, offering innovative approaches to address genetic and
acquired neurological disorders. Advances in gene therapy
techniques have opened new avenues for the development of
targeted and personalized treatments. Gene therapy allows for
the precise targeting of specific genes or genetic pathways
associated with CNS diseases. This precision can be crucial for
addressing the underlying causes of various neurological
disorders, including genetic mutations or dysregulation of
specific genes. Gene therapy is particularly promising for
monogenic disorders, where a single mutated gene is respon-
sible for the disease. By introducing a functional copy of the
gene or silencing the mutated gene, gene therapy aims to
correct the underlying genetic defect. Gene therapy holds
potential for treating neurodegenerative diseases such as Alz-
heimer's, Parkinson's, and Huntington's disease. Beyond
monogenic diseases, gene therapy also holds promise for
transforming the pathological diseases in the CNS that impact
larger patient populations, such as stroke, spinal cord injury,
and tumors (Fig. 1A-C). Strategies involve delivering thera-
peutic genes to modulate protein expression, enhance neuro-
protection, or reduce toxic protein accumulation. Gene
therapies also facilitate personalized medicine by tailoring
treatments to an individual's genetic profile.
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endovascular cameras on improving the gene delivery to the CNS will be provided.

Several gene therapies for CNS diseases have reached
advanced clinical stages, and some have received regulatory
approvals.> These treatments include Zolgensma for SMN1
spinal muscular atrophy (SMA), Luxturna® for RPE65 inherited
retinal dystrophy, and others, marking significant milestones in
the field.* As a novel form of gene therapy, a gene editing system
(CRISPR/Cas9, zinc-finger, etc.) allows for precise modification
(disrupt, delete, insert, etc.) of genes, opening new possibilities
for correcting genetic mutations associated with CNS diseases.*

Despite remarkable progress in gene therapy for CNS
diseases, challenges persist, including ensuring safe gene
delivery, enhancing the cell specificity, achieving widespread
gene distribution, and addressing the need for redosing.
Ongoing research and clinical trials continue to refine gene
therapy approaches, offering hope for novel and effective
treatments across a spectrum of CNS disorders. Gene therapy
requires tissue and cell type specific delivery of DNA sequences
and/or gene editing machineries (can be RNA format or protein)
via biologically or chemically engineered vectors. Advances in
gene delivery vectors and techniques are aimed at overcoming
the challenge of the blood-brain barrier (BBB)® and blood-
spinal cord barrier (BSCB). Both viral vectors and non-viral
nanoparticles have been designed and engineered to enhance
BBB/BSCB penetration as demonstrated in many preclinical
models.® Notably, the development of viral vectors, such as
adeno-associated viruses (AAVs),” represents a significant
breakthrough due to their ability to efficiently transduce
neurons and achieve sustained gene expression.” We will
summarize the challenges by highlighting the key biological
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Fig. 1 Representative indications in the CNS. Diagnostic images of (A) middle cerebral artery (MCA) stroke, (B) spinal cord injury (SCI), and (C)
glioblastoma multiforme (GBM) brain tumor. Reproduced from ref. 1 with permission from Spring Nature Publishing Group, copyright 2022.

barriers that affect the clearance, penetration, diffusion and
release of therapeutics in the CNS (Fig. 2).

Gene delivery to the CNS is a complex and challenging task
due to the unique anatomical and biological barriers that
protect the brain and spinal cord (Fig. 2A-D). These challenges
can significantly impact the effectiveness of therapeutic agents
targeting the CNS.® Some of the key challenges include: (1)
systemic clearance: immune cells (macrophages, monocytes,
etc.) tend to remove systemically administrated vectors.
Endogenous nuclease and protease can cleave nucleic acid
payloads (DNA and RNA). The majority of the gene delivery
vectors can be cleared quickly, and thus the vectors capable of
interacting with the CNS tissue can be limited. (2) BBB/BSCB:
the BBB is a highly selective barrier that limits the passage of
drugs and other substances from the bloodstream into the
brain. It is composed of tightly packed endothelial cells with
tight junctions, restricting the entry of large molecules and
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pathogens. While this barrier is essential for maintaining the
brain's homeostasis, it also poses a significant challenge for
drug delivery. Similar to the BBB, the BSCB restricts the entry of
substances into the spinal cord. It is a barrier that must be
considered when designing drug delivery systems for spinal
cord-related indications. The BBB/BSCB blocks more than 99%
of systemically administered small molecules with a molecular
weight <500 Da and nearly 100% of molecules with a molecular
weight >500 Da from accessing the CNS parenchyma.’ (3) Efflux
transporters: the presence of efflux transporters at the BBB
actively pumps drugs out of the brain, reducing their concen-
tration within the CNS. P-glycoprotein is a prominent efflux
transporter that plays a role in drug resistance. (4) Biological
variability: the variability in individual patient responses to
drug treatment, including variations in the BBB/BSCB perme-
ability, genetic background, disease stages and pathology, can
complicate drug delivery strategies. (5) Neuroinflammation: in
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Fig. 2 Biological barriers in the CNS. (A) Systemic barrier, (B) blood—brain barrier, (C) extracellular barrier, and (D) intracellular barrier.
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certain CNS disorders, such as neuroinflammatory conditions,
the permeability of the BBB/BSCB may be altered, but this can
be a double-edged sword. While it may facilitate drug entry, it
can also contribute to the progression of the disease. (6) Limited
permeability: many drugs, even when they can cross the BBB or
BSCB, may not penetrate into the brain or spinal cord tissues
effectively inside the complex extracellular microenvironment
due to factors such as their size, lipophilicity, and charge. (7)
Intracellular uptake: even if a drug successfully crosses the
barriers, it may face challenges in reaching the target cells
within the CNS. Intracellular uptake can be influenced by
various factors, including the drug's chemical properties and
the specific cell types involved. (8) Region-specific targeting:
achieving precise targeting of drugs to specific regions within
the CNS is challenging. Different areas of the brain and spinal
cord may have distinct physiological, anatomic, and functional
characteristics, and targeting drugs to specific cell types is an
ongoing challenge.

The discovery of the CRISPR system and advancements in
protein engineering technology have raised hopes for thera-
peutic gene editing as a novel treatment modality beyond
conversional gene addition driven by the episomal expression
of the protein coded by a DNA sequence delivered by various
vectors in cells (Fig. 3A)." The emergence of gene editing for
therapeutic development induced the need to deliver compli-
cated and multiplex cargo, such as RNA and DNA (Fig. 3B)."
Rational delivery of protein, mRNA, gRNA, and DNA through
separate vectors or in a single vector requires complicated
design and optimization of the delivery systems. Addressing
these challenges necessitates innovative drug delivery
approaches, including nanotechnology, prodrugs, and targeted
delivery systems. Researchers actively explore strategies to
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enhance drug delivery to the CNS, aiming to minimize side
effects and optimize therapeutic outcomes. The dynamic field
of CNS gene delivery continues to evolve as scientific advance-
ments unlock new possibilities for overcoming these complex
barriers with novel modalities and new approaches. In this
review, we review the advancements in vector technology, BBB/
BSCB overcoming approaches, and progress on understanding
the impact of the extracellular environment on the gene delivery
to the CNS. We will also emphasize the progress in remote-
control technology for enhanced delivery to the CNS, as well
as the impact and application of cutting-edge technologies,
such as Al on the gene delivery to the CNS.

2. Gene delivery vectors
2.1 Viral vectors

Viral vectors have been widely used for genetic cargo delivery
due to many advantages.”> Among various viral vectors (Table 1),
AAV vectors are the most advanced in vivo gene delivery system
and have shown significant advancements in delivering genes
to various tissues," including the CNS.”> AAV-based gene therapy
for CNS disorders has progressed due to several key develop-
ments."* Ongoing efforts in capsid engineering have led to the
development of novel AAV capsids with improved properties,
such as increased transduction efficiency, reduced immunoge-
nicity, and enhanced ability to cross the BBB." Researchers
have engineered AAV vectors to improve their ability to effi-
ciently deliver genes to target cells with high specificity in the
CNS.*® This includes modifications with various molecular
engineering approaches to the viral capsid proteins to enhance
transduction and improve cell specificity.” This is crucial for
treating various neurological disorders where specific cell

B Targeted genome editing
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Fig. 3 Comparison of (A) gene addition and (B) targeted genome editing.

Group, copyright 2024.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Reproduced from ref. 10 with permission from Lancet Publishing

Nanoscale Adv., 2024, 6, 3009-3028 | 3011



http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3na01125a

Open Access Article. Published on 25 April 2024. Downloaded on 10/3/2024 7:32:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Nanoscale Advances Review
Table1 Summary of gene delivery vectors
AAV Adenovirus Lentivirus LNP PNP VLP Exosome
3D dimension 25 nm 80-100 nm 80-130 nm 50-200 nm 30-200 nm 20-200 nm 30-150 nm
Cargo type DNA(ss) DNA(ds) RNA RNA or DNA RNA or DNA RNA or DNA RNA or DNA
Packaging size 4.6 kb 36 kb 9 kb Varies Varies Varies Varies
Cell specificity Capsid Capsid Capsid Ligand Ligand Ligand Ligand
dependent dependent dependent dependent dependent dependent dependent
Immunogenicity Low-moderate Moderate Moderate Low Low Low Low
Genome integration <1% Moderate Moderate Unknow Unknow Unknow Unknow

populations are affected. The identification and characteriza-
tion of different AAV serotypes with varying tropisms have
expanded the toolkit for therapeutic applications.'® Choosing
the appropriate serotype for a specific application allows for
better customization of gene delivery strategies. Designing and
optimizing promoters for gene expression within the CNS have
improved the precision and control of transgene expression.'®
This is important for ensuring that therapeutic genes are
expressed at appropriate levels in target cells with minimal side
effects. Strategies to minimize the immunogenic response to
AAV vectors have been explored,* as this can impact the effec-
tiveness and safety of gene therapy.”® Immune responses can
affect the duration of transgene expression and the overall
success of treatment.”” The dosage of AAVs in human patents
needs to be rationally applied through better understanding the
AAV interactions with the human immune system and balanced
by the disease conditions in patiens.*® Efforts to expand the
cargo capacity of AAV vectors enable the delivery of larger
therapeutic genes,** opening up possibilities for addressing
more complex genetic disorders within the CNS.*® The
successful translation of AAV-based gene therapies from
preclinical studies to clinical trials has demonstrated the
feasibility and safety of this approach for treating various CNS
disorders, including neurodegenerative diseases and genetic
disorders.”® Overall, these advances in AAV technology for CNS
gene delivery hold great promise for the development of effec-
tive and targeted gene therapies to address a wide range of
neurological disorders.

AAV vectors are widely used for delivering CRISPR/Cas9
gene-editing tools in vivo due to their ability to efficiently
transduce cells and their powerful capability of delivery DNA to
the cell nucleus.?” However, limitations associated with AAVs for
CRISPR/Cas9 delivery still required effort to overcome: limited
cargo capacity: AAV vectors have a restricted packaging capacity,
limiting the size of the genetic cargo they can carry. This
constraint poses challenges when delivering large CRISPR/Cas9
components, such as long guide RNAs or Cas variants with
additional functionalities. Immune response: AAV vectors can
induce immune responses in the host. Immune reactions can
lead to clearance of the viral vector and reduce the effectiveness
of CRISPR/Cas9 delivery. Pre-existing immunity to AAVs, which
can be present in a significant portion of the population due to
natural exposure, can reduce the efficacy. Size constraints of
promoters: the size constraints of AAV vectors also apply to the
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regulatory elements, such as promoters, which control the
expression of Cas9 and guide RNAs. Selecting appropriate
promoters that fit within the limited cargo capacity while
maintaining efficient expression is a challenge. Off-target
effects: AAV-mediated CRISPR/Cas9 delivery may have off-
target effects, where the durable expression of the Cas9
enzyme may induce unintended genetic modifications. Opti-
mization of the CRISPR/Cas9 system and delivery strategy is
necessary to minimize off-target effects. Tropism and speci-
ficity: AAV vectors exhibit tissue tropism, showing preferences
for certain cell types or tissues. Achieving precise targeting of
specific cell populations can be challenging, and the vector may
not efficiently transduce the desired cells within a complex
tissue environment. In the CNS, achieving 100% targeting
specificity to major cell types, including neurons, astrocytes,
and glial cells, is still impossible. Leaked gene and protein
expression in untargeted cells has been broadly observed.
Integration risk into the genome: AAV vectors predominantly
exist as episomes in the host cell. A low level of integration
(<1%) into the host genome facilitated by the spontaneous
chromosome breakage has been reported,*® which could help
increase the durability of the AAV gene therapy as reported
recently;* however, the clear understanding of the impact of the
insertional event requires more effort to investigate at both
molecular and functional levels.*

AAVs are a promising gene delivery platform, but clinical
trials continue to highlight a relatively narrow therapeutic
window. Effective clinical translation is confounded by differ-
ences in AAV biology across animal species. It is still chal-
lenging to maintain the tissue tropism transduction efficiency
in primates. Sequentially evolving AAV capsid libraries in mice,
pigs and macaques may offer a valid approach for tackling the
challenge. A study has demonstrated organ-specific targeting of
AAV capsids following intravenous delivery.** Using a Cre-
transgenic-based screening platform and sequential engi-
neering of AAV-PHP.eB between AA452 and AA460 of VP3,
researchers identified capsid variants enriched in the brain,
avoiding the liver in C57BL/6] mice. This targeting specificity
extends to marmosets, allowing effective, non-invasive gene
delivery to the marmoset brain after intravenous administra-
tion. This progress in crossing the BBB with neuronal precision
in rodents and non-human primates opens new avenues for
both basic research and therapeutic applications not achievable
with naturally occurring serotypes.*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Recent observations have shown that the administration of
AAV vectors at high doses can cause local or widespread
neurotoxicity in the CNS and PNS, and the long-term conse-
quences of this for human therapies targeting nervous tissue
remain to be determined. Recent studies in non-human
primates that were administered recombinant adeno-
associated viruses (rAAVs) have shown lesions in the dorsal
root ganglia (DRG) of unknown pathogenesis. This study
further supports that DRG toxicity is associated with transgene
overexpression in DRGs, with particular sensitivity at the
lumbar and lumbosacral levels.** Monitoring sensory neuropa-
thies in the human central nervous system and high-dose IV
clinical studies seem prudent to determine the functional
consequences of DRG pathology.** Guo and colleagues investi-
gated the mechanisms by which AAVs mediate neurotoxicity
following intraparenchymal injection into a mouse brain.*
Their observation that high doses of AAVs can cause localized
disruption of the BBB, which allows an influx of blood and
serum factors into brain parenchyma, provides important
mechanistic insights into our understanding of how neurotox-
icity at the site of injection is mediated by infiltrating lympho-
cytes. A recent study demonstrated that thrombotic
microangiopathy (TMA) associated with AAV gene therapy is
antibody dependent (classical pathway) and amplified by the
alternative complement pathway. Optimal time points and
interventions need to be identified to allow for management of
immune mediated events of systemic gene therapy.*
Researchers are actively working on addressing these limita-
tions through various strategies, including the development of
novel AAV variants with improved properties, optimizing
delivery protocols, and exploring alternative delivery methods to
enhance the efficiency and safety of CRISPR/Cas9-mediated
genome editing.

2.2 Non-viral vectors

Advancements in non-viral technologies for gene delivery to the
CNS exhibit promising potential in mitigating constraints
associated with viral vectors.’” Key innovations encompass the
utilization of nanoparticles, including lipid nanoparticles
(LNPs) and polymeric nanoparticles (PNPs), exosomes, and
virus-like particles (VLPs), designed to encapsulate and shield
gene payloads (Table 1). These nanocarriers exhibit the capacity
to augment cellular uptake and enable controlled release of
genetic payloads within the CNS.*® LNPs, specifically, have
garnered attention because of their adept encapsulation and
delivery of nucleic acids.** Research suggests that LNPs can be
tailored to traverse the BBB and achieve targeted delivery to
specific CNS cells in preclinical models,***" presenting a non-
viral alternative for gene therapy. Enhanced side-dependent
LNP penetration to the brain parenchyma has been suggested
in pathohistological conditions in preclinical models, such as
brain injury where BBB integrity is interrupted.*” Synthetic
polymers, exemplified by poly (lactic-co-glycolic acid) (PLGA),
can form nanoparticles tailored for gene delivery, with modifi-
cations in composition aimed at improving biocompatibility
and stability, and the controlled release of genetic payloads

© 2024 The Author(s). Published by the Royal Society of Chemistry
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within the CNS.** Exosomes, small extracellular vesicles, have
been investigated as innate carriers for genetic material, with
modified exosomes loaded with therapeutic genes directed to
target cells within the CNS.** Injectable hydrogels have emerged
as non-viral carriers for gene delivery, forming three-
dimensional networks that facilitate sustained release of ther-
apeutic genes, thereby allowing for prolonged exposure and
improved distribution within the CNS.** The integration of
ultrasound technology, in conjunction with microbubbles or
nanoparticles, has demonstrated the capacity to enhance the
permeability of the BBB, facilitating gene delivery to specific
regions within the CNS.*® This non-invasive approach exhibits
promise in preclinical studies. Non-viral gene delivery through
intrathecal administration, involving the direct injection of
therapeutic genes into cerebrospinal fluid, facilitates wide-
spread distribution of genetic material within the CNS. These
non-viral technologies confer potential advantages such as
reduced immunogenicity, tunable release kinetics, and versa-
tility in cargo delivery. Ongoing research endeavors are directed
towards optimizing these methodologies for clinical applica-
tions, thereby offering alternative strategies for gene therapy in
CNS disorders.*

2.2.1 LNPs. LNPs have witnessed substantial progress in
the realm of CNS drug delivery.*” These nano-sized lipid carriers
show significant potential for efficiently transporting thera-
peutic agents to the CNS.*® Key advancements in the utilization
of lipid nanoparticles for CNS applications include: enhanced
BBB permeability: LNPs have been intricately engineered to
augment the delivery of drugs across the BBB in small animals.®
Modifications in LNP composition and surface characteristics
facilitate their passage through the BBB, predominantly
through receptor-mediated transport. Suitability for nucleic
acid-based therapeutics: LNPs are particularly well-suited for
delivering nucleic acid-based therapeutics, such as RNA and
DNA, to the CNS.* This feature is particularly relevant for gene
therapy applications aimed at treating genetic disorders or
modulating gene expression in neurological diseases. Intra-
nasal drug delivery investigations: LNPs have been explored for
intranasal drug delivery to the CNS. Intranasal administration
offers a non-invasive route to bypass the BBB, allowing direct
targeting of the brain.*® This has the potential to improve drug
access to regions affected by neurological disorders. Tailoring
LNP properties: researchers are customizing LNP properties,
including size, surface charge, and lipid composition, to opti-
mize their performance for CNS applications.*® This tailored
approach aims to enhance drug encapsulation, stability, and
delivery efficiency. Clinical progression: some LNP-based
formulations have advanced to clinical trials with an estab-
lished safety profile.*»** These trials evaluate the safety and
efficacy of LNPs in human subjects, representing a pivotal step
toward potential clinical applications in the CNS. The
advancements in LNP technology for CNS drug delivery offer
promise in addressing the challenges associated with treating
neurological disorders. Ongoing research endeavors seek to
further refine LNP formulations, broaden their therapeutic
applications, and translate these developments into clinically
viable treatments.
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LNP delivery systems present notable advantages in the
context of CRISPR/Cas9 gene-editing applications:** large cargo
capacity: LNPs can accommodate substantial cargo sizes,
enabling the delivery of sizable CRISPR/Cas9 components like
long guide RNAs or modified Cas9 variants, along with a DNA
template in one packet,® which may pose challenges with
alternative delivery methods such as viral vectors. Low immu-
nogenicity: LNPs generally provoke a lower immune response
compared to viral vectors, reducing the risk of host immune
reactions that could impede CRISPR/Cas9 delivery and effec-
tiveness.> Low pre-existing immunity: LNPs are less likely to
encounter pre-existing immunity in the host population
compared to certain viral vectors, decreasing the likelihood of
immune responses that might hinder the delivery efficiency of
CRISPR/Cas9 components. Targeted delivery: LNPs can be
tailored to target specific cell types or tissues by modifying their
surface properties, allowing versatile applications across diverse
cell populations within complex tissue environments.**® Cus-
tomizable and easily synthesized: LNPs are relatively easy to
synthesize with microfluidics and can be readily modified to
incorporating the target elements.>” This versatility facilitates
the development of customized LNPs for specific CRISPR/Cas9
applications, offering researchers the ability to tailor their
properties as needed. Genomic safety: unlike certain viral
vectors, LNPs delivers RNA cargo that does not integrate into the
host genome,* reducing the risk of insertional mutagenesis
and enhancing the safety profile of LNP-mediated CRISPR/Cas9
delivery.

Despite these advantages, challenges and limitations persist
in LNP delivery systems for CRISPR/Cas9 gene editing: systemic
distribution challenges: achieving uniform distribution of LNPs
and CRISPR/Cas9 components throughout the target tissue or
organ when administered systemically poses a challenge,
potentially leading to suboptimal gene-editing outcomes.*®
Liver is the primary organ that sinks the majority of LNPs upon
systemic administration.”® In vivo delivery efficiency can vary
among different tissues and organs.” Inefficient delivery to
specific cell types: designing LNPs for precise cellular targeting
demands a profound understanding of the target tissue, cell-
type specific receptor expression and cross interaction
pattern, and sophisticated surface modifications to enhance
cell-specific delivery.® Immunogenicity and toxicity: LNPs may
induce immune responses or exhibit toxicity,* particularly
when administered systemically, potentially affecting the safety
and efficacy of CRISPR/Cas9 delivery. Limited in vivo stability:
LNPs may face challenges in maintaining stability in vivo,
especially during circulation in the bloodstream, impacting the
efficiency of CRISPR/Cas9 delivery. Limited escaping efficiency
from endosomes: only a fraction of <2% LNPs can release the
cargo from endosomes with the best performing lipid compo-
sition and the most optimal formulation.®»** Overcoming
barriers such as the extracellular matrix and cellular uptake
challenges is essential for improving the overall success of LNP-
mediated CRISPR/Cas9 delivery in vivo. Researchers are actively
addressing these challenges through ongoing studies focused
on optimizing LNP formulations, improving targeting strate-
gies, and enhancing the overall safety and efficacy of LNP-
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mediated CRISPR/Cas9 gene editing, contributing to the
advancement of CRISPR/Cas9-based therapeutic
interventions.**

2.2.2 PNPs. PNPs have demonstrated significant progress
in drug delivery to the CNS, particularly in overcoming chal-
lenges posed by the BBB and enabling targeted therapy.*
Notable PNP advantages include: enhanced BBB penetration:
similar to LNPs, some PNPs can be chemically tailored to
enhance drug penetration across the BBB. Surface modifica-
tions, including ligands interacting with specific BBB receptors,
facilitate targeted and efficient drug delivery to the CNS.*
Tunability and customization: PNPs offer a high degree of
tunability. Researchers can customize their size, surface charge,
and composition to optimize drug encapsulation, release
kinetics, and biodistribution, tailoring them for specific CNS
applications.®® Biocompatible and biodegradable polymers:
advances in polymer chemistry have resulted in the develop-
ment of biocompatible and biodegradable polymers for nano-
particle construction. These polymers minimize toxicity
concerns and enable controlled release of therapeutic agents
within the optimal therapeutic window in the CNS.®” Sustained
release: PNPs can be engineered to provide sustained release of
therapeutic agents, extending drug availability in the CNS and
reducing the need for frequent administrations, particularly
beneficial for chronic conditions. Hydrogel-based polymer
nanoparticles have garnered attention for CNS drug delivery for
achieving sustainable and controlled release of drugs. They can
form hydrogels in situ, offering sustained drug release and
improved residence time at the target site.®® Intranasal drug
delivery: PNPs are explored for intranasal drug delivery to the
CNS, providing a non-invasive route to bypass the BBB.* Poly-
mers enhance drug stability and absorption, improving access
to the brain, but this approach may require a more frequent and
complicated dosing plan. For rapid and aggressive diseases, the
efficacy can be very limited. Active targeting with ligands: PNPs
can be functionalized with ligands for active targeting,” for
example, glucose transporter-1 (GLUT1), with high expression
on the endothelial cells of the BBB, and facilitate transport of
the drugs to the CNS tissue via transcytosis. Multifunctionality:
advances in PNP design enable the inc