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atalyzed highly selective arylation
of activated and unactivated alkenes via oxidative
and reductive heck coupling†

Mixiang Tian,a Qinghong Cui,a Qiuling Xu,a Wenwen Wu,a Yuxian Wang,a Kun Wei,b

Ruifen Sun*a and Junliang Wang *a

In this work, an eco-friendly, green, efficient approach for oxidative and reductive Heck–Mizoroki (HM)

reactions was developed, which offered acceptable yields from first-pass experiments. Mono-arylation

was achieved without the use of ligands, directing groups, or prefunctionalized alkenes. Considering mild

reaction conditions, good functional group compatibility, and great regioselectivity, the method can find

broad applications in novel medicine and material development and discovery processes.
Introduction

Approaches employing Heck coupling have emerged as some of
the most powerful tools for modern organic syntheses owing to
their high efficiency and widespread applications in the
synthesis of pharmaceutical drugs and functional materials.1

Although ground-breaking advances in metal-catalysed reac-
tions have been reported in the past two decades, the pursuit of
scalable, operationally simple protocols for the Heck–Mizoroki
(HM) reaction has always been challenging. It is particularly
true that drawbacks such as harsh reaction conditions and low
yields greatly hamper its large-scale practical application,
especially in the pharmaceutical industry.2 Attempts to over-
come these drawbacks include attempted syntheses of efficient
catalysts;3 the utilization of solvent-free reaction conditions;
and the application of non-classical energy sources such as
microwave irradiation, high pressure, and mechanochemical
techniques.4 Despite signicant advances in acyclic aliphatic
alkenes and cycloenones (Scheme 1A),5a–d the synthesis of cyclic
olens involving oxidative or reductive Heck coupling continues
to be particularly challenging. Additionally, chemo-selectivity is
another commonly faced problem within directing-group-
assisted C–H olenation.5 Hence, it is of great synthetic value
to develop a practical methodology to address these long-
standing issues.

In recent decades, the application of green methodologies
that are environmentally friendly and can minimize chemical
iversity of Chinese Medicine, Kunming,
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75
disposal and energy consumption have become the goals of
organic chemists. One of the green chemistry techniques is
ultrasound irradiation. Ultrasound technology has recently been
applied to accelerate a large number of organic reactions under
aqueous and non-aqueous conditions.6 In particular, such
techniques oen provide an ameliorative, sustainable system
with solvent-free conditions7 for the improvement of traditional
transformations8 and, most importantly, alter chemical reac-
tivity as well as selectivity.9 The recent demand for eco-friendly
Scheme 1 (A) Ligand promoted/accelerated coupling reactions with
a,b-unsaturated ketone. (B) Ligand-free Pd-catalyzed oxidative heck
coupling reactions. (C) Ligand-free Pd-catalyzed reductive heck
coupling reactions.
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chemical processes has led to the development of several clean
and efficient protocols.10 Furthermore, a reliable and robust
procedure for Heck reactions would be of considerable value.
Herein, we report an ultrasound-assisted methodology for
oxidative or reductive Heck coupling under solvent-free condi-
tions at room temperature in open air, which can be applied to
a broad range of coupling partners (Scheme 1B and C).
Results and discussion

To develop a general protocol for the arylation of olens under
mild conditions, a model coupling reaction between 1-cyclo-
hexenyl methyl ketone (1a) and methyl 4-iodobenzoate (2a) in
the presence of catalytic Pd(OAc)2 and stoichiometric amounts
of AgTFA was conducted to screen optimal reaction conditions;
the results are shown in Table 1. Only a trace amount of the
expected product (3a) was formed when the model coupling
reaction was treated with mechanical stirring at room
temperature (Table 1, entry 1). However, the application of
ultrasound led to a moderate improvement in the yield to 76%
(Table 1, entry 2). In this case, when the substrates increased
the energy of collision due to a change in the oscillations of the
electrical component of the microwave eld, it induced the
breakage and re-establishment of intermolecular bonds. Next,
the screening of silver salts was conducted, and a low yield was
Table 1 Optimization of the reaction conditionsa

Entry Pd source (mol%) Base (equiv.) Yieldb (%)

1c Pd(Oac)2 (10) AgTFA (1.0) 70
2 Pd(Oac)2 (10) AgTFA (1.0) 76
3 Pd(Oac)2 (10) Ag3PO4 (1.0) <10
4 Pd(Oac)2 (10) AgOAc (1.0) <10
5 Pd(Oac)2 (10) Ag2O (1.0) Trace
6 Pd(Oac)2 (10) Ag2CO3 (1.0) <10
7 Pd(Oac)2 (10) AgTFA (0.2) 22
8 Pd(Oac)2 (10) AgTFA (0.6) 61
9 Pd(Oac)2 (10) AgTFA (1.5) 84
10 Pd(Oac)2 (10) AgTFA (2.0) 67
11 Pd(TFA)2 (10) AgTFA (1.5) 68.6
12 Pd(CH3CN)2Cl2 (10) AgTFA (1.5) 85
13 Pd(PPh3)2Cl2 (10) AgTFA (1.5) <10
14 Pd(dppf)Cl2 (10) AgTFA (1.5) <10
15 PdCl2 (10) AgTFA (1.5) 86
16 PdCl2 (0.5) AgTFA (1.5) Trace
17 PdCl2 (1.0) AgTFA (1.5) 13
18 PdCl2 (5.0) AgTFA (1.5) 19
19d PdCl2 (10) AgTFA (1.5) <30

a Reactions were performed taking reactant 1a (0.45 mmol) and 2a (0.15
mmol) under ultrasound irradiation at room temperature in the open
air. Sonication was performed using an ultrasound cleaning bath with
a frequency of 40 kHz and a voltage of 220 V. b Isolated yield.
c Mechanical stirring instead of ultrasound irradiation. d Solvent (1
mL): HFIP, DMSO, DMF, EtOH, THF, DCM, and Tol.

© 2024 The Author(s). Published by the Royal Society of Chemistry
observed with Ag3PO4, AgOAc, Ag2O, and Ag2CO3 (entries 3–6).
Further investigations indicated that the desired product was
formed in the highest yield with 1.5 equivalents of AgTFA. The
yields decreased with a higher or lower concentration of AgTFA
(compare entries 7–10 of Table 1). The examination of different
palladium catalysts revealed that all the examined reactions led
to some conversion, albeit with quite different efficiencies
(Table 1, entries 11–15), with PdCl2 being the most reactive.
When the amount of catalyst was reduced to 0.5 mol%, the
yields decreased obviously (Table 1, entry 16–18). In stark
contrast, the coupling reaction proceeded less efficiently in
solvents such as HFIP (hexauoroisopropyl alcohol), DMSO,
DMF, EtOH, THF, DCM, and Tol (toluene). According to the
above results, the optimization study revealed that the
production of 3a can be successfully accomplished in high
yield (86%) by ultrasonic irradiation of a mixture of 1a and 2a
in the absence of the solvent at room temperature in the open
air.

Aer determining the optimal conditions, we next investi-
gated the substrate scope of olens and aryl iodides (Table 2
and Scheme 2). Firstly, the substrate scope of the activated and
unactivated olens was examined for Heck coupling, using
methyl 4-iodobenzoate (2a) as the model substrate. It was
interesting to nd that the Heck coupling of 2a with a variety of
substituted cyclic olens was achieved to afford the allylic
products (3a–3e) in excellent to moderate yields, while cyclo-
hexene and 3-methylenedihydrofuran-2(3H)-one provided the
mixture of double-bond isomers (3f/3g, 3h/3i) with good yields
(75% and 73%, respectively). Unexpectedly, a,b-unsaturated
ketones, such as cyclohex-2-enone, cyclopent-2-enone, and
Table 2 Scope of olefins
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Scheme 3 Plausible mechanism.

Scheme 2 The scale-up Heck coupling reaction.
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cyclohept-2-enone, led to the reductive Heck products 3j, 3k,
and 3l with moderate yields. Gratifyingly, a wide range of
terminal olens underwent the coupling smoothly, offering the
corresponding products in satisfactory yields (up to 96%). In all
the cases, only the E-isomers (3m–3s) were selectively obtained,
and the mono-arylations were also regioselective.

We also surveyed the scope of aryl iodides comprising
various types of functional groups. Under mild reaction condi-
tions and using simple operations, catalytic amounts of
Pd(Oac)2 and stoichiometric amounts of AgTFA effected the
transformations of aryl iodides into the corresponding mono-
arylated product (4a–4ah) in good to excellent yields. The
coupling of aryl iodides bearing ortho-, meta- or para-substit-
uent (4a–4u) with methyl acrylate furnished satisfactory yields
of the monoarylated products. It is notable that the steric
hindrance properties of aryl iodides did not show signicant
inuences on the reactions (4d and 4e), and a phenolic hydroxy
group (4f) and protic functional groups (4g) are well tolerated in
this process. Not surprisingly, the catalytic system distin-
guished between iodide and other potential reactive halides (4t
and 4u) (Table 3).

Moreover, this new protocol succeeded with the multi-
substituted substrate (4v–4z). Furthermore, heteroaryl iodides
and iodine-substituted fused-ring compounds in this process
could also give very benecial yields (4ab–4ah).

In particular, the arylations of olens could be well scalable
under the optimized conditions, which could be up to 1.3 g
(Scheme 2). The proposed method offers several remarkable
advantages, including shorter reaction time, milder reaction
Table 3 Scope of aryl iodides

6472 | RSC Adv., 2024, 14, 6470–6475
conditions, and reduction of undesired side reactions causing
higher yields in comparison to the conventional methods.11

These features render our protocol particularly useful for
coupling reactions of complex small molecules, which offers an
excellent option for establishing a new horizon for Heck-type
reactions of olens.

On the basis of the experimental results (3a, 3j) and literature
reports,12 two tentative mechanisms for the arylation of arenes
are proposed, as shown in Scheme 3. We believe that an initial
silver-mediated iodide abstraction from the aryl palladium
iodide (A) results in the formation of the transition state
ArPdTFA (B). It is presumed that the transition state is followed
by an equilibrium involving ArPdTFA, ArPd+, and CF3COO

−.
ArPdTFA is assumed to be the reactive species instead of ArPd+.
Insertion of an olen into the C–Pd bond of ArPdTFA would
result in the formation of new alkyl palladium species (C, D).
There are two pathways: path a and path b.

In path a, b-hydride elimination of intermediate D gave
product 3a, the Pd(0) species was obtained in the reductive
elimination of HPdTFA from the b-hydride elimination process.

In path b, enolization of intermediate C generated the
palladium enolate E, nally, protonolysis of E furnished the
desired b-arylated ketone with regeneration of the Pd catalyst.

Conclusions

In summary, we developed a solvent-free, mild, and efficient
protocol for the Heck–Mizoroki reactions under ultrasonic
irradiation in open air, which would be predictable and robust
using a range of substrates. Varieties of aryl iodides were
tolerated in the reaction with a wide range of olens and
provided the oxidative or reductive Heck products in satisfac-
tory yields even at the gram scale. More importantly, the
approach should nd broad applications in an industrial envi-
ronment and the synthesis of ubiquitous structural units in
pharmaceuticals.
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