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rent organic ammonium-based
bismuth iodide perovskites for photodetection
application†

Amr Elattar, *a Cassie Duclos,a Franchesca Bellevu,a Tarik Dickens*a

and Okenwa Okoli ab

Bismuth-based perovskites are promising candidates for highly stable halide perovskites with low toxicity.

Here, we report the synthesis of a series of bismuth iodide-based perovskites with different primary,

secondary, and tertiary ammonium cations and study their structural, thermal, and optical properties, and

the likelihood of photodetection. Interestingly, the variation of A-site organic ammonium cations, with

different interlayer spacings between adjacent bismuth iodide monolayers, has exotic effects on the

diffraction patterns and morphological structures of the perovskite crystals. Thermogravimetric analysis

reveals the highest thermal stability of tertiary ammonium-based bismuth perovskite with

a decomposition temperature of 385 °C. The branched primary ammonium-based photodetector has

photo-responsivity roughly two and four times faster than that of secondary and tertiary ammonium-

based devices, respectively. These findings provide insight into the importance of A-site cation

engineering for structural modulation and tailoring the optoelectronic properties of bismuth-based

perovskites for emerging optoelectronic devices.
Introduction

Organic-inorganic hybrid perovskites (OIHPs) have shown
a great interest in various optoelectronic applications owing to
their unique characteristics such as high absorption coeffi-
cient,1 tunable bandgap,2–6 high carrier mobility,7–11 and low-
cost preparation.12–16 Lead halide perovskites research has
received a lot of attention in the scientic community recently.
However, their toxicity and their environmental threat make
lead perovskites an unideal choice for commercial uses.17–24

Thus, lead-free perovskites are now being investigated.25–31 One
of the lead-free perovskites is bismuth, which may present
a suitable replacement for lead where Bi3+ is isoelectric with
Pb2+, having the same number of valence electrons. Further-
more, organic bismuth halide perovskites have been reported to
be highly stable to ambient air and humidity over long
periods.32 In addition, Bi3+ works as a photosensitizer that can
drive exciton emission of bismuth-containing double perov-
skites;33 therefore, it is likely to work similarly in Bi-based
perovskites. Finally, bismuth is a nontoxic earth-abundant
element, making it more appealing than lead for commercial
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devices. For example, MA3Bi2I9 (MA = CH3NH3
+) perovskite has

shown potential use in solar cells,34–37 photodetector,38 light-
emitting diodes,39 and X-ray imaging.40,41 Furthermore, Hu
et al. developed a 3D-MAPbI3/2D-MA3Bi2I9 perovskite hetero-
structure with higher efficiency and improved stability
compared to lead perovskite.42 Beyond MA3Bi2I9, different
organic cations-based bismuth perovskites have been investi-
gated. The team by Fabian et al. compared the HDA2BiI10 (HDA
= hexane-1,6-diammonium) perovskite with an analogous
perovskite containing n-propyl ammonium cations instead of
the diammonium cation; they found that the diammonium
perovskite had a more symmetric orthorhombic structure
compared to the triclinic structure of the ammonium perovskite
and was more resistant to thermal treatments than the
ammonium perovskite and also predicted that the dia-
mmonium perovskite had a small band gap of ∼2 eV.43 Wang
et al. synthesized a heptane-1,7-diammonium-based bismuth
perovskite [NH3(CH2)7NH3][BiI5] with a low bandgap at 1.89 eV
and structural phase transition point as high as 351.7 K.44

Bismuth-based perovskite materials have been devoted to
photodetection applications.45,46 Tong et al. developed a highly
stable CsBi3I10 perovskite-based red-light photodetector with
better responsivity and specic detectivity than lead halide
perovskite devices.47 Moreover, Eckhardt et al. constructed an
antisolvent-assisted MA3Bi2I9 perovskite single crystal-based
photodetector with fast response times.48 Furthermore, Bhorde
et al. fabricated MA3Bi2I9 andMA2BiI5 perovskite thin lm-based
photodetectors, nding that both have a fast response and
RSC Adv., 2024, 14, 10113–10119 | 10113
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recovery time as well as very stable switching behaviour.38

Moreover, Shah et al. revealed that 2-methoxyethanol is the best
solvent choice for the best coverage, smallest grain size, good
optical properties, and better photo-response of the MA3Bi2I9
perovskite thin lm-based photodetector.49 Mixed halides (Cl/I)
of MA3Bi2I6Cl3-based photodetector have been reported to
obtain photo-responsivities and specic detectivities roughly
three times greater than pristine MA3Bi2I9-based devices.50 In
addition, one research work has also been reported with dia-
mmonium bismuth perovskites. Ji et al. fabricated photodetector
arrays from (TMHD)BiBr5 (TMHD = N,N,N,N-tetramethyl-1,6-
hexanediammonium) perovskite single crystals with large on/
off current ratios and high response rate.51 One key for the
structural modulation of perovskite materials is organic cation
(A-site) engineering.52 Few works have been devoted to A-site
engineering of Bi-based perovskites. For instance, incorpora-
tion of PEA as an organic spacer into 3D Cs2AgBiBr6 leads to
enhancing cations ordering and decrease of perovskite dimen-
sionality into 2D (PEA)2CsAgBiBr7.53,54 Furthermore, four
different Ag–Bi double perovskites (RA)4AgBiBr8, with different
thin lm structures have been reported, where RA = hex-
ylammonium (HA), butylammonium (BA), isobutylammonium
(IBA), and phenylethylammonium (PEA).55

Herein, we have investigated four different primary,
secondary, and tertiary amines-based bismuth iodide perovskites.
X-ray diffraction (XRD) patterns show that the formed Bi-
perovskite samples have different crystal structures. Tertiary
amine-based (TEA) perovskite shows the highest thermal stability
with a decomposition temperature of 385 °C. Optical measure-
ments indicate aminor impact of change in the organic cation on
the bandgap energies of bismuth iodide perovskites. The four
different organic cation-based bismuth perovskites have shown
a good tendency towards photodetection applications where the
branched IBA-based perovskite device has the best photo-
responsivity and photo-detectivity compared to other devices.
Experimental
Materials

All chemicals were obtained from Sigma-Aldrich unless other-
wise noted. Chemicals used were bismuth(III) iodide, 99%; N,N0-
dibenzylethylenediamine, 99%; triethylamine, 99%; isobutyl-
amine, 99%; butylamine, 99%; and tin oxide, 15% in H2O
colloidal dispersion from Alfa Aesar. Additionally, a solution of
hydroiodic acid, 57 wt%, with added hypophosphorous acid for
stability was used. N,N-Dimethylformamide (DMF), 99%;
dimethylsulfoxide (DMSO), 99%; dichloromethane (DCM),
99%; and methanol, 99%, were used as solvents. Isopropanol,
99%, was used for cleaning equipment and substrates. Helman
III from Hellma Analytics, nano pure water, and acetone were
used for cleaning substrates. Glass/ITO substrates were used for
the fabrication of photodetector devices.
Fig. 1 (a) Spin-coated perovskite thin film slides. (b) Perovskite
powders obtained via a drop casting method. From left to right: DBED,
TEA, IBA, BA bismuth perovskites.
Synthesis of bismuth-based perovskites

Four different organic amines, i.e., N,N0-dibenzylethylenedi-
amine (DBED), triethylamine (TEA), isobutylamine (IBA), and
10114 | RSC Adv., 2024, 14, 10113–10119
butylamine (BA), were used to prepare Bi-perovskite materials.
First, ammonium cations were prepared by reacting the
monoamines (TEA, IBA, and BA) with equimolar amounts of
hydroiodic acid in a solution with hypophosphorous acid via
drop-wise addition, while the diamine (DBED) was reacted with
twomolar equivalents of the same. The solutions were heated at
80 °C for 24 h to evaporate the solvent and retrieve the ammo-
nium iodide salts as white crystals. The ammonium iodide salts
were washed with dichloromethane (DCM) and dried. Secondly,
to prepare perovskite solutions, all ammonium salts were
placed in vials with specic molar ratios of bismuth(III) iodide
and monoammonium iodide salts, a 3 : 2 ratio of mono-
ammonium iodide salt (TEA, IBA, or BA) to bismuth(III) iodide,
and for the diammonium iodide salt (DBED), a 1 : 1 ratio of
DBED to bismuth(III) iodide. A solvent of DMF : DMSO at a 4 : 1
(V/V) ratio was added to each vial to make a 0.5 M perovskite
solution. Solutions were vortexed for 2 min and then placed on
a hotplate with strong stirring at 90 °C for 1–2 h, or until the
solution was clear. Aer that, perovskite solutions were ltered
using a PTFE syringe lter to be ready for further steps.

Bismuth perovskite thin lms with good coverage were
prepared by spin coating of the perovskite solutions over pre-
heated substrates at 1000 RPM for 5 s and then 4500 RPM for
30 s and annealed at 120 °C for 10 min, as shown in Fig. 1a.
Substrates were pre-heated for 5 min at 120 °C and the solution
was placed onto them for 10 s before being moved to the spin
coater for spin coating. To obtain bismuth perovskite powders,
perovskite solutions were drop-cast onto glass substrates and
dried on a hot plate at 120 °C. Powders were obtained aer
solvent evaporation, as depicted in Fig. 1b.
Fabrication of bismuth perovskite-based photodetectors (PDs)

ITO-coated glass substrates were etched using zinc powder and
hydrochloric acid (HCl). Then, ITO substrates were cleaned
using the Helman III diluted detergent, deionized water,
acetone, and isopropanol, under sonication for 15 min with
each solvent. Finally, ITO substrates were treated with ozone
plasma for 15 min. For electron transport layer (ETL) assembly,
200 mL of 15% SnO2 in H2O was dropped over ITO. They were
spun for 5 s at 1000 RPM and then for 30 s at 4500 RPM. Aer
spin coating, they were annealed at 120 °C for 30 min to obtain
the SnO2 layer with 900 nm thickness. ITO/SnO2 cells were
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Perovskite photodetector cell configuration.
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further treated with ozone plasma for 15 min. Then, 200 mL of
each bismuth perovskite solution was spin-coated over ITO/
SnO2 for 5 s at 1000 RPM and then for 30 s at 4500 RPM before
being placed on a hot plate to anneal at 120 °C for 30 min. The
obtained perovskite layer has a 4 mm thickness. Finally, carbon
metal contact was deposited over the perovskite layer by doctor
blading of the carbon paste by annealing at 120 °C for 1 h to
obtain the carbon layer with 40 mm thickness. The perovskite
cell conguration is shown in Fig. 2.

Characterization

The lm morphology was studied by scanning electron
microscopy (SEM, Thermo Fisher). The X-ray diffraction (XRD)
measurement was performed by employing the Rigaku Smart
lab diffractometer. The absorption of the samples was
measured using a UV-vis spectrophotometer (Cary UV-2450).
Thermogravimetric analysis was performed by TGA (TA Instru-
ments). The current–voltage (I–V) and current–time (I–t) char-
acteristics of the photodetector were measured using the
Keithley 2400 system source meter that was attached to
a computer through a GPIB 488A interface. For white light
illumination, a Sinus-70 solar simulator (WAVELABS Solar
Metrology Systems GmbH) was used for measuring the photo-
response of the fabricated ITO/SnO2/Bi-perovskite/carbon
device. The photocurrent-time characteristic curves were
measured under standard AM 1.5 sunlight (100 mW cm−2).
Fig. 2 shows a perovskite photodetector cell conguration. All
measurements were performed under ambient atmosphere.

Results and discussion

Four different types of organic ammonium salts were utilized to
prepare Bi-perovskites, as depicted in Fig. 3; DBED has
Fig. 3 Four different organic cations utilized as A-site for Bi-perov-
skites, where C and N atoms are presented as grey and red balls,
respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
a diammonium cation with two secondary amines. TEA has
a monoammonium cation with a tertiary amine. IBA and BA
have monoammonium cations with branched and unbranched
primary amines, respectively. The perovskite crystal powders
obtained via the drop-casting method have shown different
morphological structures (Fig. S1†). While TEA perovskite has
unorganized coagulated structure (Fig. 5b), DBED and IBA
perovskites have layered stacked structures (Fig. 5a and c,
respectively). Furthermore, BA perovskite has hexagonal struc-
ture (Fig. 5d), which is consistent with hexagonal structure of
primary unbranched ammonium (methyl ammonium, MA)-
based perovskite MA3Bi2I9.41 The homogeneous distribution of
C, N, Bi, and I elements in Bi-perovskite structures was also
conrmed via the elemental mapping of EDS, as shown in
Fig. S2–S5.†

To characterize the different organic cation Bi-based halide
perovskites, we obtained the X-ray diffraction (XRD, Bruker)
data. Diffraction patterns of Bismuth perovskites are different
from patterns of their corresponding ammonium iodide
precursors, as illustrated in ESI Fig. S6.† Thus, it can be inferred
that the perovskite powders were prepared. XRD plots of DBED,
TEA, IBA, and BA perovskites show different diffraction peaks,
suggesting their possession of different crystal structures
(Fig. 4a). Related to the main diffraction peak, 2q values were
7.19°, 7.72°, 7.96°, and 7.24° with a d-spacing of 12.3, 11.5, 11.1,
and 12.2 Å for DBED, TEA, IBA, and BA, respectively (Fig. 4b and
S7†). The shiing of d-spacing in the order of DBED > BA > TEA
> IBA is consistent with their organic cation molecular steric
size where the molecule length of DBED, TEA, IBA, and BA
amines was estimated to be 15.60 Å, 6.22 Å, 4.61 Å, and 6.46 Å,
respectively.

Different morphological structures of perovskite thin lms
were conrmed microscopically by scanning electron micros-
copy (SEM), as shown in Fig. 5. DBED perovskite exhibits
layered structure with cracked grains (Fig. 5a). TEA perovskite
lm contains two mixed phases where hexagonal-shaped phase
embedded in coherent and adjacent rod-like phase (Fig. 5b).
IBA and BA perovskites have entangled rod-like structures
(Fig. 5c and d). Compared with DBED, TEA, and BA perovskite
lms with massive pinholes and cracked grains, the IBA
perovskite lm exhibited much improved pinholes-free lm
morphology. These results reveal the high impact of the organic
cation precursor type to modulate the morphological structure
of the as-prepared Bi-perovskites.
Fig. 4 (a) Powder XRD patterns of different organic cations-based Bi
perovskites. (b) Relationship between 2theta/d-space values of XRD-
main peak (y-axis) and Bi-perovskites (x-axis).

RSC Adv., 2024, 14, 10113–10119 | 10115
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Fig. 7 Normalized absorbance (a), and bandgap values (b) of Bi
perovskites.

Fig. 5 Scanning Electron Microscope (SEM) images of (a) DBED, (b)
TEA, (c) IBA, and (d) BA perovskite films.
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Thermal stability was studied for different organic cations of
Bi-perovskites through thermogravimetric analysis (TGA) for
powder samples obtained by the drop-casting method. The
decomposition proles for DBED, BA, and IBA-based Bi perov-
skites can be divided into two steps, as shown in Fig. 6. The rst
step is accompanied by organic ammonium iodide weight loss.
The second step is possibly accompanied by the loss of BiI3. The
rst weight loss is at 140 °C, 150 °C, and 163 °C for IBA, BA, and
DBED perovskites, respectively, which indicates an increase in
thermal stability in the order IBA < BA < DBED. This is consis-
tent with boiling point values: 68 °C, 78 °C, and 184 °C for IBA,
BA, and DBED amines, respectively. TEA perovskite is the
highest thermally stable Bi perovskite with only one decompo-
sition step where its decomposition starts at 385 °C. This can be
attributed to the presence of a tertiary-typed triethyl ammonium
group through the TEA perovskite structure where the high
stability of the nitrogen atom is attributed to three donating
(ethyl) groups. As a result, a strong interaction arises between
the TEA organic cation and BiI3 inorganic slag, which requires
more thermal energy for decomposition. Overall, based on TGA
results, the thermal stability of Bi perovskites depends on the
type of the amine group of the organic cation where thermal
Fig. 6 TGA analysis of (a) DBED, (b) TEA, (c) IBA, and (d) BA perovskite
powders.

10116 | RSC Adv., 2024, 14, 10113–10119
stability of tertiary amine TEA perovskite > secondary amine
DBED perovskite > primary amine IBA/BA perovskites.

UV-vis absorption spectra of different organic cations-based
Bi perovskite thin lms are shown in Fig. 7. Absorption peaks
are shied towards higher wavelengths in the order of DBED <
IBA < TEA < BA. Tauc plots show that the optical bandgap
energies of the perovskites are 2.32 eV for DBED, 2.14 eV for
TEA, 2.23 eV for IBA, and 2.10 eV for BA-perovskites (Fig. 7b and
S8†). The lower bandgaps of TEA and BA perovskite thin lms
are consistent with their color darkness. Overall, a change of
organic cation has a minor effect on the optical properties of
bismuth perovskites, compared with a change of halides.56

Perovskite-based photodetectors (PPDs) transform incident
radiation into electrical signals with a halide perovskite layer
within the detector acting as a photon absorber. The photo-
current response measurements of the perovskite-based
photodetector devices allow them to be compared to one
another. Thus, time-resolved photo-current response (on/off)
measurements were conducted under alternating dark and
light illumination (100 mW cm−2), within time intervals (10
seconds/each) at zero bias voltage. Graphs of time-resolved
photo-response [(I–t) curves] of DBED, TEA, IBA, and BA
perovskite photodetectors are depicted in Fig. 8a–d,
respectively.

Generally, bismuth-based photodetectors show repeatable
photo-response. For DBED and IBA PPDs, sharp rise/decay of
Fig. 8 The transient I–t (ON/OFF) curves of the devices of (a) DBED,
(b) TEA, (c) IBA, and (d) BA perovskite-based photodetectors.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 The single cycle photo-response of (a) DBED, (b) TEA, (c) IBA,
and (d) BA perovskite-based photodetectors to estimate the response
and recovery time.
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photocurrent responses are observed, upon ON/OFF white light
illumination, respectively, revealing their fast response/recovery
characteristics. This is consistent with previously reported Bi-
based perovskite photodetectors. However, TEA PPD shows
a gradual rise and fast decay of the photocurrent responses.
Moreover, BA PPD reveals a gradual rise/decay of the photo-
current responses signifying its slow response/recovery char-
acteristics. Highlighting on a single ON/OFF cycle of each PPD,
the response and recovery time have been evaluated, as depic-
ted in Fig. 9a–d. The response srise, and decay sdecay times of the
DBED photodetector were found to be 4.62 and 5.79 s, respec-
tively; for the TEA photodetector, they were 9.92 and 5.36 s,
respectively; for the IBA photodetector, they were 2.35 and
5.99 s, respectively; and for the BA photodetector, they were
10.00 and 9.97 s, respectively.

Various parameters were calculated to track the performance
of the fabricated PPDs, as shown in Table 1, where IBA PPD is
considered the best-fabricated bismuth perovskite-based
photodetector. The rst parameter is the photoresponsivity
(Rl) of a photodetector, which is dened as the photo-current
generated through the effective photodetector area per inci-
dent light unit power. The photo-responsivity is expressed by
eqn (1), where DI is the photo-current change under the effect of
light illumination DI = ILight − IDark, A is the effective area of the
photodetector (4.25 cm2), and Pl is the incident light intensity
(0.1 W cm−2). The photoresponsivity of DBED, TEA, IBA, and BA
PPDs was found to be 1.58, 5.71, 39.35, and 23.45 nA W−1,
respectively.
Table 1 Photodetector properties of DBED, TEA, IBA, and BA perovskite

Perovskite
PDs

Response time
srise (s)

Decay time
sdecay (s)

Photoresponsivity
Rl (nA W−1)

DBED 4.62 5.79 1.58
TEA 9.92 5.36 5.71
IBA 2.35 5.99 39.35
BA 10.03 9.97 23.45

© 2024 The Author(s). Published by the Royal Society of Chemistry
The second parameter is the photosensitivity (x) of
a photodetector, which is dened as the ratio between the
photo-current change under the effect of light illumination
and the dark current. The photosensitivity is given by eqn (1).
The photosensitivity was estimated to be 0.0054, 0.0126,
0.1113, and 0.0709 for DBED, TEA, IBA, and BA PPDs, respec-
tively. The third parameter is the internal quantum efficiency
(IQE) of a photodetector, as given in eqn (3), to estimate the
efficiency of the carrier transport, where h is the plank's
constant, e is the electron charge, c is the light speed, Rl is the
photoresponsivity, and l is the wavelength of the incident
light. The IQE values of DBED, TEA, IBA, and BA PPDs were
found to be 0.391 × 10−6%, 1.416 × 10−6%, 9.759 × 10−6%,
and 5.816 × 10−6%, respectively. The nal parameter given by
eqn (4), which is related to the photodetector quality, is
detectivity (D*). The detectivity was estimated to be 0.0051 ×

104 Jones, 0.0015 × 104 Jones, 11.6945 × 104 Jones, and 7.2040
× 104 Jones, for DBED, TEA, IBA, and BA PPDs, respectively.
The higher photo-detectivity of IBA perovskite is consistent
with its pinhole-free lm morphology. The use of bulk organic
cations has shown a negative impact on photo-detectivity. The
lower photoresponsivity of DBED and TEA compared with IBA
and BA perovskites might be attributed to the higher hydrogen
interaction present in higher thermally stable DBED and TEA
perovskites, as depicted in TGA analysis. It should be hinted
that our bismuth-based photodetectors have shown a lower
photodetection performance compared to MA3Bi2I9 (MA)-
based devices reported in the literature. This might be attrib-
uted to the weak interaction between bismuth perovskite and
carbon contact through our fabricated devices. As a result, we
have prepared MA perovskite, with the same procedure shown
in the Experimental section, for comparison with the other
prepared perovskites. The MA perovskite thin lm exhibited
a homogeneous and complete coverage of small hexagonal
crystals, as illustrated in Fig. S9.† The MA-based photodetector
revealed fast response and recovery characteristics through
ON/OFF measurements, as shown in Fig. S10.† The photo-
detection parameters are presented in Table S1†where the MA-
based device exhibited nearly a similar photo-detectivity of BA
perovskite. The comparison of different organic cations-based
bismuth perovskite photodetectors is shown in Table S2.†

Rl ¼ DI

Pl � A
(1)

x ¼ IPhoto � IDark

IDark

(2)
-based devices

Photosensitivity
x

Quantum efficiency
IQE × 10−6 (%)

Detectivity D* × 104

(Jones)

0.0054 0.391 0.0051
0.0126 1.416 0.0015
0.1113 9.759 11.6945
0.0709 5.816 7.2040
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IQEð%Þ ¼ h� c� Rl

e� l
� 100% (3)

D* ¼ Rl

ð2� e� JDarkÞ
1
2

(4)

Conclusions

In summary, bismuth iodide-perovskite crystals with different
primary, secondary, and tertiary organic ammonium cations
were synthesized by drop-casting of saturated perovskite solu-
tions over glass substrates. We studied their structural, optical,
and thermal properties, as well as their photodetection behav-
iour. XRD and SEM measurements revealed a difference in the
diffraction pattern and structural morphology, respectively, of
bismuth perovskites depending on the organic cation used. All
the spin-coated perovskite thin lms show a red color with
a bandgap range (2.1–2.3 eV). TGA thermal analysis showed that
the triethylammonium tertiary cation (TEA+) has a higher
capability of BiI3-perovskite structure preservation than other
organic ammonium cations with a decomposition temperature
of 385 °C. All perovskite-based photodetectors exhibited
repeatable ON/OFF photo-response. Butyl (BA) and isobutyl
(IBA) primary ammonium cation-based perovskite devices have
higher photosensitivity, responsivity, detectivity, and quantum
efficiency compared to the secondary and tertiary-based ones.
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