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CO2 and palladium enabled highly chemoselective
hydroxylation of gem-difluorocyclopropanes†

Xingben Wang, Fang Xiao and Frederic W. Patureau *

The CO2-mediated hydroxylation of gem-difluorocyclopropanes is herein described, under Pd(0) catalysis

in the presence of H2O. The method affords a large series of valuable fluorinated cinnamyl alcohols in

high yields and with broad functional group tolerance. It is moreover highly chemoselective, as the

double C–O coupled ether side-product could be completely suppressed under the CO2 atmosphere.

The reaction occurs through Pd-catalyzed C–C and C–F bond activation on the one hand, while CO2 is

proposed to activate the weak water nucleophile on the other. This mild synthetic method should impact

the fields of medicinal chemistry, organic synthesis, and sustainable processes and advance the concept

of CO2 catalysis.

Introduction

Carbon dioxide (CO2) is an increasingly significant part of the
atmosphere and is widely accessible, inexpensive, non-toxic,
stable, and recyclable.1–5 In many reports, it is mostly utilized
as a convenient C1 source.6–10 However, its catalytic activity, in
particular in cooperation with transition metal co-catalysts,
has received relatively sparse attention.11,12 In the literature,
CO2 catalysis mainly focuses on the activation of substrates
with high reactivity and strong nucleophilicity, such as alco-
hols and amines.13–24 Other classes of substrates remain far
less explored (Fig. 1A). In most prior methods, CO2 transiently
activates the electrophilicity of a substrate through CO2

adducts associated with starkly altered reactivity. Nevertheless,
the use of CO2 as a catalyst is still underappreciated for the
development of innovative synthetic methods, in particular for
the activation of nucleophiles. In the present study, we utilized
CO2 catalysis in order to activate one of the weakest and
most important nucleophiles in organic synthesis: water
(Fig. 1B).25–29

The use of H2O as a nucleophile in Pd-catalyzed cross coup-
ling chemistry remains a daunting challenge, in spite of
elegant seminal works on the topic.30 Another difficulty
resides in the fact that most C–OH coupling products tend to
be far more nucleophilic than H2O itself, thus often leading to
undesired multiple C–O bond forming escape reactions.31 This
is especially the case in the absence of bulky substituents
shielding the reaction site.31 We hypothesized that CO2 cataly-

sis might both activate water’s nucleophilicity as well as
decrease that of the valuable C–OH coupling products.

In this context, we considered gem-difluorocyclopropane
electrophiles,32–34 because these are known to readily react
with potent nucleophiles under transition metal palladium
catalysis.35–55 However, selectively producing hydroxylated pro-
ducts without further reactions constitutes a considerable

Fig. 1 From CO2-catalyzed electrophilic activation of alcohols towards
CO2-catalyzed nucleophilic activation of H2O.
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challenge. We thus designed a method for the hydroxylation of
gem-difluorocyclopropanes, which is enabled by CO2 and
Pd(0)-catalysis, affording a large series of important fluori-
nated cinnamyl alcohols56–69 from water. The concept is based
on the principle that CO2 might effectively enhance the poor
nucleophilicity of water (n = 0) by generating far more nucleo-
philic transient carbonates (n = 3.8, Fig. 1B).25

Results and discussion

Based on literature precedents,70–72 we conceived that the
Pd(0) active species would first perform the oxidative addition
into the strained C–C bond of substrate 1 leading to strained
palladacycle intermediate Int-I (Fig. 2). This would be followed
by β-fluoride elimination,73 leading to fluoroallyl palladium
species Int-II. Fluoride-carbonate exchange would then lead to
Int-III, followed by C–O reductive elimination towards carbo-
nated product Int-IV and the regenerated Pd(0) catalyst (Cycle
A). The former would then release CO2 towards the final fluor-
oallyl alcohol product 2. The released CO2 would then reform
the active carbonate intermediate (KHCO3) in the presence of
excess water and K3PO4 base, thus closing the CO2 catalytic
cycle (Cycle B).

We therefore initially selected 4-methyl-gem-difluoro-cyclo-
propane (1a) as a model substrate. Based on a previous report
from our group,70 we serendipitously realized that 1a produces
fluoroallyl alcohol product 2a in high isolated yield (93%)
when exposed to Pd(dba)2 (10 mol%), Xphos (20 mol%), water
(10 equiv.), and K3PO4 (3 equiv.) in DMF under CO2 atmo-
sphere (1 atm) at 80 °C for 12 h (Table 1, entry 1). The double
C–O bond forming allyl ether byproduct 3a was not detected
under those conditions. Interestingly, utilizing only 10 mol%
of Xphos reduced the yield to only 70% (entry 2), presumably
due to competing ligand exchange processes. This reaction
cannot occur without a palladium precursor (entry 3).
Moreover, omitting the addition of water severely reduced the

yield (2a, 32%, entry 4), suggesting it to be a main hydroxyl
source of the reaction. The residual product formation is likely
due to traces of water in the other components of the reaction.
Likewise, omitting the phosphate base is detrimental to the
reaction’s efficiency (2a, 30%, entry 5). Importantly, CO2 was
found to be essential. Replacing it with an atmosphere of N2

inert gas almost shuts down the reaction (2a, 6%, entry 6),
while air did not provide any desired product (entry 7). DMF
proved to be an optimal solvent, in contrast for example to
DMSO (entries 8–10). Finally, CO2 could not be replaced by any
additives that we tried, whether Lewis or Brønsted acids, or
other (entry 11).

With the optimized conditions in hand, we then investi-
gated the reaction scope with various gem-difluorocyclopro-
panes. Thus, we tested both electron-donating and withdraw-
ing substituents at para-, meta- and ortho-positions of the
arene substituent, providing the corresponding fluoro-cinna-
myl alcohols in usually excellent isolated yields (2a–2zc,
Fig. 3). The functional group tolerance was found outstanding
for both electron-poor (R1 = CF3) and electron-rich substrates
(R1 = alkyl, O-alkyl/aryl, N-alkyl), with the notable exception of
halides (R1 = Cl, 2e). Various heterocycles were moreover very
well accommodated such as benzofurane (2x), carbazole (2y)
and benzodioxane (2w). Finally, a series of biologically active
fragments such as DL-menthol (2za), DL-isoborneol (2zb) and a
protected fructopyranose derivative (2zc) could all be tolerated
in high yields (79–92%). Unfortunately, however, the alkyl-sub-
stituted gem-difluorocyclopropane corresponding to target
product 2zd was recovered unreacted, indicating the impor-
tance of the aromatic substituent for the strained ring opening
step. It should furthermore be noted that we also achieved the
hydroxylation reaction of a structurally related geminal difluor-
oallyl derivative (4), which yielded the corresponding cinna-Fig. 2 Proposed mechanism.

Table 1 Reaction conditionsa

Entry Deviation from standard conditionsa 2ab (%) 3ab (%)

1 None 98 (93)c nd
2 Only 10 mol% Xphos 70 nd
3 No Pd nd nd
4 No H2O 32 nd
5 No K3PO4 30 nd
6 N2 instead of CO2 6 <5
7 Air instead of CO2 nd nd
8 H2O instead of DMF 8 <5
9 Toluene instead of DMF 10 nd
10 DMSO instead of DMF 15 nd
11 Additivesd instead of CO2 nd nd

a 1a (0.20 mmol), Pd catalyst precursor (10 mol%), Xphos ligand
(20 mol%), K3PO4 (3 equiv.), H2O (10 equiv.), in DMF (2.0 mL) at 80 °C
for 12 h. bDetermined by 1H NMR, using 1,3,5-trimethoxybenzene as
an internal standard. c Isolated yield. d Selected additives: Ag2O, Cu
(OAc)2, NH4Cl, PhCO2H, EtCO2H, under N2.
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maldehyde (5, Fig. 3). There too, CO2 was found to be essen-
tial, as its replacement with an N2 atmosphere almost shuts
down the reaction (Fig. 3). These results confirm the critical
water activating role of CO2.

Next, we investigated whether this reaction could truly
proceed under a catalytic loading of CO2. We therefore
replaced CO2 with catalytic amounts of phenyl isocyanate,
which undergoes hydrolysis under the reaction conditions
towards the corresponding amine and CO2, a process known
as the Hofmann degradation.71 This allowed us to carry out
the reaction under precise catalytic loading of CO2 precursor.
There too, considerably higher product yields were obtained
with only 20 mol% isocyanate loading (2a, 58%, Fig. 4,
eqn (1)), compared to the complete absence of CO2 or precur-
sor thereof (2a, 6%, Table 1, entry 6). Fluoroallyl amine
product 6a was also observed, however typically as a minor
byproduct. These findings are in line with the proposed cata-
lytic role of CO2 in this reaction. In order to further investigate
this matter, we then attempted the reaction in the absence of

CO2, under N2 inert gas, however in the presence of sur-stoi-
chiometric carbonate salts (Fig. 4, eqn (2)). While the yields
are nowhere near optimized conditions with CO2, at 24–40%
depending on the utilized salt, these are still significantly
greater than in the absence of both CO2 and carbonates (6%,
Table 1, entry 6). These experiments therefore confirm that
transient carbonates are likely essential intermediates in this
reaction. However, clearly, CO2 still outperforms the herein
investigated carbonate salts in terms of product yield,
suggesting additional not yet well identified enhancing effects
of carbon dioxide in the present reaction conditions. It should
moreover be noted that the sur-stoichiometric carbonate salt
experiment performs less well when water addition is omitted
(25% compared to 40%, Fig. 4, eqn (3)), suggesting a potential
cooperative role of water with the carbonate intermediate.

In order to further investigate the apparent superiority of
CO2 mediation versus carbonate mediation, we performed a
final key experiment with catalytic loading of a carbonate salt
(20 mol%) under inert N2 gas, in otherwise standard con-

Fig. 3 Substrate scope, isolated yields. Reaction conditions: 1a (0.20 mmol), Pd catalyst precursor (10 mol%), Xphos ligand (20 mol%), K3PO4 (3
equiv.), H2O (10 equiv.), in DMF (2.0 mL) at 80 °C for 12 h. a Large scale (2 mmol): performed in optimized conditions, in 10 mL DMF.
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ditions (Fig. 4, eqn (4)). This led to a severely decreased
product yield (2a, 10%), thus unambiguously confirming the
supposed superiority of CO2 over carbonates, at least in the
current reaction conditions. At this stage, we cannot exclude
that a method based solely on carbonate salts, without added
CO2, might eventually also furnish a competent hydroxylation
method, especially upon further optimization. However, this
remains outside of the scope of this study.

Next, we engaged the reaction with 18O-labelled water (18O
label: 97%), in otherwise standard reaction conditions (Fig. 5,
eqn (1)). The significant 18O-incorporation into the product
(see ESI†) is consistent with water being a hydroxyl source.
Interestingly, however, the 18O incorporation is slightly under
one third from that of the labelled H2(

18O) reagent, indicating
label scrambling with the non-labelled oxygen atoms of CO2.
This is very much consistent with a carbonate intermediate,
wherein each of the three resulting oxygen atoms has an equal
chance of forming the C–O bond during the reductive elimin-

ation event at the Pd(II) center. When employing a catalytic
amount of CO2, however, the 18O content in the product
increased dramatically (18O: 77% incorporation, Fig. 5, eqn
(2)). This is due to the reduced amount of (non-labelled) CO2,
thus limiting the overall label scrambling within the carbonate
intermediate. Both 18O label experiments (eqn (1) & (2)) are
thus in excellent agreement with the presumed catalytic role of
CO2 in this reaction.

In order to further explore the synthetic utility of the
method, a gram scale reaction was conducted for product 2a.
This target was thus obtained in remarkably preserved 85%
isolated yield (2 mmol scale, product 2a, 0.282 g, Fig. 3). Next,
we attempted to force the reaction conditions towards the for-
mation of double C–O coupling product 3a, in stepwise
fashion (Fig. 6). This was carried out under both inert atmo-

Fig. 4 Mechanistic experiments regarding the catalytic role of CO2 and
the intermediacy of carbonate salts, yields determined by 1H NMR using
1,3,5-trimethoxybenzene as an internal standard.

Fig. 5 18O label experiments, isolated yields.

Fig. 6 Pushing towards the ether product 3a. Unless otherwise stated,
yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an
internal standard.
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sphere (eqn (1)) as well as under CO2 (eqn (2)). From these
experiments, it can be deduced that CO2 prevents the for-
mation of double C–O coupling product 3a, presumably
through transient carbonate ester protection, in contrast to N2.
Increasing the temperature further to 110 °C under N2 atmo-
sphere, along conditions previously reported by us for
amines,70 afforded the double C–O coupling product 3a in
25% yield (Fig. 6, eqn (3)). Other side products could not be
formally identified in these reaction mixtures (Fig. 6).

Finally, we performed a competition experiment between a
potent aniline nucleophile (n = 4.5),25 and poorly nucleophilic
water (n = 0),25 under perfectly identical conditions, either
with or without CO2 atmosphere (Fig. 7). Interestingly, under
N2 inert gas, aniline considerably outperforms water (6a : 2a >
15 : 1). Under CO2 atmosphere, however, water becomes a
much more competitive coupling partner compared to aniline
(6a : 2a ≈ 1 : 1), which is again consistent with the proposed
water activation scenario of CO2.

Conclusions

In conclusion, we developed a CO2-mediated, Pd(0) catalyzed
method for the hydroxylation of gem-difluorocyclopropanes
from water, affording a large series of valuable fluorinated cin-
namyl alcohols in high yields and with broad functional group
tolerance, including important bioactive scaffolds. Moreover,
we characterized the nucleophile activating role of CO2

through key mechanistic experiments. The herein presented
results should encourage the development of further challen-
ging coupling reactions with weak X–H nucleophiles such as
water, by means of CO2 catalysis,

74–77 and in general the use of
CO2 in synthetic method development.78
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