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Antibiotics in aquatic environments present a serious threat to the ecological environment and human

health. Activation of carbon-catalyzed persulfate is a prospective approach for oxidizing antibiotics.

There is a pressing need for inexpensive carbon catalysts of high quality. In this study, biochar (BC)

modified by Fe, Mn and Fe@Mn was employed to activate peroxymonosulfate (PMS) to degrade

carbamazepine (CBZ) in water. The surface of Fe@Mn BC had a dense, stalactite-like morphology

comprising a square chassis that was elliptical. The catalyst Fe@Mn–BC possessed the optimal

degradation effect (99%) on CBZ at 100 min. Electron paramagnetic resonance spectroscopy and the

quenching spectrum suggested that cO2
− and 1O2 contributed to CBZ degradation.
1. Introduction

Prolonged exposure to contamination by antibiotics can
terrorize the security of hygrophilous ecosystems and constitute
potential risks for human health.1 Carbamazepine (CBZ) is
a typical medicinal product employed widely to treat diseases.2,3

However, with the extensive application of this compound, CBZ
is released into the aquatic environment and causes adverse
effects upon it. Therefore, developing a method for the efficient
elimination of CBZ is a rational approach.4–6

In recent years, advanced oxidation process (AOPs) technology
has drawn much attention due to its excellent effect on hard-to-
degrade organic pollutants. Compared with traditional treat-
mentmethods, AOPs have a greater degradation capacity,7,8which
is considered to be an efficacious and prospective method for
removing poisonous and durable organicmaterials. AOPs include
methods involving peroxonosulfate (PMS),9 the Fenton reac-
tion,10,11 electrochemistry,12 photocatalysis,13 ultrasonic irradia-
tion,14 and ozone oxidation.15 Among these AOPsmethods, PMS is
considered as the best way to remove pollutants owing to its
simple operation, strong oxidation capacity and application of
a wide pH range.16,17 PMS can be activated by external factors
(heat, UV radiation) and catalysts (e.g., carbon-based materials
and metal ions) to yield active species and gain efficient oxidation
properties.18 PMS activation induced by electron transfer in
carbon-basedmaterials has attracted great interest in recent years.

Biochar (BC) is a carbon-based material. It is a byproduct of
biomass pyrolysis, with highly dispersed reaction sites, rich
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pore structure, high surface area and adsorption ability.19 In
addition, BC possesses rich functional groups (e.g., carboxyl,
phenol, hydroxyl, and acid anhydride) that promote contami-
nant removal.20 However, BC cannot provide sufficient electrons
for PMS activation, which results in lower catalytic efficiency.21

Studies have shown that the introduction of metals can improve
PMS activation.22 The difference in the standard redox potential
of bimetallic materials can promote valence cycling and elec-
tron transfer.23,24 In addition, binary metal atomic clusters can
be formed if two metals are doped onto BC, which increases the
dispersion of active sites.25 Meanwhile, bimetallic doping
decreases the infusion of metal ions, which also reduces the
toxicity of the catalyst and makes the process more environ-
mentally friendly.26 In particular, Fe and Mn are inexpensive
and environmentally friendly.27 The generation of magnetic Fe
oxides enhances the separability of catalysts.28 Simultaneously,
the introduction of Fe and Mn can generate new active sites and
greatly improve the conductivity of BC, which could facilitate
electron transfer and, ultimately, increase PMS activation.

In the present study, BC was synthesised from soybean
powder. Bimetallic Fe@Mn–BC catalysts with improved prop-
erties were prepared to overcome the agglomeration of metal
ions and enable application in commercial products. The
prepared Fe@Mn–BC catalysts were applied for PMS activation
and CBZ degradation. Measurements were made using X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
scanning electron microscopy (SEM).
2. Experimental
2.1 Synthesis of catalysts

Deionized (DI) water was employed to clean soybeans (Lia-
nyungang Lianfeng Seed Industry, Jiangsu, China), which were
then dried. A ball mill was used to mill the dried soybeans at
RSC Adv., 2024, 14, 1141–1149 | 1141
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350 rpm for 6 h. Then, the products were calcined under a N2

atmosphere at 600 °C for 2 h in a tubular furnace. The materials
were used as pristine soybean BC.

Fe and Mn co-doped BC were synthetized via a hydrothermal
method. First, BC (2 g), KMnO4 (1.58 g; Macklin Biochemical
Technology, Shanghai, China) and Fe powder (0.17 mol L−1;
Hebei Lebo Metal Materials Technology, Hebei, China) were
added to DI water (100 mL) to obtain a suspension A. Next,
epichlorohydrin (10 mL) was dropped into suspension A to
obtain suspension B. Then, suspension B was stirred for 2 h and
heated in a rotatory shaker at 90 °C for 12 h. Then, the materials
were centrifuged, washed and dried. The sample was termed
Fe@Mn–BC. For comparison, Fe–BC and Mn–BC were obtained
in the same way without KMnO4 or Ferrous powder, respectively.
2.2 Characterization

X-ray diffraction (Cu Ka; l= 1.5406 Å; Bruker, Ettlingen, Germany)
was employed to study the phase structure of materials. XPS using
an Axis Ultra DLD system (Kratos Analytical, Manchester, UK) was
applied to investigate the binding energy of elements. The surface
compositions of materials were analyzed by Fourier transform
infrared (FTIR) spectroscopy (Vertex 70; Bruker). SEM employing
a Quanta 250 setup (FEI, Hillsboro, OR, USA) was used to study the
surface morphology and microstructure. A three-electrode elec-
trochemical workstation (CHI660D; CH Instruments, Bee Cave,
TX, USA) was used to measure the photocurrent responses of
materials. The surface area was measured by an analyzer (NOV
2000e; Quantachrome, Boynton Beach, FL, USA).
2.3 Catalytic properties

To determine the catalytic properties of the prepared products,
degradation experiments of CBZ were studied in a conical ask.
Briey, samples (20 mg) were placed in a 100 mL solution of
Fig. 1 SEM images of (a) BC, (b) Mn–BC, (c) Fe–BC, and (d)–(e) Fe@Mn

1142 | RSC Adv., 2024, 14, 1141–1149
CBZ (10 mg L−1) and the mixture was stirred constantly. The
adsorption equilibrium was achieved in the dark aer 30 min.
Then, (20 mg) was introduced in the solution stated above, and
the degradation reaction started in the dark. The initial pH was
adjusted to ∼7 by NaOH solution, and the degradation reaction
last for 70 min in the dark. An aliquot (3 mL) was removed from
the reaction mixture at regular intervals and centrifuged, and
the supernatant was studied by a UV-vis spectrophotometer.
Eqn (1) was selected to determine the degradation efficiency (h):

h% ¼ C0 � C

C0

� 100 (1)

where C0 and C are the initial concentration and residual
concentration of CBZ, respectively.

Meanwhile, the degradation efficiency under visible light was
studied. Briey, the CBZ mixture was exposed to a xenon lamp
(300 W, 420 nm) instead of a dark condition. The inuence on
CBZ degradation of pH (3, 5, 7, 9 or 11) on different samples was
studied. Furthermore, to ascertain the main reactive species
degrading CBZ, quenching experiments were conducted. Furfuryl
alcohol (FFA), p-benzoquinone (p-BQ) and tert-butyl alcohol (TBA)
were employed as scavengers, all of which were from Macklin
Biochemical Technology (Shanghai, China). In addition, the
production of reactive free radicals was surveyed by electron
paramagnetic resonance (EPR) spectroscopy, and the capture
agents were DMPO and TEMP. When testing the reusability of
catalysts, the sample was centrifuged (8000 rpm, 4min) and dried
for next degradation test, which was conducted on the third cycle.
3. Results and discussion
3.1 Morphology of samples

SEM was applied to ascertain the morphology of samples. BC
samples had an erratic block-like shape (Fig. 1a). Aer
–BC.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 EDS images of Fe@Mn–BC.
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modication byMn (Fig. 1b), a less erratic structure appeared in
Mn–BC samples. Fig. 1c shows that many grains were deposited
upon Fe–BC. In contrast, Fe@Mn–BC exhibited a dense,
stalactite-like morphology with some spherical shapes (Fig. 1d
and e), which were induced by the doping of Fe and Mn.
Elemental mapping images revealed C, O, K, Mn, Fe, N and P
elements in Fe@Mn–BC, and these elements were evenly
dispersed (Fig. 2a–h), which suggested that Fe andMn had been
doped on the BC surface.

XRD analysis of BC and Fe@Mn–BC samples is displayed in
Fig. 3a. There was an obvious peak at 43.1 cm−1 in BC samples,
which corresponded to the (100) plane of crystalline carbon.29

For Fe@Mn–BC, the diffraction peaks observed at 34.1 cm−1

corresponded to the (111) plane of MnO (PDF# 07-0230).30 The
peaks at 43.5 and 59.4 cm−1 were ascribed to the (110) plane of
Fe0 (JCPDS# 06-0696) and (511) plane of Fe2O3 (JCPDS# 39-
1346), respectively,31 which conrmed the presence of Fe and
Fig. 3 (a) XRD analysis and (b) FTIR spectroscopy of BC and Fe@Mn–BC

© 2024 The Author(s). Published by the Royal Society of Chemistry
MnO in Fe@Mn–BC samples. The chemical groups of BC and
Fe@Mn–BC were studied by FTIR spectroscopy (Fig. 3b). Few
function groups were observed in BC samples, and the peaks are
weaker. However, Fe@Mn–BC had some absorption peaks,
which indicated that Fe@Mn–BC had more diverse functional
groups. The peak at 3430 cm−1 in Fe@Mn–BC was assigned to
the OH stretching vibration.32 The characteristic peak at
2918 cm−1 belonged to the stretching vibration of the C–H
group. The peaks at 1622 cm−1 corresponded to the binding
vibration of C]O.33 The peaks at 1362 cm−1 and 1049 cm−1

were ascribed to the vibrations of Fe–OH and Mn–OH groups,
respectively.34 The peaks at 697 cm−1 and 566 cm−1 can be
classied as the functional groups of Mn–O and Fe2O3,
respectively.35,36

The chemical elements on the surface of Fe@Mn–BC were
investigated further by XPS. The C 1s, Fe 2p, Mn 2p, N 1s, O 1s
and P 2p peaks were observed in the FTIR spectra for Fe@Mn–
.

RSC Adv., 2024, 14, 1141–1149 | 1143
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Fig. 4 XPS spectra of Fe@Mn–BC (a). The peaks for C 1s (b), Fe 2p (c), Mn 2p (d), N 1s (e), O 1s (f) and P 2p (g), and BET properties of Fe@Mn–BC
(h).
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BC (Fig. 4a). The C 1s peak (Fig. 4b) was split into three peaks,
which are corresponded to the C–C bond (282.1 eV), C–O bond
(286.1 eV) and C]O bond (290.8 eV).37 The Fe 2p spectrum is
1144 | RSC Adv., 2024, 14, 1141–1149
displayed in Fig. 4c. The peak at 709.4 eV was ascribed to Fe0

2p1/2.38 The peaks at 713 eV corresponded to 2p3/2 of Fe3+,
respectively. The peak at 723 eV belonged to Fe2+ 2p3/2.39,40
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4d shows the XPS spectra of Mn 2p. The peaks at 639.6 eV
and 644.7 eV represent Mn 2p3/2, whereas the peak at 651.5 eV is
Mn 2p1/2, thereby indicating the existence of Mn2+, Mn3+ and
Mn4+.41,42 The deconvolutions of N 1s were assigned to
pyridinic N (397.7 eV), as shown in Fig. 4e.43 Fig. 4f shows the
XPS spectrum of O 1s, which was split into two peaks. The peak
at 527.3 eV was generated by lattice oxygen in the Fe@Mn–BC
phase, and the peak at 529.7 eV was attributed to O–H.44 For the
P 2p spectrum (Fig. 4g), the peak at 130.6 eV corresponded to P–
P. Fig. 4h shows the isotherm of Fe@Mn–BC. Based on these
results, Fe andMnwere doped on BC. It is apparent from Fig. 4h
that Fe@Mn–BC exhibited a type-IV isotherm and a H1-type
loop, in line with the IUPAC classication.45 These observa-
tions indicate that Fe@Mn–BC possessed a mesoporous struc-
ture.46 The specic surface area of BC was increased by doping
Mn and Fe, providing more active sites on the surface and
enhancing the adsorption capacity of reactants.
Fig. 5 EPR spectra of Fe@Mn–BC for (a) DMP-cOH, (b) DMPO-cO2
−, an

© 2024 The Author(s). Published by the Royal Society of Chemistry
3.2 Analysis of reactive oxygen species (ROS) in the catalytic
process

To determine the impact of active species on CBZ degradation,
EPR spectroscopy was employed to discern the ROS during the
catalytic process. The free-radical spin traps were DMPO and
TEMP. As seen in Fig. 5a, a typical pattern with an intensity of
1 : 2 : 2 : 1 was found. With increasing time, the intensity of
DMPO-cOH adducts increased gradually and reached
amaximum at 100min, indicating the continuous generation of
cOH in the system. The typical signals for DMPO-cO2

− are pre-
sented in Fig. 5b. The intensity of DMPO-cO2

− adducts
increased gradually from 40 min and reached the highest at
100 min. cO2

− did not appear before 40 min in this system. This
was because PMS was added aer 30 min of the reaction, and
then cO2

− was generated subsequently, which implied that PMS
promoted cO2

− production. The signal of TEMP-1O2 with a peak
d (c) TEMP-1O2, and (d) quenching agents on CZB degradation.

RSC Adv., 2024, 14, 1141–1149 | 1145
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Fig. 6 Degradation rate of different BC samples (a) under a dark condition and (b) under a light condition. (c) Degradation rate of Fe@Mn–BC
under different pH values. (d) Stability of Fe@Mn–BC.

Table 1 Comparative performance of BC materials for PMS activation
on pollutant degradation

Catalyst
Degradation
time (min)

Performance (efficiency
(%)) Reference

Fe@Mn–BC 100 min 99% This work
Fe–Cu bimetal–BC 90 min 90% 49
NOSB/PMS 40 min 67% 50
NBC–Fe–Cu 60 min 91% 51
PMS/BOSBC 60 min 98% 52
BC900/PMS 120 min 99% 53
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intensity ratio of 1 : 1 : 1 is illustrated in Fig. 5c. The intensity of
TEMP-1O2 increased aer 40 min in the catalytic process, sug-
gesting that PMS was benecial for 1O2 production. In
summary, cOH was produced mainly by the Fe@Mn–BC catalyst
during the rst 30 min of the reaction. The addition of PMS
induces the production of cO2

− and 1O2, and guided the CBZ
degradation effectively. In addition, a quenching spectrum was
conducted by different scavengers. BQ, FFA and TBA were
employed as the scavenger for cO2

−, 1O2 and cOH, respec-
tively.47,48 As shown in Fig. 5d, CBZ degradation was not sup-
pressed when TBA was added, indicating that cOH did not play
an important part in CBZ degradation. However, in the presence
of BQ and FFA, the degradation rates of CBZ were inhibited,
which suggested that cO2

− and 1O2 had primary roles in CBZ
degradation.

3.3 Activation properties of Fe@Mn–BC for PMS

The activation properties of PMS were evaluated for all samples.
PMS was added aer 30 min in all reaction systems. The
degradation properties of CBZ of different samples for PMS
under a dark reaction condition are presented in Fig. 6a. The
removal efficiencies of all samples were low at 30 min. Mean-
while, the degradation rates of CBZ did not improve signi-
cantly aer PMS addition, which indicated that the catalysts
had little effect on PMS activation. As shown in Fig. 6b, the
removal efficiencies of CBZ were low. However, the degradation
rate of CBZ by Fe@Mn–BC was 99% at 100 min when the PMS
1146 | RSC Adv., 2024, 14, 1141–1149
was in the system. The PMS/Fe@Mn–BC system had a higher
degradation rate for CBZ under light, indicating that Fe@Mn–
BC and light could stimulate PMS to degrade CBZ.

The impact of the initial pH on CBZ degradation is displayed
in Fig. 6c. The degradation performance was optimal (99%)
under neutral conditions (pH = 7). The degradation rates of
CBZ were relatively low when the initial pH was acidic. The
degradation rates were 32% and 38% for pH = 3 and 5,
respectively. The degradation rates of Fe@Mn–BC on CBZ were
91% and 63% when the pH was 9 and 11, respectively. Hence,
Fe@Mn–BC had better reaction properties under weak alkali
and neutral conditions. Moreover, the catalytic performances of
different BC samples for PMS activation on the degradation of
pollutants reported in other papers were compared (Table 1).
The Fe@Mn–BC catalyst for PMS activation in this work showed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Possible degradation pathways of CBZ in the Fe@Mn–BC/PMS
system.
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an efficient photocatalytic performance for CBZ degradation.
The structure of CBZ and degradation products are shown in
Fig. 7. To evaluate the stability of Fe@Mn–BC, repeated catalytic
tests were conducted by four degradation cycles of CBZ.
According to Fig. 6d, the degradation efficiencies aer four
cycles were >95%. Taken together, our data suggest that
Fe@Mn–BC could be a photocatalyst for CBZ removal.

4. Conclusions

Fe@Mn–BC catalysts were prepared by a hydrothermal method.
Fe@Mn–BC was employed to activate PMS to degrade CBZ.
Experiments based on free-radical detection and scavengers
indicated that cO2

− and 1O2 had dominant roles in this degra-
dation system. The catalyst Fe@Mn–BC exhibited superior
catalytic activity for PMS activation under light radiation. When
the initial pH was 7, the degradation rate of CBZ by Fe@Mn–BC
was 99% at 100 min under light radiation. Degradation was
more effective under light and a PMS-activated catalytic system.
Hence, a promising BC-based catalyst for CBZ degradation was
described.
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