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Quantifying particle concentration via
AI-enhanced optical coherence tomography

Siqi Ye, a Lei Xing,a David Myungb,c and Fang Chen *b

Efficient and robust quantification of the number of nanoparticles

in solution is not only essential but also insufficient in nano-

technology and biomedical research. This paper proposes to use

optical coherence tomography (OCT) to quantify the number of

gold nanorods, which exemplify the nanoparticles with high light

scattering signals. Additionally, we have developed an AI-enhanced

OCT image processing to improve the accuracy and robustness of

the quantification result.

1 Introduction
1.1 A demand for particle concentration quantification

In the realm of nanotechnology and biomedical research, the
accurate quantification of particle concentration, i.e., the
number of nanoparticles in the solution, serves as a fundamen-
tal basis for comparing and optimizing the properties of nano-
particles for various applications, such as medical imaging,
drug delivery, and nanotechnology research. Gold nanoparticles
(GNPs) are biocompatible and have unique physical properties,
such as surface plasmon resonance (SPR) and the ability to
convert light into heat. They have been broadly used as diagnos-
tic and therapeutic agents. GNPs commonly serve as contrast
agents for photoacoustic imaging,1,2 optical coherence tomogra-
phy (OCT),3–6 and computed tomography (CT).7–9 They are also
photothermal therapy or photodynamic therapy agents for
cancer treatment.10–14 Additionally, they can function as drug
carriers and enhance the delivery to cells due to their small size
and high surface area.15–17 Precise dosage control of GNPs is
crucial for optimizing biomedical applications while minimiz-
ing or avoiding side effects. This demands the accurate quantifi-
cation of the particle concentration. However, the quantification
of particle concentration is challenging due to the versatile mor-
phologies and size distributions of GNPs. The development of
an efficient and reliable approach to tracking and quantifying
GNPs is urgently necessary.

1.2 Nanoparticle concentration quantification techniques

Several methods have been developed to quantify particle con-
centration. Nanoparticle tracking analysis (NTA) is the only tech-
nique to directly quantify the particle concentration of nano-
particles currently.18–20 This technique utilizes light scattering
and Brownian motion analysis to provide information on the
particle size and concentration. However, NTA often faces chal-
lenges in resolving individual particle populations in samples
with diverse size distribution or high polydispersity. The particle
size by NTA is an average hydrodynamic diameter, which is
hardly the true dimension of either isotropic or anisotropic
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nanoparticles. It may also lead to inaccurate quantification
when particle motions deviate from the assumed Brownian
motion, such as the settling motion of large aggregates. A multi-
spectral advanced nanoparticle tracking analysis (MANTA) has
been invented to improve the characterization of polydisperse
nanoparticles.21 Nevertheless, NTA is mainly used for lipo-
somes, exosomes, and polymeric nanoparticles. Its quantifi-
cation for other nanoparticles still demands standardization.

Another typical quantification technique is electron
microscopy (EM).22–24 The EM offers high-resolution visualiza-
tion of particles at the nanometer scale. It is capable of
measuring the size distribution of GNPs and revealing the
sizes of a small anisotropic nanoparticle. However, EM is a
cumbersome technique for particle concentration determi-
nation, requiring scanning the entire sample holder after
adding a particle solution of known volume onto it. Moreover,
particle stacking will cause inaccurate quantification. The mor-
phology and size measured by EM, however, can be used to
determine the volume of individual nanoparticles. This
volume could be used to calculate the theoretical particle con-
centration when the density and mass concentration are
known. The mass concentration of gold nanoparticles can be
accurately measured by inductively coupled plasma-mass spec-
trometry (ICP-MS).25 The theoretical particle concentration will
be the total volume of nanoparticles (the mass concentration
divided by the density of gold) divided by the volume of a
single nanoparticle. This theoretical particle concentration is
more accurate for a monodispersed sample than samples with
a broad size distribution. Of note, this calculation ignores the
effect of aggregation on the actual particle concentration.

While nanoparticles have been widely investigated as con-
trast agents to improve biomedical imaging, here we propose to
use biomedical imaging to characterize nanoparticles.
Specifically, we demonstrate the quantification of gold nanorods
(GNRs) based on their OCT signals.4–6,26,27 OCT utilizes low-
coherence interferometry to capture cross-sectional images of
tissues, enabling non-invasive and real-time capturing of
scanned objects. OCT is considered an optical version of ultra-
sound imaging, but it has a much higher resolution (subcellu-
lar) when compared to ultrasound imaging. This method is
efficient and can potentially apply to any nanoparticles with
high light scattering properties, which is the source of the OCT
signal. Moreover, we developed an artificial intelligence (AI)
image enhancement method to improve the OCT images. Our
results showed that the OCT-based approach took the effect of
aggregation into account and reflected the real particle concen-
tration. With an aggregation correction algorithm and AI
enhancement, the resulting OCT-based particle concentration is
almost identical to the theoretical particle concentration.

2 Method
2.1 Sample preparation and OCT image acquisition

We conducted nanoparticle counting on GNR solution pur-
chased from NanoComposix (product #: GRCH800). Double-

distilled water was used to prepare dilution solutions with
factors of 800×, 1600×, 3200×, 6400×, and 12800×. The diluted
solutions were then loaded into a glass tube with an inner dia-
meter of 1.1 mm through a capillary effect. Double-distilled
water was also loaded as a reference for each scan.

The sample-loaded glass tubes were positioned on a sample
holder and scanned with a commercial SD-OCT system
(SPECTRALIS®HRA+OCT w/OCT2 MultiColor model,
Heidelberg). The OCT captured a sequence of 2D images at a
non-perpendicular angle along the longitudinal axis of each
tube. Images of samples to be compared were obtained within
the same scan. We selected distinct sections from the recorded
sequence of images as regions of interest (ROIs), delineating
the 3D distribution of the solution within the tube. Fig. 1(a)
shows the experimental setup described above. An example of
images acquired at a specific ROI is shown in Fig. 1(b). The
red box indicates the cropped ROI upon which our subsequent
processes were based.

2.2 AI-enhanced imaging module

We developed a super-resolution (SR) technique based on the
implicit neural representation (INR)28 for the AI-enhanced
imaging module. As illustrated in Fig. 1(c), the INR network
utilizes the spatial coordinates of the high-resolution (HR)
image as inputs and generates the expected HR image as
output. The INR network consists of a Fourier feature embed-
ding block and a multilayer perceptron, aiming to map low-
variational coordinate data to high-variational image intensity
values. To train the INR network, we converted the network
output into the low-resolution (LR) image domain and com-
pared it to the acquired LR image. The SR process involved the
use of a classical degradation model that includes image blur-
ring and downsampling for the HR-to-LR image conversion.
No extra data but the acquired LR image is needed in this SR
process. This is particularly beneficial for applications such as
image-based GNR concentration quantification, where HR
images for model training may be lacking.

To improve the efficiency and standardization of the SR
process, we cropped a square-shaped region of size 60 × 60
pixels located at the center of each ROI, as shown in Fig. 1(b).
We assumed nanoparticles were uniformly distributed within
the cropped ROI, representing the distribution of nano-
particles in the specific cross-section of the tube. The resolu-

Fig. 1 AI-enhanced OCT imaging for nanoparticle quantification.
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tion of the cropped ROI was enhanced by two times, resulting
in an image containing 120 × 120 pixels for the subsequent
quantification process.

2.3 Quantification and aggregation correction

We used the ImageJ software29 to analyze the original and AI-
enhanced OCT images for nanoparticle quantification, invol-
ving two steps: (1) nanoparticle detection and (2) nanoparticle
counting. An OCT image contains both dilution solvent and
nanoparticles. In the detection step, we applied a threshold to
filter out background pixels. Using the double-distilled water
as a reference, we found the maximum lower threshold when
the nanoparticle number is zero in the water. After threshold-
ing, the particle analysis tool in ImageJ was employed to detect
nanoparticles. The count of detected image patches, exempli-
fied by the rectangular-shaped small portion within the zoom-
in box in Fig. 2, was regarded as the number of nanoparticles
in the OCT image.

We also introduced an aggregation correction step to
address the nanoparticle aggregation effect. The aggregation
correction was based on the area of the detected nanoparticles.
We assumed that each nanoparticle occupies only 1-pixel2 area
on the original OCT image, and it occupies 4-pixel2 area on
the AI-enhanced images with 2× resolution enhancement. This
assumption is reasonable for any morphologies of the gold
nanoparticles because the length of the long-axis of a gold
nanoparticle usually ranges from 10–200 nm,30 which is sig-
nificantly smaller than the approximate distance of several
centimeters between the source of the reflected light to the
detector.

3 Results and discussion

We evaluated the quantification results from three perspectives
and found that AI-enhanced OCT imaging improved the par-
ticle concentration quantification. First, the AI-enhanced OCT
imaging improved the linear fitting of particle concentrations
and the dilution factors (i.e., theoretical concentrations).
Second, quantification based on AI-enhanced OCT images pro-
vided almost identical particle concentration to the theoretical
concentration, which is much more accurate compared with
using no AI-involved original OCT images. Third, the slope of
the regression line of the experimental and theoretical particle

concentrations should be close to 1, indicating the two con-
centrations are identical with different dilution factors. Only
the aggregation-corrected particle concentrations resulting
from the AI-enhanced OCT images showed such a slope in the
regression analysis. As a comparison baseline, we performed
image enhancement via a conventional interpolation method.
Analysis based on the interpolated OCT images yielded similar
results to those obtained using the original OCT images.

The mass concentration of gold in the GNRs was found to
be 0.92 mg mL−1 measured by ICP-MS. The average diameter
and length of the GNRs were measured to be 18.0 nm and
74.6 nm respectively according to the transmission electron
microscope analysis. The density of a GNR is 19.3 g mL−1. The
theoretical concentration of the GNRs was calculated to be
2.51 × 1012 particles per mL, using the equation:

½GNR�ðparticles permLÞ ¼
mass concentration of Au in theGNR suspension

ðdensity of AuÞ � ðvolume of a singleGNRÞ :

The theoretical particle concentrations of the 800×, 1600×,
3200×, 6400×, and 12 800× diluted GNR solutions were calcu-
lated to be 3.14 × 109, 1.57 × 109, 7.85 × 108, 3.92 × 108, and
1.96 × 108 particles per mL.

Table 1 reports the quantification of GNRs under different
dilutions using the originally acquired OCT images and the AI-
enhanced OCT images, respectively. The quantifications under
different dilutions were standardized to the initial concen-
tration by multiplying the dilution-dependent quantifications
with the corresponding dilution factors. Each ROI represents
one B-scan at different positions of the glass capillary tubes.
We adopted 7 ROIs for each diluted solution to make more
accurate quantification. In an ideal situation, the standardized
particle concentrations of the diluted solutions should be
identical to the particle concentration of the initial solution.
The factor that the dilution changed the resulting particle con-
centrations indicates the interference among OCT signals of
individual GNR. The signal was saturated at higher concen-
trations (800× dilution), resulting in a low particle concen-
tration. Indeed, excluding the 800× dilution in analyzing the
linear regression between measured and theoretical particle
concentrations improved the goodness of the fit. Specifically,
the R2 metric of the fitting line was increased from 0.9584 to
0.9896 based on original OCT images, and increased from
0.9478 to 0.9940 with the AI-enhanced OCT images. Fig. 3a
plots the fitting curve with the 800× dilution excluded. The
linear fitting based on either the original OCT images, interp-
olated OCT images, or the AI-enhanced OCT images obtained
close-to-one R2, meaning the high fidelity of the linear fitting
with the OCT imaging-based quantification technique.
Moreover, AI-enhanced OCT images enabled further improve-
ment of the linear fitting, indicating more accurate and more
robust quantification.

Another finding from Table 1 is that with higher dilution
factors, the relative standard deviation (RSD) also increases,
indicating increased variations during the quantification. WeFig. 2 Example of aggregation.
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assume that at low concentrations, the signal interference was
too weak to make the GNRs detectable and quantifiable.
Indeed, the limit of detection (LOD) and the limit of quantifi-
cation (LOQ)31 analysis showed that most ROIs of the 12 800×
dilution sample had inadequate GNRs for quantification
(Table 1). The high percentage of non-detectable and non-
quantifiable ROIs in all the analyzed ROIs indicates reduced
reliability of the particle concentration quantification.
Therefore, based on Table 1, we consider the suitable dilution
factors to be between 1600 and 6400, which corresponds to the
particle concentration range of 4 × 108–1.6 × 109 particles per
mL. This range may vary depending on the OCT signal inten-
sity of the nanoparticles, and higher OCT signal intensity
could decrease the range of the suitable particle
concentration.

Within the suitable quantification range, the RSD of stan-
dardized particle concentrations of the 1600×, 3200× and
6400× dilutions is 26% and 14% based on the original and AI-
enhanced OCT images, respectively. The smaller RSD provided
by AI-enhanced OCT images indicates the improved robust-
ness of quantification with the proposed AI-enhanced OCT

imaging technique. The averaged particle concentration quan-
tified with AI-enhanced OCT images was higher than those
with original OCT images. While the standard deviation (STD)
of the former is slightly higher, its RSD is lower. Therefore, in
all the ROIs and under various dilution situations, AI-
enhanced OCT imaging enabled the detection and counting of
more GNRs, as well as reduced the variation among ROIs com-
pared with results based on the original OCT images.

The OCT-based quantification results were smaller than the
theoretical particle concentration, regardless of AI enhance-
ment on OCT images. This could be due to the aggregation of
GNRs in the solutions (Fig. 2). The zoom-in boxes show the
detected particles with large areas, indicating substantial par-
ticle aggregations, in which case several aggregated particles
were considered a single particle. To reduce the effect of aggre-
gation in concentration quantification, we developed an algor-
ithm to eliminate the influence of aggregation on particle con-
centration (see section 3).

The aggregation-corrected particle concentration of the
original and AI-enhanced OCT images of the 1600× dilution
was 1.43 × 1012 and 2.50 × 1012 particles per mL, respectively.
Thus, the AI-enhanced OCT image provides a higher accuracy
in the particle concentration quantification.

The linear fitting based on the aggregation-corrected count-
ing is shown in Fig. 3b. The 800× dilution was not included
due to signal saturation, similar to what was done for uncor-
rected samples. In this aggregation correction case, more
GNRs were detected and counted when the concentration was
high. Using AI-enhanced images provides a slightly better
linear relationship between the experimental and theoretical
particle concentrations compared with the original and interp-
olated OCT images. In Fig. 3, only the aggregation-corrected
particle concentration from the AI-enhanced OCT images
showed a slope of approximately 1, indicating that the result-
ing and theoretical particle concentrations are almost identical
in the tested range. The AI-enhanced OCT image evidently
offers higher accuracy in particle concentration quantification.

Table 1 Standardized quantification of particle concentration in the initial GNR solution. The actual quantifications in each ROI with different
dilutions were standardized into the initial concentration by multiplying the corresponding dilution factors and expressed in the unit of (×1011 par-
ticles per mL). “Org-OCT” and “AI-OCT” represent the originally acquired OCT images and the AI-enhanced OCT images, respectively. Values
smaller than LOQ are marked with *, and values smaller than LOD are marked with **.

Dilution factor
800× 1600× 3200× 6400× 12 800×

Method Org-OCT AI-OCT Org-OCT AI-OCT Org-OCT AI-OCT Org-OCT AI-OCT Org-OCT AI-OCT

ROI #1 2.328 4.655 3.550 6.391 1.578 1.894 1.578* 2.525 * 0.631** 0.631**
ROI #2 3.353 5.917 4.103 8.363 2.367 3.629 1.894 3.787 1.262* 2.525*
ROI #3 5.602 9.429 6.628 12.545 4.892 11.677 2.840 4.418 2.525 2.525*
ROI #4 6.628 10.691 9.862 15.701 7.259 14.675 2.840 7.890 5.050* 6.312
ROI #5 6.628 10.612 7.890 14.675 7.890 14.044 3.787 10.730 0.631** 1.262**
ROI #6 8.087 11.638 12.466 18.541 13.886 21.461 9.152 19.567 5.050* 8.206
ROI #7 7.772 12.111 11.914 18.226 12.782 21.776 11.36 22.407 9.468 14.518

Average 5.771 9.293 8.059 13.492 7.236 12.737 4.779 10.189 3.236 5.140
STD 2.182 2.888 3.549 4.687 4.772 7.799 3.863 7.915 3.218 4.962
RSD 38% 31% 44% 35% 66% 61% 81% 78% 92% 97%

Fig. 3 Correlation of OCT-based particle concentrations with theore-
tical concentrations and dilutions. The regression line was obtained
without the 800× diluted sample. (a) No aggregation correction. (b)
With aggregation correction.
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4 Conclusions

We have demonstrated the use of OCT imaging for the quanti-
fication of particle concentrations of nanoparticles with OCT
signals, irrespective of their morphology and size distri-
butions. GNRs were used as an illustrative example. We also
developed a state-of-the-art AI-based super-resolution tech-
nique to enhance the OCT image resolution by two-fold
without using any external dataset for training. We analyzed
the quantification results and the linear relationship between
the GNR counts and theoretical concentrations. Our results
improved the quantification of nanoparticle concentration
through the use of AI-enhanced OCT images compared to
using conventional OCT images. In the future, we will investi-
gate the performance of the proposed method in other diluent
media or tissues.
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