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on and efficiency enhancement in
Cs2AgBiBr6 double perovskite solar cells through
gallium substitution

Ihtisham-ul-haq,a M. I. Khan, *a Asad Ullah,a Ali Mujtaba, a

Badriah S. Almutairi, b Wajeehah Shahid,a Asghar Alia and Jeong Ryeol Choi*c

Lead-free halide double perovskite (LFHDP) Cs2AgBiBr6 has emerged as a promising alternative to

traditional lead-based perovskites (LBPs), offering notable advantages in terms of chemical stability and

non-toxicity. However, the efficiency of Cs2AgBiBr6 solar cells faces challenges due to their wide

bandgap (Eg). As a viable strategy to settle this problem, we consider optimization of the optical and

photovoltaic properties of Cs2AgBiBr6 by Gallium (Ga) substitution. The synthesized Cs2Ag0.95Ga0.05BiBr6
is rigorously characterized by means of X-ray diffraction (XRD), UV-vis spectroscopy, and solar simulator

measurements. XRD analysis reveals shifts in peak positions, indicating changes in the crystal lattice due

to Ga substitution. The optical analysis demonstrates a reduction in the Eg, leading to improvement of

the light absorption within the visible spectrum. Importantly, the Cs2Ag0.95Ga0.05BiBr6 solar cell exhibits

enhanced performance, as evidenced by higher values of open circuit voltage (Voc), short-circuit current

(Jsc), and fill factor (FF), which are 0.94 V, 6.01 mA cm−2, and 0.80, respectively: this results in an

increased power conversion efficiency (PCE) from 3.51% to 4.52%. This research not only helps to

overcome film formation challenges, but also enables stable Cs2Ag0.95Ga0.05BiBr6 to be established as

a high-performance material for photovoltaic applications. Overall, our development contributes to the

advancement of environmentally friendly solar technologies.
1. Introduction

As a sustainable energy resource, solar energy emerges as
a distinctive solution to cope with the global energy crisis and
environmental pollution that accompanies the use of tradi-
tional energy. Consequently, the exploration and advancement
of high-efficiency and economically viable solar cells underpin
the technological progress for securing energy. Within this
domain, conventional crystalline silicon-based solar cells have
achieved successful commercialization notwithstanding certain
constraints formerly. Additionally, dye-sensitized solar cells,
organic photovoltaic devices, quantum dot solar cells, and
perovskite solar cells (PSCs) have been extensively investigated
and developed to enhance cell performance and efficiency.1–4

LBPs have been elucidated as a highly promising alternative to
silicon-based technology, thanks to their robust light absorp-
tion characteristics and superior ambipolar charge transport
capabilities. They exhibit a lengthy carrier diffusion length
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48
(exceeding 1 mm), an extended charge carrier lifetime
(surpassing 100 ns), and a low exciton binding energy (less than
25 meV). Recently, substantial research endeavors have been
directed towards the advancements of PSCs, resulting in
a notable enhancement of their PCE from a mere 3.8% to an
impressive 22.7%.5–8 While LBPs offer notable advantages of
efficiency and cost, signicant concerns persist regarding their
toxic nature and susceptibility to instability, particularly in
humid conditions. These issues demand careful attention and
targeted strategies for effective mitigation of the problems.9–11

Rigorous endeavors for addressing these challenges have been
undertaken in the advancement of LBP solar cells.

The focus is to integrate the exceptional optoelectronic
characteristics of LBPs with heightened stability and non-toxic
attributes. Substitutes, including bivalent tin (Sn2+) and
germanium (Ge2+), as well as trivalent bismuth (Bi3+) and anti-
mony (Sb3+), have been examined as potential replacements for
lead (Pb2+) in perovskite materials. The primary objective of
exploring these alternatives is to uphold the exceptional
performance of perovskite materials in optoelectronic devices
and catalytic applications, while concurrently diminishing the
environmental impact associated with the use of lead.1212–14

Nevertheless, these alternative materials are deemed subop-
timal due to inherent issues related to stability and subpar
performance.15–18 An emerging and promising strategy that we
© 2024 The Author(s). Published by the Royal Society of Chemistry
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take notice is the substitution of one univalent and one trivalent
metal cation for Pb within the crystal structure. This leads to the
formation of double perovskites (DP), characterized by
a formula of A2B

+B3+X6. Notably, there is a growing interest in
the development of LFHDP, where A = Cs+; B0 = Ag+, Na+, Cu+;
B00 = In3+, Bi3+, Sb3+; X = Cl−, Br−, or I−. The appeal of LFHDP
lies in their small carrier effective mass, high stability, and non-
toxic nature, rendering them promising alternatives to
LBPs.19–22

Within the realm of metal halide perovskites, Cs2AgBiBr6
double perovskite has surfaced as a compelling substitute for
toxic and unstable lead halide perovskites in diverse optoelec-
tronic applications including solar cells. This is attributed to its
exceptional chemical stability, non-toxic nature, and remark-
able optoelectronic properties, including prolonged carrier
lifetimes.23–26 However, the Cs2AgBiBr6 solar cell encounters
challenges related to efficiency, primarily attributed to its wide
Eg.27–29 The process of substitution with impurity ions has been
acknowledged as a potent approach for augmenting the optical
characteristics of halide perovskites. Indeed, among the array of
strategies, substitution stands out for its simplicity and ease of
application. Additionally, it offers the advantage of modifying
the properties of LFHDP without perturbing their crystal
structure.30–33 The incorporation of Ga ions has been substan-
tiated as a promising dopant, exhibiting noteworthy enhance-
ments in both open circuit voltage (Voc) and ll factor (FF)
through the mitigation of recombination, consequently result-
ing in increased efficiency. Ga substitution has demonstrated
the potential to ameliorate charge transport by diminishing
surface traps.34–37 Boudoir et al. have doped Ga inMgxZn1−xO for
photovoltaic devices with its concentration of 0.05 (5%), and
they showed that this concentration for Ga is optimal.38 This
specic concentration enhances device performance improving
the efficiency of capturing charge carriers. Regarding this
consequence, 0.05 Ga concentration has been used in this
research.

This study presents a novel exploration focused on the
successful incorporation of Ga into Cs2AgBiBr6, a promising
LFHDP material. The synthesized Cs2Ag0.95Ga0.05BiBr6 under-
went comprehensive examinations utilizing XRD, UV-vis spec-
troscopy, and solar simulator measurements. The crystalline
structure and phase purity of the material have been elucidated
via XRD analysis, leading to insights into the inuence of Ga
substitution on the perovskite lattice. UV-vis spectroscopy
delved into the optical properties, revealing shis in absorption
spectra indicative of modications in the electronic structure.
Additionally, solar simulator measurements assessed the pho-
toconversion efficiency and performance of Cs2Ag0.95Ga0.05-
BiBr6, positioning it as a compelling candidate for photovoltaic
applications. The synergistic application of these characteriza-
tion techniques provides a holistic understanding of the
structural, optical, and photovoltaic attributes of the pioneering
Cs2Ag0.95Ga0.05BiBr6. This contribution offers invaluable
insights to the evolving realm of LFHDPs for sustainable energy
technologies. Importantly, this research provides the rst
comprehensive explanation of the enhanced solar-cell proper-
ties caused by Cs2Ag0.95Ga0.05BiBr6.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2. Experimentation

213 mg of CsBr (with a purity of 99.9% from Sigma-Aldrich),
225 mg of BiBr3 (with a purity of 99.99% from Sigma-Aldrich),
and 94 mg of AgBr (with a purity of 99.9% from Alfa Aesar)
were introduced into a 25 mL solution of 47% hydrobromic acid
(HBr, Alfa Aesar). The resultant mixture underwent stirring at
a temperature of 120 °C until the solvent evaporated, yielding
red crystals. Stirring was then terminated, and the mixture
underwent controlled cooling at a rate of 5 °C per hour.
Subsequently, the mixture was allowed to stand undisturbed
overnight. The red crystals that precipitated were subsequently
subjected to ltration and collection. A subsequent ethanol
wash was administered to the collected crystals. The resultant
solid product underwent drying under vacuum conditions at
60 °C, culminating in the formation of Cs2AgBiBr6 crystals. The
identical procedure was replicated for Ga substitution, where
5 wt% Ga was incorporated along with all the chemical
components.

The phase structure and particle size of both pristine and
Cs2Ag0.95Ga0.05BiBr6 lms were investigated using XRD. XRD
analysis was performed employing a PANalytical X'Pert PRO
MRD X-ray diffractometer equipped with a Ni-ltered Cu Ka
source (wavelength = 1.5418 Å). This instrument facilitated
high-resolution and lower-resolution measurements on diverse
thin lm and powder samples. The X-ray diffractometer oper-
ated under conditions of 40.0 kV and 40.0 mA. For the optical
characterization of the lms, a Shimadzu UV-2101 spectrometer
was employed.

A total of 532 mg of Cs2AgBiBr6 and Cs2Ag0.95Ga0.05BiBr6
powders were dissolved in dimethyl sulfoxide (1 mL, DMSO,
99.9%, Sigma-Aldrich) to prepare 0.5 M precursor solutions for
Cs2AgBiBr6 and Cs2Ag0.95Ga0.05BiBr6. Subsequently, 100 mL of
these solutions underwent spin-coating on the surface of
a glass/FTO/TiO2 layer at 3000 revolutions per minute (rpm) for
1 minute. The resulting two lms, Cs2AgBiBr6 and Cs2Ag0.95-
Ga0.05BiBr6, were annealed at 280 °C for 5 minutes to ensure the
complete formation of a double perovskite phase. The TiO2 lm
was synthesized following the procedures outlined in our
previously published paper.39

To fabricate the hole transport material (HTM), solution (A)
was generated by blending 36 mL of tributylphosphine (TBP)
with 22 mL of a stock solution containing 520 mg mL−1 of
lithium bis-triuoromethyl sulfonyl-imide. Within solution (A),
72 mg of spiro-OMeTAD was introduced and stirred, resulting
in the formation of a solution denoted as solution (B). Subse-
quently, 1 mL of chlorobenzene was incorporated into solution
(B) to create the nal solution. For enhanced connectivity of the
device with an external source, an 80 nm-thick gold layer was
deposited onto the electrode. These solar cells possessed an
active area of 0.16 cm2 and followed the conguration: glass/
FTO/TiO2/Cs2AgBiBr6/spiro-OMeTAD/Au.40

For the evaluation of solar cells, a solar simulator was
employed, featuring calibrated air mass (AM) 1.5 G and an
intensity of 100 mW cm−2. The testing apparatus was equipped
with a computer-controlled source meter, specically the
RSC Adv., 2024, 14, 5440–5448 | 5441
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Keithley 2400 (manufactured by Keithley Instruments, Inc.,
Cleveland, OH, USA). This setup was utilized to generate the J–V
curve, and the voltage sweep was carried out in the reverse bias
direction, ranging from 1.2 V to 0 V. The device underwent
assessment under standard 1 sun illumination at an air mass
(AM) of 1.5 G, and the voltage sweep was executed at a scan rate
of 0.2 V s−1 (Fig. 1).41
3. Results and discussion
3.1. Structure analysis

For characterization, the Cs2AgBiBr6 lm was initially synthe-
sized using the sol–gel method. The crystalline structure was
determined through XRD.42,43 The diffraction peaks for pure
Cs2AgBiBr6 were identied on the (200), (220), (222), (400),
(420), and (440) planes, corresponding to 2q values of 16.56,
22.40, 27.50, 32.30, 36.95, and 38.62, degrees, respectively. The
obtained results closely align with the standard JCPDS data for
Cs2AgBiBr6, as indicated by the corresponding le number (01-
084-8699). Remarkably, with a 5% Ga substitution, XRD peaks
exhibited a shi toward higher 2q angles, notably evident in the
(400) diffraction peak as depicted in Fig. 2(a). Specically, the
peak observed at (400) for the undoped sample at 32.30° shied
to 32.59° with Ga substitution. Upon Ga substitution, no addi-
tional peaks were detected, affirming that Ga substitution did
not introduce secondary phases or impurities alongside pristine
Cs2AgBiBr6. This conrms Ga substitution in Cs2AgBiBr6. Also,
there was an observed augmentation in peak intensity, indica-
tive of the higher crystallinity by the substitution of Ga ions. The
observed peak shiing toward higher angles corresponds to in-
plane compressive stress in the lm. The introduction of
smaller ions into the host lattice results in a peak shiing,
Fig. 1 Geometry of solar cell.

5442 | RSC Adv., 2024, 14, 5440–5448
attributed to the replacement of Ag+ by Ga3+ due to the disparity
in atomic radii between Ag+ (1.15 Å) and Ga3+ (0.62 Å).44–47 The
Scherer equation given below can be utilized to calculate the
grain size of the material:48,49

D ¼ Kl

bcosq
(1)

The Scherer constant, denoted as K, is 0.9, and the wave-
length (l) is 1.54 Å. Here, b represents the Full Width at Half
Maximum of the peak, and q denotes the Bragg angle. There-
fore, the grain size calculated using eqn (1) is 29 nm for pristine
Cs2AgBiBr6, and is 35 nm for the substitution sample.

The dislocation line density is a metric that quanties the
density of dislocations within a dened volume of a crystalline
material. It is dened as d = D−2 which denotes the length of
dislocation lines per unit volume of the crystal and is conven-
tionally expressed in meters per cubic meter (m m−3).48 The
dislocation line density for pristine Cs2AgBiBr6 was measured at
1.18 × 10−3 m m−3, whereas for the Ga substitution sample, it
decreased to 8.16 × 10−4 m m−3. The reduction in dislocation
line density has the potential to mitigate the recombination
rate, leading to an increase in carrier lifetime. As a result, this
enhancement can positively impact the Voc, Jsc, and overall PCE
of the solar cell.50–53 Interplanar d-spacing (d) is a vital param-
eter in X-ray diffraction analysis, utilized for discerning the
crystal structure of a material. The d-spacing signies the
perpendicular distance between two successive crystallographic
planes of atoms within a crystal lattice. The value of d signi-
cantly inuences the optical and electronic properties of the
perovskite, thereby impacting the overall performance of the
solar cell.54 The d can be determined using a formula called
Bragg's law:55

d = l/2 sin q (2)

where l is the wavelength and q is the angle of incidence. The
d for the pristine sample is 2.76 Å, and for the substitution
sample, it is 2.74 Å. The lattice parameter (a) is a measurement
characterizing the length of the edges of the unit cell, which
serves as the smallest repeating structural building block within
the crystal. The value of ‘a’, especially for the most prominent
peak reection, can be determined through a specic mathe-
matical expression. The volume of the unit cell is directly
proportional to the cube of this ‘a’, as dened by the following
mathematical expression.56

a = d(h2 + k2 + l2)1/2 (3)

In this context, d represents the interplanar spacing, and h, k,
and l are the Miller indices. The lattice parameter for the pure
sample is 11.07 Å and decreases to 10.98 Å aer substitution.
The volume a3 can be easily computed using the relationship in
eqn (3). For the pure sample, the volume is 2.22 × 10−8 m3, and
for the substitution sample, it is 2.20 × 10−8 m3. This reveals
discernible differences in the structural properties between the
pristine and 5% substitution of Ga into Cs2AgBiBr6.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) XRD pattern of pure and Cs2Ag0.95Ga0.05BiBr6 halide double perovskite solar cell. (b) Crystallite Size and Dislocation Line Density of
Cs2Ag0.95Ga0.05BiBr6. (c) D-spacing, lattice parameter of pure and Cs2Ag0.95Ga0.05BiBr6. (d) Shows the volume for pure and substitution.
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Considering effective ionic radii, the Ga3+ ion (0.62 Å) exhibits
a smaller size than the Ag+ ion (1.15 Å). As per Vegard's law, the
introduction of Ga through substitution induces structural
shrinkage, leading to a reduction in volume.57
3.2. Optical analysis

To determine the optical Eg, UV-visible spectroscopy was con-
ducted. The response of the material to light irradiation is
signicantly inuenced by its Eg and the energy conveyed by the
incident photons. When photons interact with the material,
they impart energy (hn) to the electrons, elevating electrons'
energy so that they occupy higher energy levels beyond the
material's Eg. In this process, the excess energy are absorbed by
the electrons through interband transitions. This phenomenon
is crucial in scrutinizing the absorption edges of a material. The
material's Eg can be ascertained by applying Tauc's formula to
these absorption edges.48,58,59

(ahn)2 = B(hn − Eg) (4)

In this context, a represents the absorption coefficient, B is
a constant, hn signies the energy of the incident photon, and Eg
denotes the material's bandgap. The value of Eg was determined
from Fig. 3(a) by extrapolating it to the zero-ordinate. The
© 2024 The Author(s). Published by the Royal Society of Chemistry
optical Eg for pure Cs2AgBiBr6 was found to be 1.91 eV, and for
Ga substitution, the Eg decreased to 1.86 eV. The observed
reduction in Eg in the Cs2Ag0.95Ga0.05BiBr6 lm occurred
because the Ag 4d-derived valence band (VB) shied to a higher
energy level. This shi was primarily attributed to the overlap
between the Ga 4p orbitals and the Ag 4d orbitals.60 The
reduction in Eg could be attributed to an increase in grain size
and a decrease in the number of grain boundaries.61 This is
advantageous because a decreased Eg can lead to improved light
absorption within the visible spectrum. The bending and
propagation of light rays when they transit from one medium to
another can be explained by the refractive index (n), which is of
the form.62

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
A

Eg þ B

�s
(5)

where A and B are constants with values of 13.6 eV and 3.4 eV,
the value of n for pristine Cs2AgBiBr6 is 2.74, and for Ga
substitution, it is 2.77. Researchers have indicated that n and Eg
are fundamental characteristics of optical materials due to their
close connection with the electronic properties of the material.
Eqn (5) demonstrates a strong correlation between the n and Eg.
Specically, a reduction in Eg corresponds to an elevation in the
n. The increase in n signies a higher concentration of charge
RSC Adv., 2024, 14, 5440–5448 | 5443
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Fig. 3 (a) Eg of pure and Cs2Ag0.95Ga0.05BiBr6 films. (b) Refractive index, electronegativity, and extinction co-efficient of pure and
Cs2Ag0.95Ga0.05BiBr6.
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carriers, leading to a reduction in Eg. This reduction is attrib-
uted to an increase in the number of energy states between the
conduction and valence bands. Moreover, this increase in ‘n’
serves as proof of an enlarged presence of polarizable mole-
cules, resulting in amodication of the speed of light within the
material.63

Electronegativity is dened as the atom's capacity within
a molecule to attract electrons to itself. Optical electronegativity
provides valuable insights into nature of chemical bonding.64,65

Optical electronegativity not only offers profound insights into
the essence of chemical bonding, but shedding light on the
intricate connections that govern molecular structures as well.66

On the Pauling scale, when the electronegativity difference is
below 0.5, it commonly leads to a non-polar covalent bond. The
connection between the Eg and optical electronegativity (c*) in
different binary systems is articulated as follows:67–69

Eg = 3.72(Dc*) (6)

where Dc* is the difference of the electronegativity between
anion and cation. In the case of pristine Cs2AgBiBr6, the Dc*

value is 0.51, while for Cs2Ag0.95Ga0.05BiBr6, it reduces to 0.5.
This indicates that as Dc* decreases, the Eg also tends to
decrease. With an electronegativity difference of only 0.01, this
observation implies the existence of a nonpolar covalent bond.
The extinction coefficient (k) plays a crucial role in elucidating
the dielectric properties of a material. It directly inuences
emissivity, absorption coefficient, and the total power radiated
from a lm. This relationship is expressed as k = n/(Dc002a)g.55

In this context, the value of g is −0.32 (a constant). The calcu-
lated value of k is 2.220 for pristine Cs2AgBiBr6 and 2.221 for
Cs2Ag0.95Ga0.05BiBr6. When electromagnetic radiation, such as
a light wave, interacts with a material, the complex dielectric
function provides valuable insights into the optical behavior of
the material.55,70 The dielectric constant (3), closely linked to
a solid material's polarizability, serves as an indicator of
5444 | RSC Adv., 2024, 14, 5440–5448
a medium's polarity. In this context, 3 is typically represented by
its real (3r) and imaginary (3i) parts as:71

3 = 3r + i3i (7)

3r and 3i which appeared here can be represented as follows:

3r = n2 − k2 (8)

3i = 2nk (9)

3r portrays the degree of materials' polarization when sub-
jected to incident light or an electromagnetic eld.39 3i signies
the light absorption in the material.72 The values of 3r and 3i for
the undoped material are 2.62 and 12.21, respectively, whereas
3r is 2.75 and 3i is 12.31 for the substitution material, as shown
in Fig. 4. From this, we see that both 3r and 3i increase with
substitution. The increase of 3i indicates enhanced light
absorption due to substitution, and this enhancement leads to
a greater generation of electron–hole pairs. Consequently, this
results in a higher current ow through the circuit, boosting the
current density of the solar cell. This, in turn, can contribute to
an overall improvement in the efficiency of the solar cell,
making it more effective at converting sunlight into electricity.
3.3. J–V curve

Fig. 5 illustrates the J–V curves for the device fabricated with Ga
substitution, and the essential photovoltaic parameters are
detailed in Table 1. The Cs2AgBiBr6 solar cell exhibited a PCE of
3.51%, accompanied by a Voc of 0.92 V, Jsc of 5.13 mA cm−2, and
FF of 0.73. Substitution with Ga in the LFHDP displayed
signicantly improved performance. Specically, the PCE of the
cell increased to 4.52%, with elevated values for Voc, Jsc, and FF
at 0.94 V, 6.01 mA cm−2, and 0.80, respectively.

The Jsc signies the electric current coursing through the
external circuit when the solar cell's electrodes are directly
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Shows the real part of 3. (b) Shows the imaginary part of 3 for pristine and Cs2Ag0.95Ga0.05BiBr6.

Fig. 5 J–V curve of pure and Ga substitution films.

Table 1 Solar cell parameters of pure and Cs2Ag0.95Ga0.05BiBr6

Samples Jsc (mA cm−2) Voc (V) FF
Efficiency
h (%)

Cs2AgBiBr6 5.13 0.92 0.73 3.48
Cs2Ag0.95Ga0.05BiBr6 6.01 0.94 0.80 4.52
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linked. The Jsc value of a solar cell is affected by the photon ux
produced by the incident light and is dictated by the spectral
composition of the light. Jsc is a frequently employed term to
characterize the maximum current output achievable from
a solar cell.73 The Jsc of Cs2AgBiBr6 for pristine material is 5.13
mA cm−2, and following substitution with Ga, its value
increases to 6.01 mA cm−2. An increase in the Jsc in a solar cell
contributes to improving power output, efficiency, and overall
performance of the solar cell.74 The Voc is the electric potential
difference between two terminals of a device when no external
load is applied. It represents the maximum voltage achievable
© 2024 The Author(s). Published by the Royal Society of Chemistry
from a solar cell and corresponds to the forward bias voltage.
Also, it relies on the photo-generated current density. The Voc
value for the undoped material is 0.92 V, and aer substitution,
it increases to 0.94 V.75,76 It might be possible that Ga substi-
tution in Cs2AgBiBr6 could increase the carrier concentration
and induce an upward shi of the Fermi level of Cs2AgBiBr6,
facilitating the injection and transfer of electrons to the
conduction band of perovskite. Simultaneously, by increasing
the carrier concentration, the electrons could effectively ll the
interface traps, reducing interface trap density. This is bene-
cial for decreasing electron capture and preventing carrier
recombination, eventually improving electron transport effi-
ciency in perovskite. These enhancements could positively
impact the photovoltaic properties of the device, such as Jsc and
Voc.77–79 The FF is a parameter that characterizes the shape of the
current–voltage (J–V) curve of a solar cell. It is the ratio of the
maximum power (Pmax) to the product of the Voc and Jsc. Hence,
the FF is calculated by the relation.80

FF ¼ Pmax

Jsc � Voc

(10)

The FF value for the undoped sample is 0.73, and aer
substitution, its value increases to 0.80. The increase in FF value
indicates that the solar cell is more efficient in converting
sunlight into electricity.

The PCE of a solar cell is a measure of how well it converts
sunlight into electricity. It is dened as the ratio of the
maximum power output (Pmax) to the incident solar power.
Accordingly, the mathematical expression for PCE is of the
form81

h ¼ Voc � Jsc � FF

Pin

(11)

The PCE of the LFHDP is 3.48% for the pristine specimen,
and with substitution, the value escalates to 4.52%. This
increase in PCE is ascribed to the elevation of the values Jsc, Voc,
and FF, resulting from the substitution. The enhanced J–V
RSC Adv., 2024, 14, 5440–5448 | 5445
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parameters observed in cells with an optimal content of Cs2-
Ag0.95Ga0.05BiBr6 can be attributed to higher electrical conduc-
tivity and an upward shi of the Fermi level. Therefore, the
improved photovoltaic results suggest a reduction in charge
carrier recombination at Cs2AgBiBr6.
4. Conclusion

In conclusion, this research demonstrates the strong points of
Cs2Ag0.95Ga0.05BiBr6 in relation with enhancing the perfor-
mance of the device. Cs2AgBiBr6 lms were successfully
synthesized using the sol–gel method, as conrmed by XRD
analysis. The Cs2Ag0.95Ga0.05BiBr6 revealed peak shis towards
higher angles, indicative of achieving Ga substitution. Then, we
focused on exploring the impact of the presence of Ga on the
structural, optical, and dielectric properties of Cs2AgBiBr6. The
introduction of Ga led to larger grain sizes in the Cs2AgBiBr6
lms. Optical properties, including Eg, electronegativity, k, and
3, were determined using UV-Vis spectroscopy. With 5% Ga
substitution, the solar cell exhibited improved parameters: Jsc =
6.01 mA cm−2, Voc = 0.94 V, FF = 0.80, and PCE = 4.52%. This
research not only successfully addresses challenges in lm
formation but also provides constructive insights into the
potential of Cs2Ag0.95Ga0.05BiBr6 as a high-performance and
stable material for photovoltaic applications. The ndings
contribute to the technology of developing environmentally
friendly and efficient solar cells, paving the way for the future
adoption of lead-free perovskites in the solar energy landscape.
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