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tetraphenylethene and dibenzo[g,p]chrysene units
for energy storage†
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Mervat Ibrahim,d Meng-Hao Lin,e Cheng-Liang Liu, e Mohsin Ejaz, a

Hung-Ju Yen *c and Shiao-Wei Kuo *a,f

In recent years, the quest for efficient and durable electrode materials for supercapacitors has driven the

development of novel conjugated microporous polymers (CMPs). This study presents the synthesis and

comprehensive characterization of two novel π-conjugated diyne-linked CMPs, TPE-Diyne CMP and

TBN-Diyne CMP, designed as electrode materials for supercapacitors. These Diyne-CMPs were syn-

thesized via a palladium-catalyzed alkyne–alkyne coupling reaction in high yields. Spectroscopic analyses,

including FTIR and NMR, confirmed the distinct chemical structures of TPE-Diyne and TBN-Diyne CMPs,

highlighting the presence of aromatic and alkyne groups essential for their electrochemical properties.

Thermogravimetric analysis (TGA) demonstrated their remarkable thermal stability up to 800 °C under N2.

Furthermore, nitrogen adsorption–desorption measurements revealed high specific surface areas of

428 m2 g−1 for the TPE-Diyne CMP and 256 m2 g−1 for the TBN-Diyne CMP, with well-defined micropor-

osity. Electrochemical performance tests showed that the TPE-Diyne CMP achieved a specific capaci-

tance of 39 F g−1, a capacitance retention of 98% after 2000 charge-discharge cycles and an energy

density of 3.82 Wh kg−1 , indicating exceptional stability and energy storage capability. Meanwhile, the

TBN-Diyne CMP exhibited a specific capacitance of 32.4 F g−1, a cycling stability of 92% and an energy

density of 3 Wh kg−1. These results underscore the significance of TPE-Diyne and TBN-Diyne CMPs as

innovative and highly effective electrode materials for next-generation supercapacitors, offering

enhanced performance and stability. The findings contribute valuable insights into developing advanced

materials for energy storage applications, addressing the growing demand for high-performance super-

capacitors in various technological fields.

Introduction

Due to rising energy demands and the imperative to shift
towards sustainable energy sources,1–10 supercapacitors have
emerged as promising contenders among various energy
storage technologies due to their rapid energy storage and dis-
charge capabilities, complementing traditional batteries and
capacitors.10–15 They boast high power density, swift charging
and discharging rates, and prolonged cycle life, rendering them
appealing for diverse applications spanning from portable elec-
tronics and electric vehicles to renewable energy systems.16–20

The performance of supercapacitors hinges significantly on the
selection of electrode materials, which act as pivotal com-
ponents for energy storage. There has been a notable increase
in interest in investigating novel materials with improved
electrochemical properties to advance supercapacitor techno-
logy. Various materials have undergone thorough exploration
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for electrode construction in supercapacitors, encompassing
carbon-based materials,21–23 metal oxides,24–26 conductive
polymers,27–29 and their composites. Conductive polymers have
garnered significant attention due to their unique conjugated
architectures, exceptional electrical conductivity, mechanical
flexibility, and adjustable physical properties.30–34 Nonetheless,
conventional conductive polymers often suffer from challenges
such as low specific surface areas and significant pore dis-
persion. To address these limitations, researchers are develop-
ing new porous conductive polymers aimed at surpassing these
constraints and maximizing capacitance performance. For
instance, studies have shown that optimizing the porosity and
surface area of conductive polymers can significantly improve
their electrochemical performance. Thus, enhancing the
physicochemical properties of the active material, particularly
by augmenting the specific surface area for improved electrolyte
contact and increasing the conductivity to facilitate efficient
electron/ion diffusion from the electrolyte to the current collec-
tor, can elevate the specific capacity.

By incorporating carbon-based materials or templating
methods to enhance the surface area and control pore size dis-
tribution, researchers have achieved substantial improvements
in specific capacitance and cycling stability.35,36 Conjugated
microporous polymers (CMPs) have emerged as a promising
class of materials for supercapacitor applications, owing to
their distinctive blend of properties. CMPs exhibit a three-
dimensional network structure composed of interconnected
pores at the molecular level.37–44 Within this category,
π-conjugated microporous polymers stand out for their exten-
sive π-conjugated system and intrinsic nanopores.45–52 These
materials boast high surface areas, rendering them well-suited
for gas adsorption. Moreover, they have evolved into a novel
platform for diverse applications, including nanoreactors and
heterogeneous catalysts, through the integration of catalytic
sites within their framework.53–60 The extensive π-conjugated
system inherent in CMPs also confers remarkable light-emit-
ting properties, enabling the development of light-harvesting
structures that effectively channel energy from the framework
to encapsulated acceptors. From a synthetic standpoint, CMPs
provide a unique advantage by allowing precise control over
both their skeletal structures and pore architectures. This level
of control facilitates the customization of CMP properties for
diverse applications, rendering them highly versatile and
promising materials in the realms of materials science and
nanotechnology. Synthesized through the polymerization of
molecular building blocks, CMPs yield highly porous materials
with significant surface areas.47,55 The conjugated backbone of
CMPs imbues them with π-conjugation, thereby facilitating
efficient charge transport within the material.47 Moreover, the
tunable pore size and surface chemistry of CMPs present
opportunities for tailoring their electrochemical properties to
meet specific application requirements.47,55 Due to its excep-
tional semiconductor characteristics, graphdiyne, a type of 2D
material with multiple –CuC– couplings, has already shown
significant potential in various fields such as energy conver-
sion and storage, batteries, solar devices, and catalysis.61–63

Cooper et al. achieved the efficient synthesis of diyne-linked
CMPs using Pd as a catalyst in 2008.64 The rapid dynamic
control and impact of the monomer structure led to the for-
mation of CMPs with completely amorphous structures.47,65–67

This study focuses on synthesizing and characterizing a
novel class of CMPs, namely, TPE-Diyne and TBN-Diyne CMPs,
designed specifically as electrode materials for super-
capacitors. These CMPs are engineered to possess two distinct
porous networks, each tailored to optimize specific electro-
chemical properties relevant to supercapacitor performance.
The synthesis method involves carefully controlled self-
polymerization of monomeric precursors under optimized
conditions to achieve the desired morphology and pore struc-
ture. Comprehensive chemical and physical analyses are con-
ducted to systematically characterize the synthesized CMPs.
Subsequently, these CMPs are evaluated as electrode materials
for supercapacitors using a range of electrochemical character-
ization techniques, including CV, GCD, and EIS. These tech-
niques offer valuable insights into the conduct and functional-
ity of electrochemical CMP electrodes, facilitating a thorough
understanding of their suitability for energy storage appli-
cations. This research aims to contribute to advancing super-
capacitor technology by exploring innovative electrode
materials with enhanced performance and sustainability.

Experimental section
Materials

Dimethylformamide (DMF, 99.8%), triethylamine (Et3N,
99.5%), and palladium tetrakis(triphenylphosphine) [Pd(PPh3)4,
99%] were procured from Sigma-Aldrich. Triphenylphosphine
(PPh3, 99%) was acquired from Acros Organics. Copper(I) iodide
(CuI, ≥99.5%) was obtained from Alfa Aesar. TPE-TMS and
TBN-TMS were synthesized according to our previous work.68–71

Synthesis of TPE-TB

A mixture of K2CO3 (2.0 g, 14.48 mmol) and TPE-TMS (0.97 g,
1.44 mmol) in 25 mL of methanol was agitated overnight at RT
under N2. A pale-yellow precipitate (0.82 g, Scheme S1†) was
obtained after filtration and drying. FTIR (Fig. S1†): 3273, 3042,
2109 (CuC unit). 1H NMR (Fig. S2†): 7.24–6.93 (8H), 3.06 (uC–
H). 13C NMR (Fig. S3†): 144–121.3, 83.86 and 78.19 (uC–H).

Synthesis of TBN-TB

A mixture of K2CO3 (5.0 g, 36.17 mmol) and TBN-TMS (4.17 g,
5.83 mmol) in methanol/DCM (250 mL : 170 mL) was agitated
overnight at RT under N2. Upon filtration, extraction, and
drying, TBN-TB was obtained as an orange solid [3.34 g,
Scheme S2†]. FTIR (Fig. S4†): 2106 (CuC unit). 1H NMR
(Fig. S5†): 3.30 (s, 4H), 8.81–7.73 (12 H). 13C NMR (Fig. S6†):
135.70–78.87 ppm.

Synthesis of the TPE-Diyne CMP

0.21 g of the TPE-TB monomer, 0.009 g of CuI, 0.013 g of PPh3,
and 0.057 g of Pd(PPh3)4 were combined in a 50 mL flask.
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Subsequently, 15 mL each of DMF and Et3N were added as reac-
tion solvents. Afterwards, the reaction mixture was stirred and
heated for 72 h at 110 °C under N2. Upon completion, the
resulting yellow product was subjected to Soxhlet extraction
using THF and MeOH, respectively, to remove unreacted mono-
mers and the Pd catalyst and then dried in an oven at 70 °C.

Synthesis of the TBN-Diyne CMP

0.2 g of the TBN-TB monomer, 0.07 g of CuI, 0.07 g of PPh3,
and 0.05 g of Pd(PPh3)4 were combined in a 50 mL flask.
Subsequently, 15 mL each of DMF and Et3N were added as reac-
tion solvents. Afterwards, the reaction mixture was stirred and
heated for 72 h at 110 °C under N2. Upon completion, the result-
ing dark yellow product was subjected to Soxhlet extraction
using THF and MeOH, respectively, to remove unreacted mono-
mers and the Pd catalyst and then dried in an oven at 70 °C.

Results and discussion
Synthesis and characterization of TPE-Diyne and TBN-Diyne CMPs

The synthesis of TPE-TB and TBN-TB monomers involved the
hydrolysis of their respective TPE-TMS and TBN-TMS mono-

mers in the presence of K2CO3 in methanol at room tempera-
ture for 24 h, as depicted in Schemes S1 and S2.† The new
diyne-linked CMPs, TPE-Diyne and TBN-Diyne, were syn-
thesized under solvothermal conditions. This involved the con-
densation of ethynyl-TPE and ethynyl-TBN monomers in the
presence of Pd(PPh3)4/CuI/PPh3 catalysts, utilizing DMF/Et3N
as a mixed solvent over a period of 3 days (Fig. 1(a) and (b)).
The synthesis yielded a yellow powder for the TPE-Diyne CMP
and a dark yellow solid for the TBN-Diyne CMP, respectively,
with a yield of approximately 97%. Spectroscopic analyses,
including solid-state 13C NMR spectroscopy and FTIR, were
conducted to confirm the distinctive chemical compositions of
TPE-Diyne and TBN-Diyne CMPs [Fig. 2(a)]. In the FTIR
spectra (Fig. 2(b)), notable peaks were seen at 1600 and
1491 cm−1, corresponding to the CvC stretching in phenyl
rings, 2205 to 2217 cm−1 for the –CuC– unit, and 3033 cm−1

for the stretching of aromatic C–H units. In addition, the
alkynyl C–H stretching vibration peaks at approximately
3118 cm−1 in the FT-IR spectra of TPE-Diyne and TBN-Diyne
CMPs [Fig. 2(a)] are notably weaker than those of TPE-TB and
TBN-TB monomers [Fig. S1 and S4†]. The results unequivocally
demonstrated the formation of fully π-conjugated diyne-linked

Fig. 1 Schematic method for the synthesis of the (a) TPE-Diyne CMP and (b) TBN-Diyne CMP.
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CMPs. These characteristic spectral features validated the exist-
ence of alkyne (CuC) and aromatic groups in the Diyne-CMPs
frameworks. Further characterization through solid-state 13C
NMR spectroscopy revealed distinct signals at 142.86 and
131.48–120.82 ppm for CvC and aromatic carbons for the
TPE-Diyne CMP and 130.35–121.96 ppm for aromatic carbons
for the TBN-Diyne CMP [Fig. 2(c), S7 and S8†]. The signal at ca.
80 ppm for CuC groups72 was observed in both TPE-Diyne and
TBN-Diyne CMPs, as illustrated in Fig. 2(c), S7 and S8.†
Additionally, their thermogravimetric analysis (TGA) depicted in
Fig. 2(d) showcased the remarkable stability of both CMPs
under N2 up to 800 °C, with 10% weight losses occurring at
386 °C and 360 °C with char yields of around 68 and 50 wt% for
TPE-Diyne and TBN-Diyne CMPs, respectively. Furthermore, the
absence of crystalline diffraction peaks, as observed in Fig. S9
and S10,† suggested that the TPE-Diyne and TBN-Diyne CMPs
are amorphous, according to X-ray diffraction patterns (XRD).
N2 sorption measurements at 77 K assessed the permanent
porosity of TPE-Diyne and TBN-Diyne CMPs. The rapid N2

adsorption observed at low pressure for both TPE-Diyne and
TBN-Diyne CMPs, as shown in Fig. 3(a) and (b), indicates that
these samples have a microporous structure. The TPE-Diyne
CMP exhibits typical type IV and type I isotherms, suggesting
the presence of both microporous and mesoporous structures

within its framework. In contrast, the TBN-Diyne CMP displays
a type I isotherm, indicating a microporous structure, as illus-
trated in Fig. 3(a) and (b). The typical type IV and I isotherms
exhibited by TPE-Diyne and TBN-Diyne CMPs [Fig. 3(a) and (b)],
respectively, suggest the presence of microporous and meso-
porous structures within their frameworks. Analysis of the
adsorption curves revealed Brunauer–Emmett–Teller (BET)
specific surface areas of 428 and 256 m2 g−1 for TPE-Diyne and
TBN-Diyne CMPs, respectively. Moreover, the total pore volumes
(Vtotal) of TPE-Diyne and TBN-Diyne CMPs were determined to
be 0.24 and 0.31 cm−3 g−1, respectively, based on N2 adsorption
measurements. Furthermore, the pore size distribution (PSD)
study conducted using the NLDFT model unveiled the presence
of distinct micropores and mesopores, with average sizes of
1.66 and 2.95 nm for the TPE-Diyne CMP and 1.80, 2.19, and
2.77 nm for the TBN-Diyne CMP, respectively [Fig. 3(c) and (d)].
SEM images revealed irregularly shaped nanorods with aggre-
gated spherical particles for the TPE-Diyne CMP [Fig. S11(a and
b)†] and irregularly aggregated spheres for the TBN-Diyne CMP
[Fig. S11(c and d)†]. Additionally, SEM-EDS data [Fig. S11(e–h)†]
confirmed the presence of aromatic carbons (C atoms) within
both CMP frameworks. The porous structure and lack of long-
range order in both CMPs were verified by TEM pictures
[Fig. S11(i–l)†].

Fig. 2 (a) Molecular structures, (b) FTIR, (c) solid-state 13C NMR, and (d) TGA profiles of TPE-Diyne and TBN-Diyne CMPs.
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Electrochemical performance of TPE-Diyne and TBN-Diyne CMPs

The electrochemical performance of TPE-Diyne and
TBN-Diyne CMPs were evaluated using CV and GCD tech-
niques in a three-electrode setup. The aqueous solution con-
taining 1.0 M KOH served as the electrolyte. The reference,
counter, and working electrodes were Hg/HgO, platinum, and
glassy carbon, respectively. CV curves for TPE-Diyne and
TBN-Diyne CMPs are depicted in Fig. 4(a) and (b), respectively,
covering a potential range of −1.0 to 0.0 V (vs. Hg/HgO) at
varying scan rates from 5 to 200 mV s−1. Both CMPs exhibited
CV curves with a characteristic rectangular-like humped shape
that remained consistent across scan rates, indicating stability
during the current sweep and capacitive behavior typical of
electric double-layer capacitors (EDLCs).73–77 The emergence
of redox peaks in the cyclic voltammetry analysis of these fully
π-conjugated, diyne-linked CMPs can be attributed to their
unique structural characteristics. TPE-Diyne and TBN-Diyne
CMPs possess a π-conjugated structure, enabling the delocali-
zation of π-electrons along the polymer backbone. Moreover,
the presence of electron-rich phenyl groups within the CMPs
facilitates the donation of electrons during redox processes,
leading to the formation of radical species. These radical
species contribute to the observed redox peaks in the cyclic

voltammetry curves. Additionally, TPE-Diyne and TBN-Diyne
CMPs often exhibit pseudocapacitive behavior arising from far-
adaic redox reactions occurring at the surface or within the
pores of the material. The high surface area and well-defined
microporous structure of TPE-Diyne and TBN-Diyne CMPs
provide ample active sites for ion adsorption and redox reac-
tions, thereby facilitating the appearance of redox peaks in the
electrochemical profiles. Moving forward, the materials’ capa-
citances and GCD patterns were investigated in a range of
current densities from 0.5 to 20 A g−1 [Fig. 4(c) and (d)]. A
bowed-triangle structure was seen in all GCD curves,
suggesting a mixture of EDLC and pseudocapacitive character-
istics, likely attributed to the unique structural characteristics
explained above. Both CMPs had longer discharging times
than charging times, which may indicate increased capaci-
tance. Notably, the TPE-Diyne CMP exhibited a longer dischar-
ging time than the TBN-Diyne CMP, indicating a higher capaci-
tance. To accurately understand the charging harvesting
mechanism, it is essential to calculate the percentages of
surface-controlled capacitive and diffusion-controlled pro-
cesses contributing to the total charge obtained (Qtotal) [eqn
(1)]. In accordance with the Trasatti approach,78,79 in this scen-
ario, following the application of the potential sweep rate to its
maximum value, only the surface activities took place, and the

Fig. 3 (a and b) N2 sorption isotherms and (c and d) PSD profiles of the TPE-Diyne CMP (a and c) and TBN-Diyne CMP (b and d).
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stored charge corresponds to the outer charge (Qouter), as illus-
trated in Fig. 5(a) and (b).

Q ¼ Qouter þ Kv0:5 ð1Þ

where v (mV s−1) is the potential sweep rate, K is a constant,
and Q is the capacity (C g−1) derived from each CV at a compar-
able potential sweep rate. To obtain the value of Qouter, the
intercept of the Q versus v−0.5 plot was used. Furthermore, a

Fig. 4 (a and b) CV curves and (c and d) GCD curves of the (a and c) TPE-Diyne CMP and (b and d) TBN-Diyne CMP.

Fig. 5 (a and b) Relationship between Q (C g−1) and v−0.5 (mV s−1)−0.5, (c and d) 1/Q vs. v0.5 (mV s−1)0.5, and (e and f) percentage of surface contri-
bution and diffusion contribution for (a, c and e) TBN-Diyne CMP and (b, d and f) TPE-Diyne CMP electrodes.
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lower scan rate allows for longer time intervals for ion
diffusion. Conversely, the total charge (Qtotal), which can be
determined from the plot of (1/Q) versus v0.5, as presented in
Fig. 5(c) and (d), represents the stored charge in this scenario
when the potential scan rate drops to its lowest values, allow-
ing sufficient time for ion diffusion. This can be obtained
using the following equation (2).

1
Q
¼ 1

Qtotal
þ Kv0:5 ð2Þ

Considering all of these factors, the electrodes for
TBN-Diyne and TPE-Diyne CMPs exhibit outer charges of 1179
and 2098 C g−1, respectively, and total charges of 8071 and
12 755 C g−1, respectively. The surface and diffusion-controlled
capacitive behaviors at different scan rates are illustrated in
Fig. 5(e) and (f). The specific capacitance graphs of the
TBN-Diyne and TPE-Diyne CMPs are also shown in Fig. 6(a). At
a current density of 0.5 A g−1, the TPE-Diyne and TBN-Diyne
CMPs show capacitances of 39.0 and 32.4 F g−1, respectively.
Benefiting from its distinctive chemical composition and a

specific surface area of 428 m2 g−1, the TPE-Diyne CMP
demonstrates superior performance compared to alternative
materials. Additionally, the cycling stabilities of the TBN-Diyne
and TPE-Diyne CMPs were investigated over 2000 cycles [10 A
g−1]. The TPE-Diyne CMP exhibited a higher capacity retention
(98%) compared to the TBN-Diyne CMP (92%), indicating
stability over extended cycling, even at high current densities
[Fig. 6(b)]. Furthermore, both TPE-Diyne and TBN-Diyne CMPs
demonstrated extraordinary energy densities of 3.82 and 3 Wh
kg−1, respectively [Fig. 6(c)]. In comparison with other CMPs
and porous materials utilized as organic electrodes for super-
capacitor applications, our TPE-Diyne and TBN-Diyne CMPs
exhibited outstanding energy storage performance [Fig. 6(d)].
The EIS method was used to investigate the electric resistance
provided by different electrodes during the ion diffusion
process. Several Nyquist plots, featuring identical fitted cir-
cuits, are presented in Fig. 7(a), aiding in the determination of
various electrode characteristics such as Rs (series resistance)
and Rct (charge transfer resistance). The fitting circuit diagram
in Fig. 7(b) represents these features as Rs (series resistance),

Fig. 6 (a) Specific capacitance, (b) cycling stability, (c) Ragone plot, and (d) electrochemical efficiency of TPE-Diyne and TBN-Diyne CMP electrodes
with other organic precursors.
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Rct (charge transfer resistance), CPE-EDL and CPE-P (two con-
stant phase elements), and Zw (Warburg element). The initial
Rs values of the TPE-Diyne and TBN-Diyne CMPs electrodes
were found to be 9.30 and 22.38 Ω, respectively. Despite the
TPE-Diyne CMP electrode exhibiting lower Rs and Rct than the
TBN-Diyne CMP electrode, both displayed high specific
capacities. Fig. 7(c) displays Bode plots depicting the fre-
quency-dependent magnitude, revealing the remarkable
capacitive characteristics of these electrodes. The plots
feature slanted lines with negative slopes at lower frequen-
cies, indicating their capacitive behavior while demonstrating
minimum resistances at higher frequencies. Furthermore,
the knee frequencies, identified at a phase angle of 45°, were
determined utilizing the frequency-dependent phase angle
data, as illustrated in Fig. 7(d). This observation signifies the
electrodes’ balanced capacitive and resistive attributes. The
knee frequencies for the TPE-Diyne and TBN-Diyne CMPs
were found to be 803 and 2365 Hz, respectively. In con-
clusion, both the TPE-Diyne and TBN-Diyne CMPs exhibited
remarkable efficiency as electrode materials for energy
storage applications.

DFT calculations of TPE-Diyne and TBN-Diyne CMPs

The electrical and molecular structures of CMPs determine
their charge storage capacities and redox characteristics. As a
result, using the Gaussian 09W software, density functional
theory (DFT) computations were performed at the B3LYP/6-
31G(d) level to study the link between the chemical structure
and the electrochemical performance. To address the effect of
long-range and non-covalent interactions, the D3BJ dispersion
correction was considered. Additionally, the global minimum
of each conformer in ground-state geometry was investigated
by harmonic vibrational frequency to acquire the lowest energy
conformer for further analysis. The molecular electrostatic
potential (MESP), the lowest unoccupied molecular orbital
(LUMO), and the highest occupied molecular orbital (HOMO)
were computed at optimized geometries employing identical
levels of theory [Fig. 8(a) and (b)]. The frontier molecular orbi-
tals of TPE-Diyne and TBN-Diyne CMPs are shown in Fig. 8(a)
and (b).

The degree of LUMO distribution dominates the electro-
chemical performance of both CMPs. For both TPE-Diyne and

Fig. 7 (a) Nyquist plots, (b) fitted circuits, (c) Bode plots of frequency vs. the magnitude of resistance, and (d) Bode plots of frequency vs. the phase
angle to determine the knee frequency of TPE-Diyne and TBN-Diyne CMPs.
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TBN-Diyne CMPs, LUMO orbitals were highly delocalized and
spread over the conjugation backbones. Additionally, the
energy levels of TPE-Diyne and TBN-Diyne CMPs are compar-
able. However, based on their molecular geometry, the mole-
cular planarity of TPE-Diyne and TBN-Diyne CMPs is signifi-
cantly different. Due to the strong steric hindrance of two
benzene rings linked to the ethylene structure, the TPE-Diyne
CMP would have a non-planar structure. The TBN-Diyne CMP,
on the other hand, has well-defined planarity due to its fused
ring topology. This variation in molecule geometry may have
an additional effect on their macroscale aggregation behavior.
Because of the well-defined planarity, the TBN-Diyne CMP self-
aggregation would be severe owing to π–π-stacking. Therefore,
the TBN-Diyne CMP would have a lower surface area compared
to the TPE-Diyne CMP. A larger surface area would correspond
to more active sites, resulting in improved capacitance per-
formance in the TPE-Diyne CMP. Consequently, due to greater
delocalization of molecular orbitals and a higher surface
area, the TPE-Diyne CMP would achieve better electrochemical
performance.

Conclusions

In summary, two robust diyne-linked CMPs derived from
TPE-Diyne and TBN-Diyne were successfully synthesized
using the Pd-catalyzed coupling technique for their respect-
ive monomers (TPE-TB and TBN-TB). Based on TGA data,
TPE-Diyne and TBN-Diyne CMPs exhibited Td10 values of up

to 380 and 360 °C, respectively, under a nitrogen atmo-
sphere. Moreover, it was noted that the CMPs exhibited dis-
tinct microporosity and significant specific surface areas,
with the TPE-Diyne CMP measuring 428 m2 g−1 and the
TBN-Diyne CMP reaching 256 m2 g−1. With a specific capaci-
tance of 39 F g−1 and an impressive capacitance retention of
98% after 2000 cycles [measured at 10 A g−1], the TPE-Diyne
CMP demonstrates significant promise for supercapacitor
applications. With full π-conjugation, a diyne structure, and
a high surface area, the present study could pave the way for
exploring novel approaches for constructing porous Diyne-
CMPs with promising applications in energy storage or
photocatalysis.
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