Nanoscale Horizons

CORRECTION

Check for updates

Cite this: Nanoscale Horiz., 2024, **9**, 2069

Correction: New horizons on advanced nanoscale materials for Cultural Heritage conservation

Rosangela Mastrangelo, David Chelazzi and Piero Baglioni*

Correction for 'New horizons on advanced nanoscale materials for Cultural Heritage conservation' by Rosangela Mastrangelo et al., Nanoscale Horiz., 2024, 9, 566-579, https://doi.org/10.1039/D3NH00383C.

DOI: 10.1039/d4nh90062f

rsc.li/nanoscale-horizons

The authors regret that some of the diffusion coefficients (D) listed in Table 1 in the published article have been attributed to the incorrect gel. The new Table 1 provided below replaces the originally published version and contains the correct diffusion coefficients. These errors do not affect the experimental data, results analysis and conclusions of the work.

Table 1 Cleaning performances of H-PVA – L1–L3 gels: average greyscale intensity of pixels in the cleaned areas (0: black, 255: white). Diffusion coefficients (D) of the dye Alexa Fluor in a tartrazine aqueous solution (free dye) and in TC-PNs with the increasing pore size. The apparent tortuosity, τ_{app}^{2} , was calculated according to eqn (1)

Gel	Greyscale intensity in the cleaned areas	$D (\mu m^2 s^{-1})$	τ_{app}^{2}
Free dye	_	278 ± 14	_
H-PVA – L1	231 ± 2	168 ± 8	1.7
H-PVA – L2	233 ± 4	128 ± 14	2.2
H-PVA – L3	240 ± 2	131 ± 8	2.1

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

ROYAL SOCIETY OF CHEMISTRY

View Article Online

Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy. E-mail: baglioni@csgi.unifi.it