

RSC Advances

At the heart of open access for the global chemistry community

Editor-in-chief

Russell J Cox Leibniz Universität Hannover, Germany

We stand for:

Breadth We publish work in all areas of chemistry and reach a global readership

Quality Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

\$**\$**\$

Community Led by active researchers, we publish quality work from scientists at every career stage, and all countries

Submit your work now rsc.li/rsc-advances

Showcasing research from Professor Swathi Sudhakar's laboratory, Department of Applied Mechanics & Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.

Doxorubicin loaded thermostable nanoarchaeosomes: a next-generation drug carrier for breast cancer therapeutics

Breast cancer, a leading cause of cancer death among women worldwide, is reported to have a poor prognosis due to the toxic side effects associated with high doses of chemotherapy. Liposomal drug encapsulation has shown clinical success in enhancing the tolerability of chemotherapy, but it has limitations including lack of colloidal stability, reduced drug efficiency, and difficulties in storage conditions. We have developed highly stable nanovesicles (nanoarchaeosomes) composed of natural ether lipids extracted from archaea. Our results confirm the increased drug release potential and anticancer efficacy of nanoarchaeosomes, which could be a potential next-generation carrier for anticancer treatments.

See Swathi Sudhakar *et al., Nanoscale Adv.,* 2024, **6**, 2026.

rsc.li/nanoscale-advances

Registered charity number: 207890