Polymer Chemistry

View Article Online View Journal

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: W. Zhu, X. Ma, P. Liang, Z. Zhao, J. Chen, X. Wang, Y. Zhou and X. Jiang, *Polym. Chem.*, 2024, DOI: 10.1039/D4PY01383B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/polymers

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Efficient and Simplified Strategy to Access Novel Polysulfamate Materials: from Laboratory Research to Industrial Production

Xingyu Ma,^{a+} Pengqiang Liang,^b Zhongqiang Zhao,^c Jinwei Chen,^b Xueqing Wang,^c Yunbin Zhou,^c Xianxing Jiang*a and Weiwei Zhu*a+

The development of materials from laboratory research to industrial production is a complex, challenging, but significant process. Polysulfamates are not industrial available to date because of the absence of efficient and economical synthetic methods. Herein, a comprehensive process for development of novel polysulfamate (PSA) materials from laboratory research to industrial manufacture was reported. PSAs were prepared in high molecular weight and narrow polydispersity through nucleophilic polycondensation between aryl bisphenols and disulfamoyl difluorides in the presence of inorganic base. The polymerization process was moisture and air stable. The industrial production of PSAs were achieved on 100 kg-Scale with the assistance of cooperative factory for the first time. PSAs displayed excellent solvent tolerance, acids/bases resistance, thermal stability, machinability and mechanical properties, which were promising for their applications in the area of engineering plastics, as well as high-performance resins.

Introduction

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 26 February 2025. Downloaded on 2/26/2025 10:21:01 PM

Sulfur (VI) fluoride exchange (SuFEx) reaction is an efficient and rapid method to synthesize functional molecules containing (poly)sulfates, (poly)sulfonates and sulfamates,^{1,2} which has been widely applied in the fields of organic synthesis, materials science, pharmaceutical chemistry and bio-chemistry.³⁻⁵ In material chemistry, especially, polysulfates and polysulfonates with excellent properties have been synthesized successfully through the SuFEx reaction.⁶ Besides, this new click reaction has also been instrumental in the formation of S(VI)-N bonds,⁷ resulting in the construction of sulfonamides, sulfamates, and sulfamides.^{8,9} Sulfamides are valuable motifs which can be found in therapeutic applications^{10,11} and catalytic synthesis of pyrimidine systems,^{12,13} as well as polymer synthesis.^{14,15} However, despite their good performance in bioactive compounds, sulfamates are comparatively underexplored for the challenges existing in the synthesis of sulfamates. Especially, polysulfamate (PSA) materials are not available to date because of the absence of efficient and economical synthetic method. Mahapatra S. et al. reported an advanced process to synthesis of nitrogenous sulfur(VI) compounds.¹⁶ Compared to traditional synthetic protocols, S(VI) fluorides were activated by calcium triflimide and DABCO for SuFEx with amines (Fig. 1, a1). The

stoichiometric utilization of $Ca(NTf_2)_2$ and DABCO set up a barrier for the large scale synthesis of PSAs.

With the progress of science and technology, it is of great significance for modification of existing materials or development of new materials.^{17,18} We previously reported a nucleophilic process to construct sulphate bonds through the reaction of aryl phenols and aryl fluorosulfates (Fig. 1, a2).¹⁹ Polysulfates are promising engineering polymers due to their

Fig. 1 Reaction of sulfonyl fluorides and nucleophilic reagents excellent mechanical and chemical properties.¹⁹⁻²¹ Thus, we hypothesized that the reaction between aryl phenols and R_2N -

^a State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

^{b.} College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

^c Inner Mongolia Tuwei New Material Technology Co., LTD, Mengxi Industrial Park, Etoke Banner, Erdos 016062, China.

⁺ Zhu W. and Ma X. contributed equally to this work.

^{*}Corresponding authors. Email: zhuww8@mail.sysu.edu.cn.

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

Journal Name

SO₂F in the presence of inorganic bases (IOB) could be applicable for synthesis of sulfamates. We proposed that polymers bearing sulfamate bond instead of sulfate bond may lead to PSA with the properties of good tenacity, machinability and mechanical performance.

Materials science plays an indispensable role in the progress of sciences, inheriting civilizations and development of human society.²²⁻²⁴ The purpose of laboratory research is to provide primary products and technical services for industrial production. Generally, the development of materials from laboratory research to industrial production and commercial applications is a complex, challenging and protracted process.²⁵ For example, polycarbonates (PCs) were firstly prepared by Einhorn in 1898 while the widely used PC produced from bisphenol A (BPA) was prepared in 1941.²⁶ The polymerization of vinyl chloride in sealed tubes was reported in 1872 while the commercial interests in poly(vinyl chloride) was revealed in 1928.²⁷ Polyethylene (PE) was produced from ethylene in 1936 by Fawcett, and all commercial PE was produced by highpressure processes until the mid-1950s.28 Therefore, substantial efforts should be made to achieve the scale-up and industrial production of PSA, which is necessary to support the industrial applications of PSAs.

The goal of our research is to develop an efficient and costeffective protocol to access polysulfamates with high molecular weight and low polydispersity index (PDI) both in laboratory research and industrial production. Herein, we report a simplified method to access sulfamates (Fig. 1, b1) and polysulfamates (Fig. 1, b2) efficiently through the reaction between aliphatic sulfonyl fluorides and aryl phenols in the presence of IOBs. We also evaluated the physical and chemical properties of the polysulfamates. This study aims to bridge the gap between laboratory research, industrial production, and practical applications of PSAs.

Results and discussion

Nucleophilic construction of sulfamate bond

We began our study by treating pyrrolidine-1-sulfonyl fluoride (1a) with 4-(2-phenylpropan-2-yl) phenol (2a) in the presence of K₂CO₃ in N,N-dimethylformamide (DMF) (Conditions screening see Supporting Information section 2.1 for details).¹⁹ To our delight, the corresponding sulfamates could be obtained in excellent yields when the reaction was carried out at 135°C. Fig. 2 shows the substrate scope of this nucleophilic sulfamate bond-construction reaction. Various aliphatic sulfonyl fluorides can react with aryl phenols, affording the desired sulfamates in excellent yields. Wherein, piperidine-1-sulfonyl fluoride displayed higher reactivity with aryl phenols than pyrrolidine-1sulfonyl fluoride under the reaction conditions (Fig. 2). These results inspired us to try polycondensation between disulfamoyl difluorides and aryl diphenols.

Fig. 2 Substrates scope of nucleophilic construction of sulfamate bond

Laboratory research of PSA

Laboratory synthesis of PSAs. In general, the nucleophilic substitution reaction between aryl fluorosulfates and aliphatic amines (see Supporting Information section 3.1 for details)⁷ or the reaction between aryl bisphenols and alkylsulfamoyl fluorides could afford the desired PSAs (Fig. 1). However, our Table 1 Conditions screening for the synthesis of P1^a

0 F-S-N_N-S 0 A1	-F+	$\bigcup_{OH} \frac{\text{base, solv}}{\Delta}$		→ → -0-ÿ- 0 -0-ÿ- 0 -0-ÿ- 0 0 -0-ÿ- 0 0 0 -0-ÿ- 0 0 0 -0-ÿ- 0 0 0 0 0 -0-ÿ- 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N
Entry	Base	Solvent	T∕°C	<i>M</i> _n ^{PS} /kDa	PDI
1	Na_2CO_3	DMF	25		
2	Na_2CO_3	sulfolane	80	1.26	1.80
3	K_2CO_3	sulfolane	80	1.48	1.93
4	Na_2CO_3	DMF	135	61.49	1.59
5	K_2CO_3	DMF	135	77.84	1.58
6 ^{<i>b</i>}	K_2CO_3	DMF	135	69.52	1.69
7 ^c	K_2CO_3	DMF	135	64.79	1.66
8	K_2CO_3	DMF	150	42.17	1.49
9 ^b	K_2CO_3	DMF	150	44.57	1.52
10 ^d	K_2CO_3	DMF	150	61.38	1.66
11 ^{b,d}	K_2CO_3	DMF	150	60.72	1.68
12	K ₂ CO ₃	sulfolane	150	155.02	1.65
13	K_2CO_3	NMP	150	49.73	1.53
14	K_3PO_4	sulfolane	150	76.83	1.68
15	Na_3PO_4	sulfolane	150	65.32	1.72
16	CaCO₃	sulfolane	150		

^aThe reaction was carried out with 2.5 mmol A1 (1.00 equiv) and B1 (1.01 equiv) in 5 mL of solvent in the presence of 2.2 equiv of base for 6 h. ^b10 mL of DMF was used. ^c1.1 equiv of base was used; ^dThe reaction time was carried out for 12 h. *T*, External temperature. *M*^{PS}, number-average molecular weight with polystyrene as standard. PDI, poydispersity index.

conditions screening experiments showed that the reaction between aryl bisphenols and alkylsulfamoyl fluorides was the preference to obtain PSA with higher M_n and narrow PDI.

ARTICLE

Journal Name

Conditions screening of the polycondensation (Table 1) was evaluated on the basis of previous work¹⁹ by using A1 and B1 as the model monomers. When the polycondensation was carried out at 25°C in the presence of Na₂CO₃ for 6 h in DMF, no desired polymer was observed (Table 1, entry 1). Then we increased the reaction temperature to 80°C, after 6 h, both Na₂CO₃ and K₂CO₃ promoted the polycondensation and gave the polysulfamate P1 with $M_n^{PS} = 1.26$ kDa (PDI = 1.80) and $M_n^{PS} = 1.48$ kDa (PDI = 1.93), respectively (Table 1, entries 2 and 3). These results indicated that the polycondensation reaction between A1 and **B1** could be promoted by K_2CO_3 or Na_2CO_3 . The M_n^{PS} of **P1** was dramatically improved to 61.49 kDa (PDI = 1.59) with quantitative yield by increasing reaction temperature to 135°C in the presence of Na₂CO₃ (Table 1, entry 4), while K₂CO₃ exhibited better promotion performance for this reaction (Table 1, entry 5). Reducing reaction concentration or the amount of base could result in **P1** with lower M_n^{PS} (Table 1, entries 6 and 7). The polycondensations carried out at 150°C did not show superior results compared with that at 135°C, producing **P1** in lower M_n^{PS} (42.17-60.72 kDa vs 77.84 kDa) with relatively unchanged PDI (Table 1, entries 8-11). This might be because of the decomposition of the solvent under the high temperature. Then we tried sulfolane and NMP, and the results indicated sulfolane is the best choice when the reaction was

Table 2 Synthesis of PSAs from diverse building blocks^{a,b}

	F-S-NN-S-F + 0 A1-A4	HO-Ar B1-B7	OH Sulfol	¹ 3 (2.2 equiv) lane (0.5 M) 50°C, 6 h		Ar - 0 = 0	
F0 H0 Y = C(C Y = S	$D_2S \rightarrow N \rightarrow SO_2F$ A1 $Y \rightarrow OH HO'$ $H_{3/2}, B1; Y = 0, B2;$ $B3; Y = SO_2, B4$	FO ₂ S-N A2 B5	N-SO ₂ F	FO ₂ S ^{-N} A3 ^{3C} CF ₃ OH B6	N ^{-SO₂F FO₂S-}		С в
PSA	Mon.	Mn ^{₽S} ∕kDa	PDI	PSA	Mon.	M ^{, PS} /kDa	PDI
P1	A1 + B1	155	1.65	P15	A3 + B2	81	1.53
P2	A1 + B2	110	1.56	P16	A3 + B3	63	1.61
P3	A1 + B3	90	1.41	P17	A3 + B5	103	1.61
P4	A1 + B4	45	1.43	P18	A3 + B6	120	1.57
P5	A1 + B5	60	1.34	P19	A3 + B7	47	1.41
P6	A1 + B6	67	1.71	P20	A3 + B8	72	1.45
P7	A1 + B7	45	1.27	P21	A4 + B1	64	1.52
P8	A1 + B8	140	1.69	P22	A4 + B2	44	1.51
P9	A2 + B1	42	1.50	P23	A4 + B3	37	1.71
P10	A2 + B2	85	1.64	P24	A4 + B5	37	1.51
P11	A2 + B3	34	1.57	P25	A4 + B6	66	1.44
P12	A2 + B7	96	1.50	P26	A4 + B7	40	1.38
P13	A2 + B8	35	1.50	P27	A4 + B8	32	1.59
P14	A3 + B1	64	1.46	P28 ^c	A1 + B1 + B7	167	1.60

^aThe reaction was carried out on 2.5 mmol scale in sulfolane (0.5 M) at 150°C for 6 h in the presence of K₂CO₃ (2.2 equiv.); ^bFor structures of the polymers, see Supporting Information section 3.2.2 for details; ${}^{c}n_{A1}:n_{B1}:n_{B7} = 1:0.9:0.1; M_{n}^{PS}$, number-average molecular weight with polystyrenes as standard; PDI, polydispersity index; Mon., monomers. carried out at 150°C, giving **P1** in high molecular weight (M_0^{PS} = 105.10 kDa) and narrow PDI (1.58) with quantitative yield (Table

ARTICLE

1, entry 12). When the reaction was $carried_{iev}$ $put_{icle} n_{iev} N_{e}$ methylpyrrolidone (NMP), there was no better 艳貌化作品语 3, entry 13). The employment of K₃PO₄ or Na₃PO₄ did not show superior results as well (Table 1, entries 14 and 15). Alkalineearth metal carbonates such as MgCO₃, CaCO₃ and BaCO₃ could not promote the reaction (Table 1, entry 16). We did not investigate the higher reaction temperature because the attacks of base on R₂N-SO₂F, decomposition of the solvent and oxidation of aryl phenol at high temperature had negative effect on the polycondensation. We now got the optimal conditions (Table 1, entry 12) for this polycondensation reaction to synthesize of PSAs.

With the optimal conditions in hand, then we examined monomers with various groups to verify the application scope of our process, and the results are shown in Table 2. As shown in Table 2, both aliphatic chains or rings of disulfamoyl difluorides could react with aryl diphenols bearing different groups to produce PSAs with M_n^{PS} ranging from 32 kDa to 167 kDa (see Supporting Information section 4.1 for details) and narrow PDI (1.34-1.71). Aryl diphenols with large steric hindrance could be applied to this method to afford the target polymers (P7, P8, P12, P13, P19, P20, P26 and P27). We found that the molecular weights of P13 and P27 were relatively low, whereas those of P8 and P20 were relatively high. The results suggested that steric hindrance is not the sole determining factor and the polymer may also be influenced by the reactivity of the monomers and the polymerization process. In addition, polymerization involving B7 as the bisphenols partner may be unsuitable due to the presence of the lactone under the conditions of base and high temperature (P7, P12 and P26). Copolymerization of A1, B1 and B7 could also provide the polymer in high M_n and narrow PDI (**P28**).

Fig. 3 Mechanism study.

Possible mechanism. A nucleophilic polycondensation process was proposed for the formation of PSA (taking the reaction of A1 and B1 as an example, Fig. 3b) according to previous work^{19,29} and control experiments results (When IOBs were absent from the polycondensation reaction, the desired P1 couldn't be obtained, Fig. 3a). At first, K₂CO₃ reacted with aryl bisphenol A (B1) to form potassium 4,4'-(propane-2,2diyl)diphenolate (BPA-K) at high temperature with generation of H₂O and CO₂, then the nucleophilic polycondensation reaction carried out between BPA-K and A1 and the chain propagation were proceeded with the reaction time prolonged, affording the desired polymer with releasing of KF. In a word, the polycondensation including a "salifying-nucleophilic attackchain propagation" process. In addition, the by-products

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 26 February 2025. Downloaded on 2/26/2025 10:21:01 PM

ARTICLE

(water, CO₂ and KF) of our method are widely used industrial raw materials,³⁰ which lowers the production cost.

Scale-up synthesis of P1. To meet the requirements of industrial manufacture, scale-up polymerizations were investigated (taking synthesis of P1 as an example), and the 100 g-scale experiment showed that P1 with high M_n (148 kDa) and narrow PDI (1.82) was obtained in 97% yield (see Supporting Information section 3.3 for details). From the results, we found that our protocol was very promising for industrial production of PSAs. In next step, we may focus on the industrial production and commercial applications of PSAs.

Characterizations of PSAs. To further investigation the engineering applications, the thermal, mechanical and chemical properties of PSAs were measured. In line with the T_q values (ranging from 102.2°C to 234.8°C) of PSAs (see Supporting Information section 4.2 for details), the polymers were amorphous because we found that no crystalline melting or crystallization peaks were identified (see Supporting Information section 7.3 for details).³¹ The PSAs exhibited excellent thermal stability according to TG analysis: a weight loss of 5% occurred at 290–350°C (Fig. S2). The T_q and T_d of polymers with flexible blocks were lower than those of the polymer with rigid blocks (for examples: P2, P3 vs P1; P14 vs P1 and P1 vs P7, P8). The stability experiments of P1 displayed that even though P1 were soaked in strong acid (conc. HNO3 and HCl) or NaOH solution (40%) for 7 days, the shape and mechanical properties of the polymers were maintained. The results indicate that PSA materials are promising highperformance acid-alkali resistant polymers. The polymers also had the property of solvents resistance (for details and other properties of P1, see Supporting Information section 4.4).

Table 3 Mechanical properties of polymers ^{a,b}							
	Tensile	Elastic	Flexural	Flexural			
Polymer	strength	modulus	strength	modulus			
	(MPa)	(MPa)	(MPa)	(MPa)			
P1	75	3500	94	3531			
P9	77	3600	98	3560			
P14	55	2300	75	2500			
P21	71	3500	91	3500			
PC	60	2500	79	2500			
PSU	68	2600	88	2600			
PA 6	60	2300	65	2340			

^aPC (polycarbonate), PSU (polysulfone) and PA 6 (Polyamide 6) were applied as contrasted polymers. ^bP1 with $M_n^{PS} = 155$ kDa, P9 with M_n PS = 42 kDa, **P14** with $M_n PS = 64$ kDa and **P21** with $M_n PS = 64$ kDa were applied.

Table 3 shows the mechanical properties of the polymers. P1, P9, and P21 exhibit high mechanical strength, with tensile strengths of 75 MPa, 77 MPa, and 71 MPa, respectively. The tensile and flexural strengths of PSAs with flexible blocks (P14) were lower than those of polymers with rigid blocks (for mechanical properties testing details, see Supporting Information section 4.3). Compared to polycarbonate,¹⁹ polysulfone,19 and polyamide 6, the newly synthesized polysulfamates exhibit high strength and modulus, demonstrating their potential applications as engineering materials.

View Article Online Industrial production and applications of PSAS 1039/D4PY01383B

Industrial production of P1. Industrial production is the key issue of commercial applications of materials. In our lab research, 1000 gram-scale synthesis of P1 was synthesized and this was the foundation for further large-scale production. With the cooperation of Inner Mongolia Tuwei new material Technology Co., LTD., conditions for scale-up production of P1 were optimized and hundreds kilogram of **P1** with high M_n (158) kDa) and narrow PDI (1.63) were produced successfully. After postprocessing including granulating, washing, removing of salts, solvent recovery and drying, the material was used in next application step without other modifications.

We evaluated the mechanical properties of industrial P1 products (M_n^{PS} = 110 kDa, PDI = 1.61) and found that their mechanical strength was comparable at both the 1000 g and 100 kg production scales. This finding indicates that the polymer's mechanical properties remain stable during largescale industrial production (see Supporting Information section 5 for details).

Processing of PSAs. Machinability is important for engineering materials,³² thus, the machinability of PSAs should be evaluated for investigation of their further applications. Four PSAs with different structures (P1, P9, P14, and P21) were selected to assess the processability of PSA. As shown in Fig. 4, PSA polymers can be processed to yield industrial resin raw materials. The PSA resin is amber and transparent (Fig. 4a), and the film exhibits good transparency (Fig. 4b). This further indicates that all four polymers possess amorphous structures, in agreement with the DSC results.³³

Fig. 4 Machinability and applications of PSAs. (a) PSA resins, (b) PSA films and (c) processing products using P1.

Applications of PSAs. Due to their excellent mechanical properties, chemical resistance, and thermal stability, PSA materials have broad application potential in various fields, such as automotive plastic parts and acid-alkali resistant

Journal Name

View Article Online

containers.³⁴ Fig. 4c shows the application products of **P1**. For example, wafer cassettes are commonly used in acid-base processes within the semiconductor etching industry to carry and transport wafers.³⁵ After being used for 30 days, there were no changes in performance of the wafer cassette prepared using **P1**, which indicated PSA materials could be applied in acid and alkali resistant conditions.

Conclusions

In conclusion, we developed an efficient method to construction of sulfamate bond. Applying this method, PSA materials were produced both in laboratory and chemical factory successfully. PSAs possess the properties of lower production costs, higher T_g and mechanical strength than PSEs. The research of PSA from laboratory synthesis to industrial production is a successful example of the combination of study, research and production. Our work would make significant contributes to the development of sulfonic materials, as well as materials science. The application researches of PSAs are in progress in our lab and the cooperative enterprises.

Experimental

General procedure for laboratory synthesis of PSA. Aryl phenols (2.50 mmol, 1.0 eq) and alkylsulfamoyl fluorides (2.55 mol, 1.02 eq) were combined in a 25 mL glass vial equipped with magnetic stir bar. Sulfolane (5.0 mL) was added, and the vial was placed into a preheated 150°C oil bath with stirring. After 2 min, commercially available anhydrous K₂CO₃ (2.2 eq) was added in one portion. The reaction was run for 6 hours, during which course the reaction mixture turned highly viscous while the moisture appeared. At the end of the reaction, it was allowed to cool to 70°C and the mixture was slowly poured into 50 mL of cold water under vigorous stirring. Polymers precipitated as white fiber or powder once the sulfolane solution touched the water. The polymers were collected via filtration and then refluxed in water for 1 h to remove the salts and sulfolane. Finally, the polymers were dried at 40°C for 12 hours in vacuo. Molecular weight and polymer distribution were determined on GPC. The thermal properties were determined by DSC and TGA analysis.

Industrial production of P1. The 100 kg-scale P1 was produced in Inner Mongolia Tuwei new material Technology Co., LTD. Generally, under N₂ atmosphere, A1 (70.78 kg) and BPA (64 kg) were dissolved in sulfolane (450 kg) in 1000 L steel reactor. And K₂CO₃ (85.23 kg) was added (within 30 min) to the reaction mixture when the temperature was raised to 170°C. The moisture was removed by N₂ and collected by condensing. After reaction, the crude product P1 was postprocessed including granulating, washing, removing of salts, solvent recovery and drying. The obtained P1 was used without other modifications of processing.

Author Contributions

Z.W. and J.X. conceived the experiments and led the project. M.X., L.P., C.J., Z.Z. W.X. and Z.Y. performed most experiments. Z.W. and M.X. wrote the manuscript.

Conflicts of interest

DOI: 10.1039/D4PY01383B The authors have filed a patent application (CN111072966B), on materials reported in this manuscript and are working to commercialize advanced PSAs.

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (No. 91853106), Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (No. 2023B1212060022), Guangdong Provincial Key Laboratory of Construction Foundation. Shenzhen Science and Technology Program (No. JSGG20200225153121723), and the Department of Education of Guangdong Province, China (No. 2020KQNCX016), and Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (No. 23ptpy40). We also wish to thank Inner Mongolia Tuwei new material Technology Co., LTD. for its supports.

References

- 1 J. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Fokin, Angew. Chem., Int. Ed. Engl., 2014, **53**, 9466–9470.
- 2 S. Li, P. Wu, J. E. Moses and K. B. Sharpless, Angew. Chem., Int. Ed. Engl., 2017, 56, 2903–2908.
- 3 Z. Liu, G. Meng, T, Guo, J. Dong and P. Wu, *Curr. Protoc. Chem. Biol.*, 2019, **11**, e64.
- 4 J. Yatvin, K. Brooks and J. Locklin, Chem. Eur. J., 2016, 22, 16348–16354.
- D. E. Mortenson, G. J. Brighty, L. Plate, G. Bare, W. Chen, S. Li, H. Wang, B. F. Cravatt, S. Forli, E. T. Powers, K. B. Sharpless, I. A. Wilson and J. W. Kelly, *J. Am. Chem. Soc.*, 2018, **140**, 200– 210.
- 6 B. Gao, L. Zhang, Q. Zheng, F. Zhou, L. M. Klivansky, J. Lu, Y. Liu, J. Dong, P. Wu and K. B. Sharpless, Nat. Chem., 2017, 9, 1083–1088.
- 7 J. Dong, L. Krasnova, M. G. Finn and K. B. Sharpless, *Angew. Chem., Int. Ed.*, 2014, **53**, 9430–9448.
- 8 M. Chrominski, K. Ziemkiewicz, J. Kowalska and J. Jemielity, Org. Lett., 2022, 24, 4977–4981.
- 9 Z. Zhan, M. C. Willis, Chem., 2022, 8, 1137–1146.
- D. Moi, P. Foster, L. Rimmer, A. Jaffri, A. Deplano, G. Balboni,
 V. Onnis and B. Potter, *Eur. J. Med. Chem.*, 2019, **182**, 111614.
- A. Narayanan, L. H. Jones, *Chem. Sci.*, 2015, **6**, 2650–2659.
 S. A. Sundararaman and A. R. Odom John, *Cell Host Microbe*, 2022, **30**, 1074–1076.
- 13 K. Debbabi, F. Guittard and S. Geribaldi, J. Colloid Interf. Sci., 2008, 326, 235–239.
- 14 C. J. Smedley, M. C. Giel, A. Molino, A. S. Barrow, D. J. D. Wilson and J. E. Moses, *Chem. Commun.*, 2018, **54**, 6020–6023.
- 15 B. Gao, S. Li, P. Wu, J. E. Moses and K. B. Sharpless, *Angew. Chem., Int. Ed.*, 2018, **57**, 1939–1943.
- 16 S. Mahapatra, C. P. Woroch, T. W. Butler, S. N. Carneiro, S. C. Kwan, S. R. Khasnavis, J. Gu, J. K. Dutra, B. C. Vetelino, J. Bellenger, C. W. am Ende and N. D. Ball, *Org. Lett.*, 2020, 22, 4389–4394.
- 17 Y. Gan, Engineering., 2024, **32**, 10–13.
- 18 M. A. Elkodous, S. O. Olojede, S. Sahoo and R. Kumar, Chem. Biol. Interact., 2023, 379, 110517.
- 19 W. Zhu, F. Li, J. Liu, X. Ma and X. Jiang, *React. Chem. Eng.*, 2019, 4, 2074–2080.
- 20 T. Guo, G. Meng, X. Zhan, Q. Yang, T. Ma, L. Xu, K. B. Sharpless and J. Dong, *Angew. Chem., Int. Ed.*, 2018, **57**, 2605–2610.

v Accepted Mar

Polymer Chemistry Accepted Manuscript

Journal Name

View Article Online DOI: 10.1039/D4PY01383B

- 21 F. Liu, H. Wang, S. Li, G. A. L. Bare, X. Chen, C. Wang, J. E. Moses, P. Wu and K. B. Sharpless, *Angew. Chem., Int. Ed.*, 2019,**58**, 8029–8033.
- 22 S. H. Ali, Nat. Mater., 2018, 17, 1052–1053.
- 23 M. Ayman, C. Chen and J. T. Jesper, *Adv. Sci.*, 2024, **11**, 2401401.
- 24 P. J. J. Alvarez, C. K. Chan, M. Elimelech, N. J. Halas, D. Villagrán, Nat. Nanotechnol., 2018, 13, 634–641.
- 25 N. Wang, S. Song, W. Wu, Z. Deng and C. Tang, *Advanced Energy Mater.*, 2024, **14**, e2303451.
- 26 D. Kyriacos, Brydson's Plastics Materials, 2017, 17, 457–485.
- 27 M. Gilbert and S. Patrick, *Brydson's Plastics Materials*, 2017, 13, 329–388.
- 28 S. Ronca, Brydson's Plastics Materials, 2017, 10, 247–278.
- 29 W. C. Firth, Jr., US Pat., 3895045, 1973.
- 30 X. Ru, H. Zhang, Y. Wang, Z. Zhi, Y. Guo, K. Zhang and L. He, *J. Mater. Cycles Waste*, 2024, **26**, 2304–2316.
- 31 Z. Li, H. Zhang, X. Zhang, J. Wang and Y. Wen, *Polym. Chem.*, 2022, **13**, 1260–1266.
- 32 G. Cheng, M. Sahli, J. C. Gelin and T. Barriere, *Int. J. Adv. Des. Manuf. Technol.*, 2014, **75**, 225–235.
- 33 Q. Wei, J. Huang, D. Jia, J. Lei, H. Huang, H. Lin, J. Xu, G. Zhong, and Z. Li, *Macromolecules*, 2024, 57, 3706–3718.
- Y. Zhang, G. Ren, G. Nie, S. Hu, D. Li, W. Sun, Z. Li, Z. Cui, D. Lu,
 X. Shi, L. Li, H. Yu and J. He, *Colloids Surf. A*, 2024, 685, 133310.
- 35 S. H. Yu, H. Jeon, H. Ko, J. H. Cha, S. Jeon, M. Jae, G. Nam, K. Kim, Y. Gil, K. Lee and D. S. Chung, *Chem. Eng. J.*, 2023, **470**, 144102.

All relevant data are available from the corresponding author upon reasonable request Article Online The authors declare that all data generated or analyzed during this study are included in this Article and its Supporting Information.