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Stepwise synthesis of heterotrimetallic FeII/PdII/AuI

coordination cages†
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The synthesis of heterotrimetallic molecular cages is reported. The assemblies contain three types of coordi-

nation compounds: FeII clathrochelate complexes, AuI3(pyrazolate)3 complexes, and [PdII(pyridine)4]
2+ com-

plexes. The cages were obtained in a stepwise fashion. A nanometer-sized metalloligand with three terminal

3-pyridyl donor groups was prepared by connection of three FeII clathrochelate complexes via a central

Au3(pyrazolate)3 complex. A related strategy was employed for the synthesis of a ditopic N-donor ligand with

two functionalized FeII clathrochelate complexes. Combining the tritopic ligand with [Pd(CH3CN)4](BF4)2
resulted in the clean formation of a spherical PdII6Fe

II
24Au

I
24 coordination cage with a diameter of ∼4.1 nm and a

molecular weight of 21 kDa. The ditopic metalloligand was used for the construction of a PdII2Fe
II
8Au

I
12 cage.

Introduction

Heterometallic coordination cages are attractive synthetic
targets because the presence of different metal centers within
one assembly can potentially lead to interesting new functions
and properties.1 For the preparation of heterometallic cages,
two main strategies have been explored. The first strategy relies
on the use of polydentate ligands with distinct binding sites
for the respective metal ions. A chemoselective complexation
can be achieved by presenting different donor groups (e.g.,
hard and soft donors for hard and soft metal ions), or by
exploiting the preference of a metal ion for a certain coordi-
nation geometry.2 The second strategy circumvents selectivity
problems by introducing different metal ions in a step-wise
fashion under kinetic control.3 Metalloligands play an impor-
tant role in this context. Metalloligands are coordination com-
pounds with donor groups in their ligand periphery.4 Due to
the inert character of metalloligands, reactions with other
metal ions can be performed without ligand scrambling.

The above-mentioned strategies have been used with great
success for the construction of heterobimetallic coordination
cages.1–4 However, the synthesis of cages containing three
different metal ions is still challenging, and only a few
examples have been reported in the literature.1,4,5

Below, we describe the synthesis of a heterotrimetallic
PdII

6 Fe
II
24Au

I
24 coordination cage. This cage was obtained by an

Fe2+-templated polycondensation reaction, followed by regio-
selective complexation with Au+, and a final self-assembly step
with Pd2+ (Scheme 1). A related strategy was used to prepare a
cage with two Pd2+ ions, 8 Fe2+ ions, and 12 Au+ ions.

Results and discussion

Recently, we reported the synthesis of molecular cages contain-
ing trinuclear AuI

3(pyrazolate)3 complexes.6 The cages were
obtained by connection of pre-formed gold complexes via
dynamic covalent imine chemistry. The incorporation of AuI

3

Scheme 1 Stepwise synthesis of a coordination cage containing 6 Pd2+

ions, 24 Fe2+ ions, and 24 Au+ ions.

†Electronic supplementary information (ESI) available: Synthetic procedures
and experimental details. CCDC 2325913–2325915. For ESI and crystallographic
data in CIF or other electronic format see DOI: https://doi.org/10.1039/
d4qi00340c
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(pyrazolate)3 trimers into cages was motivated by the pro-
perties of these complexes: as highly π-basic compounds, they
tend to form aggregates with π- or Lewis acids.7 Indeed, pris-
matic cages with two AuI

3(pyrazolate)3 faces were found to
encapsulate π-acidic aromatic compounds.6 Furthermore, we
observed strong fullerene binding by a tetrahedral cage con-
taining four AuI

3(pyrazolate)3 complexes.6

For the present study, we explored the incorporation of AuI
3

(pyrazolate)3 trimers into heterometallic coordination cages.
One challenge in building more complex nanostructures with
AuI

3(pyrazolate)3 complexes is the tendency of these trimers to
form intermolecular Au⋯Au interactions. As a result, AuI

3(pyr-
azolate)3 complexes often display low solubility.7,8 We hypoth-
esized that solubility issues could be addressed by fusion of
AuI

3(pyrazolate)3 complexes to boronate ester-capped clathro-
chelate complexes.4c,9 The three-dimensional structure of the
latter disfavors stacking interactions, and molecular nano-
structures based on clathrochelates often display good solubi-
lity in organic solvents.4c,10

In order to connect clathrochelates with AuI
3(pyrazolate)3

complexes, we first synthesized the FeII clathrochelate 1
(Scheme 2). This compound was obtained by a metal-tem-
plated polycondensation reaction involving four commercially
available compounds: (1H-pyrazol-4-yl)boronic acid, 3-pyridyl-
boronic acid, nioxime, and FeCl2. Due to the presence of two
different boronic acids, symmetric clathrochelates with identi-
cal capping groups are obtained along with target 1.
Chromatographic purification gave complex 1 in 26% yield.

The solid-state structure of 1 was analyzed by single-crystal
X-ray diffraction (XRD). The central FeII center in 1 displays a
distorted trigonal prismatic coordination environment (Fig. 1),
which is typical for such complexes.9 The Fe–N bond lengths
are within the expected range (1.902(2)–1.913(2) Å).

Next, we have combined complex 1 with AuCl(SMe2) and
NEt3 (Scheme 3). Based on literature reports,11 we expected a
regioselective complexation of AuI to the pyrazole part of 1.
Indeed, we were able to isolate the desired Au3(pyrazolate)3
complex 2 in high yield (87%).

Complex 2 was found to be well soluble in dichloromethane
and chloroform, but poorly soluble in acetonitrile or diethyl
ether. The apparent C3 symmetry of 2 was reflected in the
NMR spectra, which showed one set of signals for the three

clathrochelate groups. The formation of a trimeric structure
could be confirmed by high-resolution mass spectrometry.12

An XRD analysis of complex 2 confirmed that three clathro-
chelate complexes are connected via the pyrazolate N-atoms to
three Au+ ions (Fig. 2a). In the solid state, two complexes form
a closely packed dimer, with the AuI

3(pyrazolate)3 complexes
being positioned on top of each other (Fig. 2b). The arrange-
ment seems to imply intermolecular aurophilic interactions.
However, the shortest Au⋯Au distance is 3.8250(6) Å. This
value is significantly larger than what is found for the solid-
state structures of other Au3(pyrazolate)3 complexes, with
typical Au⋯Au contacts in the range of 3.3 Å.7 Possibly, the
bulky clathrochelates in 2 hamper a closer packing of the AuI

3

(pyrazolate)3 complexes. Another noteworthy feature of crystal-
line 2 is the non-planar arrangement of the three pyrazolate
heterocycles. As a result, the plane defined by the three Fe2+

ions is inclined with respect to the plane defined by the three
Au+ ions (Fig. 2c).

During previous studies, we had noted that AuI
3(pyrazolate)3

complexes display a high kinetic inertness. This characteristic
suggested that it might be possible to prepare low-symmetry
complexes with different pyrazolate ligands. In order to investi-
gate this point, we have examined the reaction between AuCl
(SMe2) (3 eq.) and a mixture of complex 1 (2 eq.) and 3,5-Scheme 2 Synthesis of complex 1.

Fig. 1 Molecular structure of complex 1 in the crystal with a view from
the side (a) and along the B⋯B axis (b). Hydrogen atoms and co-crystal-
lized solvent molecules are not shown.

Scheme 3 Synthesis of complex 2.
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dimethyl-1H-pyrazole (1 eq.) in the presence of NEt3
(Scheme 4). As expected, a mixture of products was obtained,
including the symmetric trimer 2 (detected by mass spec-
trometry). Chromatographic purification gave the desired
ditopic pyridyl ligand 3 in 15% yield.

Complex 3 displays similar solubility properties as 2: it is
soluble in dichloromethane and chloroform, but poorly
soluble in acetonitrile. The NMR spectra were in line with the
depicted structure, with one set of signals for the two clathro-
chelate groups, and one set of signals for the dimethyl-
pyrazolate ligand. To the best of our knowledge, complex 3 rep-
resents the first example of a AuI

3(pyrazolate)3 complex with
two different pyrazolate ligands.13

The molecular structure of complex 3 in the crystal is
depicted in Fig. 3. As in the case of 2, one can observe a
stacked arrangement of the AuI

3(pyrazolate)3 units of two adja-
cent complexes. Two close Au⋯Au contacts are observed
(3.35(1) Å), indicating the presence of aurophilic interactions.

Despite the presence of Au⋯Au interactions, complex 3 was
not luminescent in the solid state.

With the heterometallic ligands 2 and 3 in hand, we next
studied reactions with Pd2+. Based on the geometry of ligand 2
(C3 symmetric ligand with terminal 3-pyridyl groups), we
expected that a [Pd6L8]

12+-type cage might form.3i,10d,14 When a
solution of metalloligands 2 (4 eq.) and [Pd(CH3CN)4](BF4)2 in
DMSO-d6 was heated to 60 °C for 15 h, a defined assembly
with high apparent symmetry was obtained, as indicated by
the NMR spectra (1H NMR and DOSY). The high-resolution
mass spectrum confirmed that a [Pd6L8]

12+-type cage (4) had
formed (Scheme 5 and Fig. 4).

Fig. 2 Molecular structure of complex 2 in the crystal (a), and two
different views of the relative arrangement of two adjacent complexes
(b and c). Hydrogen atoms are not shown. Color coding: C (gray), N
(blue), O (red), B (pink), Au (yellow).

Scheme 4 Synthesis of complex 3.

Fig. 3 Molecular structure of complex 3 in the crystal (a), and the rela-
tive arrangement of two adjacent complexes (b). Hydrogen atoms are
not shown. Color coding: C (gray), N (blue), O (red), B (pink), Au (yellow).
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The cationic cage 4 has a molecular weight of 21 kDa. This
value is in the range found for small proteins. For example,
myoglobin has a molecular weight of 17 kDa.15 Attempts to
grow single crystals of 4 were not successful. Molecular model-
ling showed that cage 4 has a diameter of approximately
4.1 nm.16 This value is in agreement with the solvodynamic
diameter of cage 4, which was deduced from the DOSY spec-
trum (4.3 nm).17

The ditopic N-donor ligand 3 is able to adopt a confor-
mation with a parallel orientation of the coordinate vectors. As
a result, it should be well suited to form [M2L4]

4+-type cages.18

Thermal equilibration of a mixture of ligand 3 (2 eq.) and [Pd
(CH3CN)4](BF4)2 (1 eq.) in DMSO-d6 resulted indeed in the for-
mation of a dinuclear PdII complex with four bridging metallo-
ligands (cage 5, Scheme 6). Cage 5 was characterized by NMR

spectroscopy (1H NMR, DOSY) and mass spectrometry (see the
ESI, Fig. S17†). According to the results of molecular model-
ling, the Pd2+ ions in cage 5 are ∼2.4 nm apart from each
other. The width of the assembly, as defined by the maximum
C⋯C distance, is ∼3.5 nm.

Conclusions

We have reported the synthesis of heterometallic cages con-
taining three types of coordination compounds: FeII clathro-
chelate complexes, AuI

3(pyrazolate)3 complexes, and
[PdII(pyridine)4]

2+ complexes. The cages were obtained in a
stepwise fashion. First, we prepared di- and tritopic metalloli-
gands by connecting two or three functionalized FeII clathro-
chelates via AuI

3(pyrazolate)3 complexes. The tritopic ligand (2)
was then combined with [Pd(CH3CN)4](BF4)2 to give a spherical
PdII

6 Fe
II
24Au

I
24 coordination cage (4). With a weight of 21 kDa

and a diameter of ∼4.1 nm, this complex is one of the largest
[Pd6L8]

12+-type cages reported to date. The ditopic ligand (3)
was used to construct a PdII

2 Fe
II
8 Au

I
12 coordination cage (5).

In previous work, we had shown that functionalized FeII cla-
throchelate complexes are well-suited to build large and well-
soluble metallosupramolecular structures.4c With the present
work, we demonstrate that clathrochelate-based metalloli-
gands can be combined with AuI

3(pyrazolate)3 complexes. The
inert character of the AuI trimers is important because it
enables a final metal-based self-assembly step (here with Pd2+)
without ligand scrambling. Furthermore, it is possible to
prepare heteroleptic AuI

3(pyrazolate)3 complexes containing
different pyrazolate ligands. As a proof-of-concept, we have pre-
pared the mixed-ligand complex 3 using a statistical synthesis
followed by chromatographic separation. Other low-symmetry
ligands based on AuI

3(pyrazolate)3 trimers can likely be
accessed in a similar fashion. In our opinion, AuI

3(pyrazolate)3-

Fig. 4 High-resolution ESI mass spectrum of cage 4.

Scheme 5 Synthesis of cage 4. The structure of the product is based
on molecular modeling. Color coding: C (gray), N (blue), O (red), B
(pink), Au (yellow), Pd (cyan).

Scheme 6 Synthesis of cage 5. The structure of the product is based
on molecular modeling. Color coding: C (gray), N (blue), O (red), B
(pink), Au (yellow), Pd (cyan).
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based metalloligands have great potential as building blocks
in supramolecular chemistry.
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