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organic polymer as a hydrogen
bond catalyst for Knoevenagel condensation
reaction and synthesis of 2,3-dihydroquinazolin-
4(1H)-ones†

Narges Zarei, Meysam Yarie, * Morteza Torabi and Mohammad Ali Zolfigol *

In this research, a new urea-rich porous organic polymer (urea-rich POP) as a hydrogen bond catalyst was

synthesized via a solvothermal method. The physiochemical properties of the synthesized urea-rich POP

were investigated by using different analyses like Fourier transform infrared (FT-IR) spectroscopy, field-

emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM),

thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), energy-dispersive X-ray

spectroscopy (EDS), elemental mapping analysis, X-ray diffraction analysis (XRD) and Brunauer–Emmett–

Teller (BET) techniques. The preparation of urea-rich POP provides an efficacious platform for designing

unique hydrogen bond catalytic systems. Accordingly, urea-rich POP, due to the existence of several

urea moieties as hydrogen bond sites, has excellent performance as a catalyst for the Knoevenagel

condensation reaction and multi-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.
Introduction

Porous materials due to their prospects for performing many
chemical transformations are of signicant importance.1–3

Among the building blocks of porous materials, porous organic
polymers (POPs) are the cornerstone for many research areas
such as gas storage and separation, smart chemo sensors,
energy storage, catalytic transformations and drug delivery.3–10

The bottom-up approach as a unique strategy has been used for
the construction of polymeric frameworks by different linkages
such as imine, boronate, hydrazone and diazonium which are
synthesized from selected structural linkers and monomers.11–18

These advanced materials have highly ordered structures,
devisable modular nature, large surface areas, tunable pore
sizes and good thermal and chemical stability.19–21 In this
respect, POPs by far are reliable and fantastic representatives for
heterogeneous catalysis.22 POPs implement specic conditions
to control the nature of catalytic centers. Also, these materials
control the placement of surrounding surface-active sites.23–28

Evidently, POPs due to their ordered pore channels and excel-
lent porosity are irreplaceable materials as hosts for guests in
many catalytic reactions. Moreover, the heterogeneous nature
of POP-based catalysts allows them to be easily recovered and
reused aer performing their catalytic activity.29–33
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Urea-linked POPs, as novel series of POPs, are exible building
blocks which exhibit reversible structural dynamics in their
framework.34 Hydrogen bond interactions and p–p stacking
environments have signicant effect on the conformational
orientation of urea linkages which in turn affects the morphology
of the target polymer.34–37 Thementioned items have an important
impact on the catalytic activity of these unique systems. Urea-
linked POPs can enhance the synergistic reaction strategy with
the incorporation of two or more active sites in close proximity to
activate the reactants which leads to a decrease in the activation
energy barrier.34 Considering the above, POPs, especially urea-
linked POPs, are benecial precursors for many catalytic trans-
formations such as Knoevenagel condensation,38 cross coupling
reactions,39 oxidation and reduction reactions,39 asymmetric
catalysis,40 arylation reactions27 CO2 xation,41 photocatalytic
reactions42 and multi-component reactions.43

Knoevenagel condensation, as a forefront and fundamental
reaction for C]C bond formation, is an important reaction to
achieving carbohydrates, fragrances, herbicides and dyes.
Generally, Knoevenagel adducts are constructed by the reaction
between aldehydes or ketones and compounds which contain
acidic methylene bridges.44–47 Nonetheless, the preparation of
these compounds using POPs is of great interest.48–50 Secondly,
quinazolinone families are valuable assortment of nitrogen-
containing heterocyclic compounds which are abundantly
used in the pharmaceutical communities. There are several
valuable marketed drugs in which quinazolinone moieties are
involved.51–54 Numerous medicinal properties such as
© 2024 The Author(s). Published by the Royal Society of Chemistry
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anticonvulsant, anticancer, hypolipidemic, antimalarial, anti-
diabetic and activities have been reported for these
compounds.55–57

Our initial perspective is the design and synthesize of a new
urea-rich POP and it was applied as an unique heterogeneous
hydrogen bond catalyst for Knoevenagel condensation reaction and
synthesis of 2,3-dihydroquinazolin-4(1H)-ones (Schemes 1 and 2).
Results and discussion

Because of the effective role of catalysts in the chemical and
industrial processes, development of catalytic systems for the
organic transformations is one of the main research demands.
In continuation of our investigation on the synthesis of
dihydroquinolines,58–62 herein, we decided to synthesize a new
urea-rich POP as a hydrogen bond catalyst for the Knoevenagel
condensation reaction and preparation of 2,3-dihy-
droquinazolin-4(1H)-ones.

Support for the proposed chemical structure of urea-rich
POP came from FT-IR analysis. In this respect, FT-IR spectra
of the resulting urea-rich POP and its related starting materials
were depicted in Fig. 1. FT-IR spectrum of tris(4-
aminophenoxy)-1,3,5-triazine (TAPT) shows stretching vibra-
tions characteristic of NH2 groups at 3379 and 3469 cm−1. The
characteristic peak of C]N bonds appeared in the area of
1610 cm−1. According to the FT-IR spectrum of bis(4-
isocyanatophenyl)methane (BICPM), the sharp signal in the
areas of 2263 cm−1 is related to isocyanate groups. Aer the
polymerization reaction (to give urea-rich POP), the vibrational
mode of isocyanate groups of BICPM and NH2 of TAPT dis-
appeared. Meanwhile, appearance of a new peak at 1669 cm−1,
can be attributed to the amidic carbonyl groups stretching
mode. In addition, signal of the amidic N–H groups has been
appeared at 3339 cm−1 which in turn in a strong reason for the
conrmation of the successful synthesis of urea-rich POP
(Fig. 1).
Scheme 1 Experimental route for the synthesis of urea-rich POP.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Result of the EDS analysis was conrmed the presence of C, O
and N elements. Additionally, mapping analysis was used for the
determination of the uniform scattering of desired elements.
Elemental mapping images of urea-rich POP revealed that the N, O
and C are distributed homogeneously in the urea-rich POP (Fig. 2).

In order to investigate the surface morphology of the
prepared urea-rich POP, FE-SEM analysis was used. According
to FE-SEM images of urea-rich POP, the porous organic polymer
has a morphology of intertwined threads spheres (Fig. 3a and
b). Additionally, TEM analysis has been applied to further study
of urea-rich POP morphology. From the TEM images of urea-
rich POP (Fig. 3c–e), it was clearly observed that the described
catalyst has regular spheres stuck together containing particles
with different sizes (form nanometer to micrometer).

In another study, the synthesized catalyst was characterized
by nitrogen adsorption/desorption measurements at 77 K
(Fig. 4a). The adsorption isotherm belongs to the type III
isotherm of IUPAC classication. The appearance of hysteresis
loops reveals the existence of mesopores in the synthesized
catalyst. The specic surface area of urea-rich POP is 47 m2 g−1

which clearly shows the good porosity of urea-rich POP. Also,
the pore size distribution curves, derived from BJH analysis,
demonstrated that the size of most of the pores for urea-rich
POP are in range of 2–30 nm (Fig. 4b), revealing the presence
of mesopores.

XRD pattern illustrated that urea-rich POP has sharp signals at
21°, 29°, 36°, 39°, 43°, 47° and 49°. With more precision, the
broad diffraction peak about 2q = 21°, is attributable to the p–p

stacking of the aromatic building blocks. Other sharp peaks prove
that catalyst has a relatively order crystalline structure (Fig. 5).

TGA/DTG analyses as a conventional method were used for
the determination of thermal stability of urea-rich POP.
According to TGA/DTG curves of urea-rich POP (Fig. 6), a major
weight loss occurred about at 340 °C, while a negligible weight
loss was observed before this temperature and this veried the
excellent thermal stability of catalyst.
RSC Adv., 2024, 14, 1094–1105 | 1095
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Scheme 2 General procedure for the catalytic synthesis of Knoevenagel adducts and 2,3-dihydroquinazolin-4(1H)-ones.

Fig. 1 FT-IR spectra of TAPT (a), BICPM (b) and urea-rich POP (c).
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Fig. 2 EDS and elemental mapping analyses of urea-rich POP.
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In the following, we have focused on the investigation of
catalytic behavior of urea-rich POP as a hydrogen bond cata-
lyst for the Knoevenagel condensation reaction and multi-
component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.
In this regard, the required reactions were carried out to nd
the optimal conditions for the Knoevenagel condensation
reaction and 2,3-dihydroquinazolin-4(1H)-ones synthesizing.
At rst, 4-hydroxy benzaldehyde and malononitrile as model
substrates and urea-rich POP as a catalyst were selected for
optimization of the reaction conditions for the synthesis of
related Knoevenagel adduct. For exploration of the impact of
temperature, the model reaction was performed at different
Fig. 3 FE-SEM images of urea-rich POP (a and b) and TEM images of u

© 2024 The Author(s). Published by the Royal Society of Chemistry
temperatures by using 20 mg of catalyst. The resulting data
indicated that the 90 °C is the best temperature for the
reaction. Then, the model reaction was performed at 90 °C in
the presence of different amounts of the catalyst (10, 15 and
20 mg). The obtained data conrmed that 20 mg of catalyst is
the best of choice. Also, the model reaction was done in H2O
and several organic solvents and also, solvent free conditions.
It was found that the selected solvents did not provide suit-
able conditions for the progress of the reaction. Furthermore,
the reaction was also done in the absence of catalyst under
solvent free conditions, which did not progress sufficiently.
Considering the obtained data, the optimal reaction condi-
tions is where the model reaction performed under solvent
free conditions by using 20 mg of catalyst at the 90 °C (Table
1). Similarly, we delve into the screening of optimal reaction
conditions for the preparation of 2,3-dihydroquinazolin-
4(1H)-ones. It was found that stirring at 100 °C by using 20 mg
of urea-rich POP as a catalyst for 60 min without any solvent
affords the best yield (90%) (Table 2).

The archived data from the catalytic performance of urea-
rich POP in the Knoevenagel reaction and synthesis of 2,3-
dihydroquinazolin-4(1H)-ones encouraged us to investigate
the generality of the catalytic activity. In the section of
Knoevenagel reaction, a series of aldehydes with different
electron-decient and electron-rich aromatic substituents
were tested. Also, malononitrile, ethyl cyanoacetate and 3-
(1H-indol-3-yl)-3-oxopropanenitrile were used as compounds
which contain acidic methylene bridge. All the aldehydes and
CH–acid compounds, provide the corresponding products
with high yields at short reaction times (Table 3). Various
aldehydes were also used for the preparation of 2,3-
rea-rich POP (c–e).

RSC Adv., 2024, 14, 1094–1105 | 1097
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Fig. 4 The N2 adsorption–desorption isotherms of urea-rich POP (a) and pore size distribution curves of urea-rich POP (b).
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dihydroquinazolin-4(1H)-ones. In this case, the synthesized
derivatives had high yields and short reaction times (Table 3).

In another study, in order to nd out the role of the desired
catalyst, the model reactions, was checked out in the presence
of urea and thiourea for comparison. The results indicated
that the synthesized catalyst has the better performance. Also,
due to the heterogeneity of the target catalyst, it is easily
separated from the mixture of reaction and can be reused. It is
worth noting that the two mentioned catalysts are homoge-
neous and it is not easy to separate them from the reaction
mixture (Tables 4 and 5).

Besides characteristic parameters and catalytic activity,
recovering and reusing of urea-rich POP as one of the
inuential parameters of heterogeneous catalysts was
studied. To our delight, when the model reaction for Knoe-
venagel condensation was performed at the obtained
optimum reaction conditions, the catalyst could be used at
least 5 times with a negligible decreasing in catalytic activity
and yield of product (Scheme 3). Hence, aer accomplishing
Fig. 5 XRD pattern of urea-rich POP.

1098 | RSC Adv., 2024, 14, 1094–1105
the model reaction in each run, the mixture of reaction was
dissolved in 30 mL hot EtOH while the catalyst is insoluble.
Accordingly, the catalyst was easily separated by using lter
paper, washed with EtOH, dried and retained for the next
reaction. Also, the stability of the recovered catalyst was
investigated by FT-IR spectroscopy (see ESI†).

In another exploration, we suggested a mechanistic route
for the preparation of 2f as follows. At rst, ammonia derived
from the dissociation of ammonium acetate attack to catalytic
activated isatoic anhydride which leads to intermediate A.
Then, via a CO2 releasing process, intermediate A was con-
verted to intermediate B. In the next step, aldehyde was
activated by the catalyst and reacted with intermediate B to
generate intermediate C. Aer that, the desired product was
performed through an intramolecular nucleophilic attack
(Scheme 4).
Fig. 6 TGA/DTG curves of urea-rich POP.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimization of reaction conditions for synthesis of 1ba

Entry Solvent Temperature (°C) Catalyst loading (mg) Time (min) Yieldb (%)

1 — 100 20 30 95
2c — 90 20 30 95
3 — 90 15 30 90
4 — 90 10 60 70
5 — 90 — 120 30
6 — 80 20 60 20
7 — 80 20 240 40
8 H2O Reux 20 60 —
9 EtOH Reux 20 60 —
10 n-Hexane Reux 20 60 —
11 EtOAc Reux 20 60 —
12 CH2Cl2 Reux 20 60 —

a Reaction conditions: malononitrile (1 mmol, 0.066 g), 4-hydroxybenzaldehyde (1 mmol, 0.122 g). b Isolated yields. c Optimal data.
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Experimental section
General procedure for the synthesis of urea-rich POP

Initially, TAPTwas synthesized according to the previously reported
methods.77 Then, a mixture of TAPT (0.4 mmol, 0.16 g), BICPM
(0.65 mmol, 0.16 g) and dioxane (6 mL) were sealed in a 25 mL
Teon lined stainless steel vessel and heated at 110 °C for 72 h.
Aer completing the reaction, the obtained light brown precipitate
Table 2 Optimization of reaction conditions for synthesis of 2fa

Entry Solvent Temperature (°C)

1c — 100
2 — 100
3 — 100
4 — 90
5 — 100
6 — 80
7 — 70
8 H2O Reux
9 EtOH Reux
10 n-Hexane Reux
11 MeOH Reux
12 CH2Cl2 Reux

a Reaction conditions: 4-methylbenzaldehyde (1mmol, 0.12 g), isatoic anhy
yields. c Optimal data.

© 2024 The Author(s). Published by the Royal Society of Chemistry
was washed three times with hot THF, MeOH and CH2Cl2. Finally,
the obtained precipitate was dried for 12 h at 80 °C.
Experimental procedure for Knoevenagel condensation
reaction by using urea-rich POP as catalyst

Aryl aldehydes (1 mmol), malononitrile (1 mmol, 0.066 g) or
ethyl cyanoacetate (1 mmol, 0.113 g) or 3-(1H-indol-3-yl)-3-
Catalyst loading (mg) Time (min) Yieldb (%)

20 60 90
15 90 80
10 100 65
20 80 78
— 120 70
20 180 70
20 240 40
20 60 Trace
20 60 50
20 60 —
20 60 45
20 60 —

dride (1mmol, 0.163 g), ammonium acetate (3mmol, 0.231 g). b Isolated

RSC Adv., 2024, 14, 1094–1105 | 1099
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Table 3 Preparation of Knoevenagel-based compounds (1a–1n) and preparation of dihydroquinazolin-4(1H)-one derivatives (2a–2f) in the
presence of urea-rich POP as catalysta

a Reaction conditions for the preparation of Knoevenagel-based compounds: aldehyde (1 mmol), CH–acid compound (1 mmol), and urea-rich POP
(20 mg), solvent-free, 90 °C. Reaction conditions for the preparation of dihydroquinazolin-4(1H)-one derivatives: aldehyde (1 mmol), isatoic
anhydride (1 mmol, 0.163 g), ammonium acetate (3 mmol, 0.231 g) and urea-rich POP (20 mg), solvent-free, 100 °C, reported yields are referred
to isolated yields.
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oxopropanenitrile (1 mmol, 0.184 g) and urea-rich POP (0.02
g) were mixed in a round bottom ask without using any
solvent and were stirred by a heater stirrer at 90 °C. TLC
technique was used for the assignment of the precession of
the reaction. Aer the reaction time is over, 30 mL of hot
1100 | RSC Adv., 2024, 14, 1094–1105
EtOH was added to the reaction composition and all of the
materials were dissolved in EtOH and the insoluble catalyst
was removed by lter paper. Aer that, the desired products
were treated with 10 mL of cold EtOH and easily puried and
dried for a sufficient time at 25 °C to yield the pure products.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Comparison of the catalytic performance of urea-rich POP
and two other formal catalysts for the synthesis of 1ba

Entry Catalyst
The amount of
catalyst Yield (%)

1 Urea-rich POP 20 mg 95
2 Urea 10 mol% Trace
3 Thiourea 10 mol% 25

a Reaction conditions: malononitrile (1 mmol, 0.066 g), 4-
hydroxybenzaldehyde (1 mmol, 0.122 g), solvent-free, 90 °C, 30 min.

Table 5 Comparison of the catalytic performance of urea-rich POP
and two other formal catalysts for the synthesis of 2fa

Entry Catalyst
The amount of
catalyst Yield (%)

1 Urea-rich POP 20 mg 90
2 Urea 10 mol% 45
3 Thiourea 10 mol% 20

a Reaction conditions: 4-methylbenzaldehyde (1 mmol, 0.12 g), isatoic
anhydride (1 mmol, 0.163 g), ammonium acetate (3 mmol, 0.231 g),
solvent-free, 100 °C, 60 min.
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Experimental route for preparation of dihydroquinazolin-
4(1H)-one derivatives by applying urea-rich POP as catalyst

Aromatic aldehyde families (1 mmol), isatoic anhydride (1 mmol,
0.163 g), ammonium acetate (3 mmol, 0.231 g) and urea-rich POP
(20 mg) were mixed in a round bottom ask and reacted without
using any solvent at 100 °C. The precession of the reaction was
monitored by using TLC techniques. Aer completing each reac-
tion, 30mL of CH2Cl2 was added to the reactionmixture and all of
the materials except the used catalyst were dissolved in CH2Cl2.
Aer that, the catalyst was easily separated by using a ltration
process, the solvent was removed and the remaining solid was
treated to 10 mL of cold EtOH and easily puried. Finally, the
obtained products were desiccated at 80 °C.
Spectral data

2-(4-Hydroxybenzylidene)malononitrile (1b).Mp 181–182 °C,
FT-IR (KBr, n, cm−1): 3353, 3080, 2922, 2226, 1610, 1580, 1517.
1H NMR (301 MHz, DMSO-d6) dppm 11.05 (s, 1H), 8.32 (s, 1H),
Scheme 3 Recovering and reusability test of urea-rich POP in the prep

© 2024 The Author(s). Published by the Royal Society of Chemistry
7.90 (d, J = 9 Hz, 2H), 7.00 (d, J = 9 Hz, 2H). 13C NMR (76 MHz,
DMSO-d6) dppm 164.5, 161.0, 134.4, 123.2, 117.1, 115.6, 114.7,
75.4.

2-(3-Fluorobenzylidene)malononitrile (1d).Mp 85–86 °C, FT-
IR (KBr, n, cm−1): 3080, 3040, 2228, 1596, 1573, 1491. 1H NMR
(301 MHz, DMSO-d6) dppm 8.59 (s, 1H), 7.83–7.68 (m, 3H), 7.63–
7.56 (m, 1H). 13C NMR (76 MHz, DMSO-d6) dppm 164.0, 160.6,
133.8, 132.3, 127.1, 121.7, 117.0, 114.4, 113.3, 84.0.

2-([1,1′-Biphenyl]-4-ylmethylene)malononitrile (1e).Mp 144 °
C, FT-IR (KBr, n, cm−1): 3063, 3030, 2224, 1605, 1576, 1547. 1H
NMR (301 MHz, DMSO-d6) dppm 8.60 (s, 1H), 8.09 (d, J = 9 Hz,
2H), 8.00 (d, J = 9 Hz, 2H), 7.83 (d, J = 9 Hz, 2H), 7.58–7.48 (m,
3H). 13C NMR (76 MHz, DMSO-d6) dppm 161.3, 146.1, 138.7,
131.8, 130.8, 129.7, 129.4, 128.0, 127.6, 114.9, 114.0, 81.2.

2-(4-Methylbenzylidene)malononitrile (1f). Mp 132–135 °C,
FT-IR (KBr, n, cm−1): 3035, 2968, 2224. 1H NMR (301 MHz,
DMSO-d6) dppm 8.49 (s, 1H), 7.87 (d, J = 9 Hz, 2H), 7.45 (d, J =
6 Hz, 2H), 2.42 (s, 3H). 13C NMR (76 MHz, DMSO-d6) dppm 161.8,
146.2, 131.2, 130.6, 129.2, 114. 9, 113.9, 80.4, 22.0.

Ethyl (E)-2-cyano-3-(4-hydroxyphenyl)acrylate (1k). Mp 162–
164 °C, FT-IR (KBr, n, cm−1): 3278, 2986, 2229, 1721. 1H NMR
(301 MHz, DMSO-d6) dppm 10.87 (s, 1H), 8.24 (s, 1H), 8.01 (d, J =
9 Hz, 2H), 6.97 (d, J= 9 Hz, 2H), 4.30 (q, J= 9 Hz, 2H), 1.31 (t, J=
6 Hz, 3H). 13C NMR (76 MHz, DMSO-d6) dppm 163.5, 163.1,
155.2, 134.5, 122.1, 116.1, 116.9, 97.5, 62.4, 14.5.

(E)-3-(4-Bromophenyl)-2-cyanoacrylate (1m). Mp 83–85 °C,
FT-IR (KBr, n, cm−1): 3035, 2988, 2900, 2223, 1723. 1H NMR (301
MHz, DMSO-d6) dppm 8.42 (s, 1H), 8.01 (d, J = 9 Hz, 2H), 7.85 (d,
J = 9 Hz, 2H), 4.35 (q, J = 6 Hz, 2H), 1.33 (t, J = 9 Hz, 3H). 13C
NMR (76 MHz, DMSO-d6) dppm 162.1, 154.4, 133.0, 132.9, 131.0,
127.7, 115.9, 103.8, 63.0, 14.5.

2-(Naphthalen-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2c).
Mp 217–219 °C, FT-IR (KBr, n, cm−1): 3281, 3185, 3063, 1648. 1H
NMR (301 MHz, DMSO-d6) dppm 8.41 (s, 1H), 7.99–7.93 (m, 4H),
7.74–7.65 (m, 2H), 7.57–7.54 (m, 2H), 7.31–7.23 (m, 2H), 6.79 (d,
J= 6 Hz, 1H), 6.75–6.67 (m, 1H), 5.96 (s, 1H). 13C NMR (76 MHz,
DMSO-d6) dppm 164.1, 148.4, 139.3, 133.8, 133.5, 133.0, 128.6,
128.5, 128.1, 127.9, 126.9, 126.9, 126.4, 125.3, 117.7, 115.4,
114.9, 67.3.

2-([1,1′-Biphenyl]-4-yl)-2,3-dihydroquinazolin-4(1H)-one (2d).
Mp 222–223 °C, FT-IR (KBr, n, cm−1): 3291, 3189, 3060, 1653. 1H
NMR (301 MHz, DMSO-d6) dppm 8.60 (s, 1H), 8.08 (d, J = 9 Hz,
aration of 1b.
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Scheme 4 A plausible mechanism for the preparation of 2f in the presence of urea-rich POP as catalyst.
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2H), 7.99 (d, J = 9 Hz, 2H), 7.83 (d, J = 9 Hz, 2H), 7.58–7.48 (m,
3H). 13C NMR (76 MHz, DMSO-d6) dppm 164.1, 148.3, 141.3,
140.8, 140.2, 133.8, 129.4, 128.1, 127.9, 127.9, 127.2, 127.1,
117.6, 115.5, 114.9, 66.7.

2-(p-Tolyl)-2,3-dihydroquinazolin-4(1H)-one (2f). Mp 227–
229 °C, FT-IR (KBr, n, cm−1): 3313, 3195, 3062, 2931, 1658. 1H
NMR (301 MHz, DMSO-d6) dppm 8.26 (s, 1H), 7.63 (d, J = 9 Hz,
1H), 7.40 (d, J = 9 Hz, 2H), 7.28–7.20 (m, 3H), 7.08 (s, 1H), 6.77–
6.66 (m, 2H), 5.73 (s, 1H), 2.31 (s, 3H). 13C NMR (76 MHz,
DMSO-d6) dppm 164.1, 148.4, 139.1, 138.2, 133.7, 129.3, 127.8,
127.3, 117.5, 115.5, 114.9, 66.8, 21.2.

Conclusion

In conclusion, we have described the synthesis of novel urea-
rich POP by urea linkers via solvothermal conditions. This
polymer was precisely characterized by several techniques such
as FT-IR, FE-SEM, TEM, EDS, mapping, XRD, TGA/DTG and BET
techniques. Also, the catalytic behavior of the prepared struc-
ture was investigated in Knoevenagel condensation reaction
and preparation of 2,3-dihydroquinazolin-4(1H)-ones. Plentiful
hydrogen-bonding interactions of catalyst by starting materials
lead to providing the activation energy of the target reactions.
Most of prepared molecules have a good yields and short
reaction times. In addition, recovering and reusing of urea-rich
POP was studied in Knoevenagel condensation reaction and
easily used at least 5 times with a negligible decreasing in
catalytic activity and yield of product.
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