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anol synthesis from CO2 using
graphene-based heterogeneous photocatalyst
under RSM and ANN-driven parametric
optimization for achieving better suitability
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Assessment of the performance of linear and nonlinear regression-based methods for estimating in situ

catalytic CO2 transformations employing TiO2/Cu coupled with hydrogen exfoliation graphene (HEG) has

been investigated. The yield of methanol was thoroughly optimized and predicted using response

surface methodology (RSM) and artificial neural network (ANN) model after rigorous experimentation and

comparison. Amongst the different types of HEG loading from 10 to 40 wt%, the 30 wt% in the HEG-

TiO2/Cu assisted photosynthetic catalyst was found to be successful in providing the highest conversion

efficiency of methanol from CO2. The most influencing parameters, HEG dosing and inflow rate of CO2,

were found to affect the conversion rate in the acidic reaction regime (at pH of 3). According to RSM

and ANN, the optimum methanol yields were 36.3 mg g−1 of catalyst and 37.3 mg g−1 of catalyst,

respectively. Through the comparison of performances using the least squared error analysis, the

nonlinear regression-based ANN showed a better determination coefficient (overall R2 > 0.985) than the

linear regression-based RSM model (overall R2 ∼ 0.97). Even though both models performed well, ANN,

consisting of 9 neurons in the input and 1 hidden layer, could predict optimum results closer to RSM in

terms of agreement with the experimental outcome.
ental Engineering, Hanyang University,

763, Republic of Korea. E-mail: bhjeon@

y, Hyderabad, Telangana 500043, India

Durgapur, M.G. Avenue, 713209, West

a Institute of Industrial Technology,

l: sankha.chakrabortty@kiitbiotech.ac.in

, Hanyang University, 222 Wangsimni-ro,

ea

Hanyang University, 222 Wangsimni-ro,

ea

ing Saud University, Riyadh 11451, Saudi

Durgapur, M.G. Road, Durgapur, 713209,

ucknow, Lucknow-226007, Uttar Pradesh,

eering, Kyonggi University, Suwon 16227,

ac.kr

2512
1. Introduction

Amidst the worldwide growing energy crisis, xed and dwin-
dling stock of fossil fuels, and extreme pollution, nding
acceptable means to produce alternative fuels is a signicant
breakthrough.1,2 According to experts, the exponential growth in
atmospheric CO2 concentration caused by human activity is the
most severe threat biotic societies face nowadays. Human
population expansion, a modern luxurious lifestyle, and
signicant industrial development have all increased CO2

emissions, making this an increasingly serious issue.3 There is
no better method for addressing the energy and environmental
crises than by utilizing cutting-edge photocatalytic technology
to convert ambient CO2 into useable fuel hydrocarbons (such as
methanol or ethanol) under solar excitation.4,5 Next-generation
biomimetic technologies look promising because they reduce
potential pollutants while also converting to low-cost
hydrocarbon-based fuels, viz., methanol, by using solar energy
and atmospheric CO2 as raw materials.6 The development of
appropriate photocatalysts for the effective redox photosyn-
thesis of CO2 to hydrocarbons under UV/visible light, on the
other hand, remains a considerable challenge.7,8
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Semiconductors such as titanium dioxide (TiO2) have gained
more attention among researchers due to their possible pho-
tocatalysis applications. When exposed to ultraviolet light,
which accounts for only about 45 percent of total solar radia-
tion, TiO2 with a large band gap (about 3–3.2 eV) becomes
active.6 Metal and non-metal doping of responsive photo-
catalytic systems9,10 and carbon changes that promote electron–
hole pair recombination have been extensively investigated to
utilize solar visible light irradiation efficiently.

In recent years, mathematical tools for modeling have
steadily grown in optimizing bioproduct synthesis and resource
recovery.11,12 Response surface methodology (RSM) and articial
neural networks (ANN) are two examples of complex mathe-
matical methodologies to elucidate predictive analysis.13 If the
physical meaning of the system or process under investigation
is not explicitly stated, neither methodology nor the scientic
method is required.11 Thus, both RSM and ANN are modeling
approaches concerned with producing exible and faster non-
parametric simulative models instead of parametric
models.14,15 ANN has been used widely by researchers in
a variety of applications related to energy generation, including
biomass, wind, hydropower, geothermal, and solar.16 An ANN
approach was successfully implemented in magnetic eld-
inuenced water electrolysis to predict the hydrogen evalua-
tion with a mean squared error (MSE) of 0.0112 and a correla-
tion coefficient of 0.97.17 An optimized numerical matrix can be
formulated without any assumptions by RSM predicting the
best possible outcome. By considering interactions among
different numbers and sets of inuential variables, RSM works
with fewer experimental trials for validation, unlike ANN.18 Due
to the advanced genetic algorithm coupled with neurons and
hidden layers in the ANN, it can compute and train even with
many experimentally obtained nonlinear data.17 Thus, the
predictive analytical outcome from ANN was generally more
rened and accurate than RSM. Both models can be applied in
several scientic domains to use experimental data to deter-
mine the functional relationships between the process's input
variables and their output response variables.18 Once this is
completed, the models may be used to identify which input
variables should be used to achieve the best possible result.
Much research employed the evolutionary algorithm in
conjunction with ANN to nd the best feasible operational
variables for the process under consideration.16 The RSM and
ANN-based optimizations on different feedstocks were
describedmainly in the literature, and conventional, ultrasonic,
and photocatalytic methodologies were used to achieve the best
results.19,20

The research aims to bridge a signicant gap in achieving
maximum methanol yield under a maximum number of opti-
mized operational conditions by conducting a comparative
analysis of the performance of graphene-coupled Cu/TiO2

heterogeneous catalysts using RSM and ANN optimization
techniques. The primary objective is to showcase the efficient
conversion of CO2 into methanol through photocatalysis,
leveraging parametric optimization strategies. RSM acts as
a statistical tool to analyze the impact of various variables on
methanol yield while employing a desired function method
© 2024 The Author(s). Published by the Royal Society of Chemistry
alongside optimization techniques to establish an optimized
operational framework. Moreover, the study delves into the
ANN's capability to predict methanol yield through both
predictive and generalized approaches. Evaluation metrics such
as coefficient of determination (R2), root mean square error
(RMSE), and d-Willmott index are utilized to assess the effec-
tiveness of both models in validating datasets. This compre-
hensive approach aims to shed light on the efficacy of the
catalyst and optimization techniques in enhancing methanol
production. The study's ndings are expected to advance the
understanding of CO2 conversion technologies signicantly and
offer valuable insights for designing more efficient photo-
catalytic systems for methanol synthesis.
2. Materials and methods
2.1 Chemicals and preparation of photocatalysts

For developing hydrogen exfoliation graphene (HEG) and gra-
phene embedded catalysts, such as HEG@TiO2/Cu, all the
materials such as graphite akes, N-methyl pyrrolidone, H2SO4,
KMnO4, NaNO3, CuSO4, and photocatalytic grade TiO2 were
procured reagent grade chemicals from Sigma-Aldrich, (USA)
and Sisco Research Laboratory (India). All the solutions were
prepared using Milli-Q water from Merck-Millipore (USA).

The details of the photocatalyst preparation and its charac-
terization were found in our previous work.4 The method of
photocatalyst preparation is described here briey. The gra-
phene oxide (GO) was prepared using a modied Hammer's
method.21 The indigenously prepared GO was employed as the
primary feedstock for the hydrogenation process for 2–3 min at
the temperature range of 180 to 200 °C to produce porous HEG.
The HEG and copper-loaded TiO2 were synthesized using
a typical sol–gel process in an ultrasonication environment, and
the resulting coupling was recovered and studied. The following
steps were carried out: (i) a beaker containing 30 mL of absolute
ethanol was sonicated in an ultrasound bath for 30 min; (ii)
a binder agent containing 15 mL of glucose solution (0.01 M)
was added to the alcoholic solution; (iii) copper salt was added;
and nally, (iv) two different weight percent HEG was added to
the solution and sonicated for 2 hours. The prepared photo-
catalysts were settled in 12 h and dried at 85 °C for 12 h. The
dried powder was roasted in a muffle furnace for 2 h at 500 °C.
The roasted powder was crushed and sieved (40–60 mesh size)
for CO2 reduction experiments.
2.2 Experimental setup and procedure

The photocatalytic reduction experiments were conducted in
batch mode using a custom-designed annular-type Pyrex quartz
reactor (APQ), as depicted in Fig. 1.4 Equipped with a 250 W UV
light source, the APQ reactor facilitated the photocatalytic
process. To introduce CO2 into the system, a single tube
connection linked the APQ reactor to a CO2 cylinder. Moreover,
an input–output water connection was integrated into the
reactor to regulate its internal temperature. Before UV light
irradiation, certied supercritical uid-grade carbon dioxide
was purged into the solvent, typically ultrapure water, for
RSC Adv., 2024, 14, 12496–12512 | 12497
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Fig. 1 Schematic diagram of the experimental setup of the APQ
reactor fitted with CO2 cylinder for methanol conversion.
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30 min. Following this, the CO2 purging was ceased. The
synthesized catalyst, HEG-TiO2–CuSO4, underwent immersion
in 500 mL of ultrapure water and subsequent purication with
CO2 prior to its introduction into the solution. This meticulous
procedure ensured the preparation of the catalyst under
controlled conditions, thereby optimizing its performance for
subsequent experimentation. By adhering to stringent protocols
for catalyst preparation and experimental setup, the study
aimed to ensure reproducibility and reliability in the obtained
results. Such attention to detail not only enhances the validity of
the ndings but also contributes to the advancement of
knowledge in photocatalytic CO2 reduction processes. The
investigation delved deeply into the multifaceted effects of
various operational parameters on the experimental outcomes.
Parameters such as CO2 ow rate, temperature, pH, catalyst
dose, HEG ratio, stirring time, and operation time were metic-
ulously studied. The CO2 ow rate, crucial for the carbon
source, was systematically varied from 0.5 to 5 L min−1 to assess
its impact on methanol yield and reaction kinetics. Tempera-
ture variations, ranging from 25 to 55 °C, were explored to
understand their inuence on reaction rates and catalyst
activity. The pH of the reaction medium, adjusted between 2
and 10, played a pivotal role in governing surface charge
distribution, thereby affecting catalyst performance and selec-
tivity. Catalyst dose, ranging from 2 to 12 g L−1, was optimized
to strike a balance between maximizing active sites for catalysis
and minimizing mass transfer limitations.

Additionally, stirring time and stirring speed, ranging from
30 to 300 min and 100 to 300 rpm, respectively, were investi-
gated to ascertain their roles in enhancing mass transfer and
reaction kinetics. The properties of the developed material
underwent rigorous validation through an extensive array of
characterizations, encompassing a comprehensive suite of tests
and analyses. These characterizations, as outlined meticulously
in our previous study,4 included examinations of morphological
structure, crystallinity, functional group composition, and
specic surface area. Such exhaustive characterizations ensured
a thorough evaluation of the material's structural, mechanical,
12498 | RSC Adv., 2024, 14, 12496–12512
and chemical attributes. This comprehensive approach not only
elucidated the complex interplay between operational parame-
ters and experimental outcomes but also provided a robust
foundation for understanding the material's properties and
performance, thus contributing signicantly to advancing the
eld's knowledge base.
2.3 Analytical determination

A gas Chromatograph (GC, Agilent Technologies Pvt. Ltd) was
used to measure the methanol in the samples. The detection
procedure used a ame ionization detector (FID), a DB-Wax
column (30 m × 0.25 mm, and 0.25 mm), and helium as the
carrier gas. The samples were prelter with 0.22 mm disc lter
(PTFE) to remove the suspended particles before injecting them
into the GC for analysis. The following equation was used to
compute the yield of methanol produced:

YMOH ¼
�
CMOH � VS

MPC

�
(1)

where YMOH is the methanol yield in mM g−1 of catalyst, CMOH is
the methanol concentration in mM L−1, VS is the volume of
reactant solution in L, andMPC is the mass of photocatalyst in g.
2.4 Design of experiment using response surface
methodology

RSM is one of the most popular statistical tools for optimizing
governing variables while developing various multi-variant
mathematical equations. It is a statistical method that helps
several design parameter values to obtain maximum output
results while enhancing the overall process to predict optimum
values of design experiments based on a minimum set of
experiments for the maximization of outcome.22,23 The objective
of RSM is to use a series of design experiments to achieve an
optimum response to the process affected by various input
variables. Among the different RSM techniques, central
composite design (CCD) is the most popular technique used in
design experiments.24,25

All experiments were executed according to the statistical
design as prepared by Design Expert soware (Version 11.0,
Stat-Ease, Minneapolis, USA). Five input parameters, such as
GO load, stirring speed, CO2 ow, time, and pH, were varied,
and methanol yield was considered as the output or response
variable. The input variables' minimum (−1) values were 10%,
2 g L−1, 1 L min−1, 30 min, and 1 for GO load, stirring speed,
CO2 ow, time, and pH, respectively. The input parameters'
maximum (+1) values were 50%, 18 g L−1, 5 L min−1, 150 min,
and 5 for GO load, catalyst dose, CO2 ow, time, and pH, as
shown below in Table 1. The CCD of experiments done in
Design Expert soware is shown in Table 2. The design exper-
iment was performed in the model based on several input
parameters. All the process variables were essential for the
experimental design approach as they are linked.

Among different RSM techniques, the CCD technique is the
most suitable for the design of experiments.23,26 It mainly
contains 2n factorial runs with 2n axial runs and nc centre runs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 All coded factor values for methanol yield

Factor Name Units Minimum Maximum Coded low Coded high

A Graphene oxide dose % 10 50 20 40
B Stirring speed rpm 100 300 150 250
C CO2 ow rate L min−1 1 5 2 4
D Time min 30 150 60 120
E pH — 1 5 2 4
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Number of experiments various process variables can be
computed as follows,

N = 2n + 2 × n + c = 25 + (2 × 5) + 8 = 50 (2)

where N is the number of experiments at runs required, and n is
the number of independent variables, whereas c is the central
point. The CCD technique contains three processes: performing
design experiments, calculating the model coefficients, and
anticipating the behavior and acceptance of the model. There-
fore, an empirical model is established to calculate the behavior
as a function of various input process parameters and their
relations. Finally, the quadratic regression model equation is
developed to realize the activities of the process.

Y ¼ b0 þ
Xk
i¼1

biXi þ
Xk
i¼1

biiXi
2 þ

Xk
i¼1

Xk
i¼1

biiXiXj (3)

where i and j are linear and quadratic coefficients, respectively,
b0 is a constant, bi is a linear coefficient, bii, and bij represent
interactive and quadratic coefficients, respectively.24,27 The
acceptability of the suggested polynomial model equation was
evaluated by the values of R2, RAdj

2 and RPred
2. When the values

of correlation coefficient were higher, the tting of experimental
data was better than the suggested polynomial equation.28

2.5 Design of experiment using articial neural network

ANN is a deep learning technology similar to biological
nervous systems. The advanced data modeling method
utilizes the structural and functional capabilities of the
nervous systems, teaching them the computation of the pre-
dicted values from the input data. The model characterizes
the nonlinear relationship between the input and the output
variables functioning to understand the underlying repre-
sentation of the same. The multi-layer perceptron (also known
as neural networks) is represented mathematically by three
layers operating in parallel: input, hidden, and output layers.
The data is fed to the input layer (X), where it is multiplied
with the scalar weights (w) and summed with biases (b).
Weights and biases are the adjustable parameters of the
model and control the inuence of the processing in the form
of signals.29,30 The idea of articial intelligence that formu-
lates the relationship between the human brain and the
nervous system was used to develop the ANN model.31,32 The
following function (wX + b) is transferred to the activation
function in the hidden layers where non-linearity is intro-
duced. Designing a neural network model is pivotal in opti-
mizing and ne-tuning the hyperparameters, which is crucial
© 2024 The Author(s). Published by the Royal Society of Chemistry
for generating network outputs and errors. In the post-
training process, the model outputs are compared with the
target vectors, leading to the computation of error by differ-
ence. With the assistance of the backpropagation algorithm,
these errors are back-tracked to update the weights and biases
for efficient performance.33,34 There are several advantages of
the ANNmodel over traditional mathematical models, such as
a detailed understanding of the process, which may not be
needed, and the fact that it can be developed fast based on
process input and outputs in relatively less time than rigorous
mathematical models. The backpropagation algorithm is
a supervised learning method that minimizes errors between
the predicted outputs and experimental data. Levenberg–
Marquardt's backpropagation algorithm with gradient
descent optimization was employed in the present study. This
algorithm has been one of the most common and highly
utilized processes for ANN design.

In this study, an experimental database includes 50 data on
methanol synthesis. The detailed statistics of the experimental
tests database are shown in Table 1. The input parameters for
obtaining an appropriate network are GO load, catalyst dose,
CO2 ow rate, time, and pH. The Levenberg–Marquardt method
was utilized to train the algorithm. The input and output are
randomly sampled into three sets: training, testing, and vali-
dation for constructing the network using the Levenberg–Mar-
quardt algorithm.

A meticulous data management strategy was implemented
to ensure robust model training and evaluation. The dataset
was partitioned based on percentages, following the guide-
lines proposed by Hastie et al., with 60% allocated for
training, 20% for validation, and the remaining 20% reserved
for rigorous testing of the developed neural network model.35

This approach adheres to best practices in machine learning,
allowing for an adequate amount of data to train the model
while also providing distinct subsets for validation and
testing. The 60% training set facilitates the network's
learning process by exposing it to a substantial portion of the
available data, enabling it to capture underlying patterns
effectively. The 20% validation set serves as a means to ne-
tune model hyperparameters and prevent overtting,
ensuring that the network generalizes well to unseen data.
Finally, the remaining 20% of the data is reserved exclusively
for testing, serving as an independent benchmark to assess
the model's performance objectively. This meticulous parti-
tioning strategy enhances the credibility and reliability of the
study's ndings, as it minimizes the risk of overtting and
ensures that the model's performance is accurately assessed
RSC Adv., 2024, 14, 12496–12512 | 12499
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Table 2 Statistical experimental design for RSM and ANN model

HEG loading
(%) [A]

Stirring speed
(rpm) [B]

CO2 ow rate
(L min−1) [C]

Time
(min) [D]

pH
[E]

Observed methanol
yield (yieldRSM/ANN,exp)
(mg gcata

−1)

RSM predicted methanol
yield (yieldRSM,model)
(mg gcata

−1)

ANN predicted methanol
yield (yieldANN,model)
(mg gcata

−1)

30 200 3 90 3 38 36.3 37.304
30 200 1 90 3 29 27.8 33.915
30 200 3 90 1 8 7.7 9.171
30 200 5 90 3 36 35.1 32.522
40 150 2 120 4 26 24.3 27.493
40 150 4 60 2 24 23.4 24.044
40 250 2 60 4 25 24.1 24.256
30 200 3 90 3 38 36.2 37.304
30 200 3 30 3 37 35.6 36.738
40 150 4 120 2 26 24.6 22.551
10 200 3 90 3 15 13.8 14.505
20 150 2 120 2 10 9.1 10.503
20 150 2 120 4 8 6.9 9.074
30 200 3 90 3 38 36.3 37.304
20 250 4 120 2 8 7.0 8.631
40 250 4 60 2 16 14.2 15.735
40 250 4 120 4 23 22.4 20.695
30 200 3 90 3 37 35.4 37.304
40 150 2 120 2 18 16.2 17.596
30 200 3 150 3 32 29.4 35.598
40 250 4 60 4 26 24.2 25.623
20 150 2 60 2 12 10.2 12.612
20 150 4 120 2 10 9.1 9.629
50 200 3 90 3 30 28.2 29.728
30 200 3 90 3 38 36.3 37.304
20 150 4 60 2 20 18.4 13.495
20 150 4 120 4 11 9.3 8.588
40 250 2 60 2 14 12.4 14.191
30 100 3 90 3 14 12.3 14
30 200 3 90 3 38 36.3 37.304
20 250 4 60 2 15 12.9 14.843
30 200 3 90 3 38 36.3 37.304
30 200 3 90 5 18 16.4 14.405
40 250 2 120 4 25 23.4 24.366
40 150 4 120 4 27 25.2 26.792
30 300 3 90 3 17 15.5 16.091
40 150 2 60 4 22 21.5 21.53
40 250 4 120 2 19 18.4 19.195
40 150 4 60 4 22 20.7 22.061
20 150 4 60 4 10 8.8 9.514
30 200 3 90 3 38 36.25 37.304
40 250 2 120 2 12 11.1 18.607
20 250 4 120 4 13 11.7 13.159
20 250 2 120 2 9 8.2 9.757
20 250 2 60 2 15 13.9 16.455
20 250 2 120 4 18 16.5 17.222
20 250 2 60 4 21 20.2 22.145
20 150 2 60 4 10 9.3 10.258
20 250 4 60 4 20 19 20.275
40 150 2 60 2 18 16.6 18.443
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across diverse datasets. By adhering to such rigorous data
management practices, the study maintains scientic integ-
rity and enhances the reproducibility of its results. The
training set is used for adjusting connected weights and
biases, the validation set is used for checking overtting
problems, and the testing set is used for checking network
performance aer training. Overtraining must be avoided as
it will lead to poor predictive performance and is indicated by
12500 | RSC Adv., 2024, 14, 12496–12512
increased validation error.36 The requirement of hidden
neurons plays an indispensable role in ANN training.
Therefore, the exact number of hidden neurons must be
calculated beforehand, as too few or too many hidden
neurons will result in poor performance and overtraining.
The input and target parameters were normalized to enhance
the network's performance using the max–min method
between 0 and 1.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Coefficient of determination

R2 ¼
Pi¼N

i¼1

�
yi;exp � yexp

��
yi;pred � ypred

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1

�
yi;exp � yexp

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1

�
yi;pred � ypred

�s (4)

Mean square error

MSE ¼ 1

N

Xi¼N

i¼1

�
yi;pred � yi;exp

�2
(5)

where, yi,pred is predicted output and yi,exp is experimental or
target output, and N is the number of data points.

In the present study, a neural network architecture employ-
ing a single layer of hidden neurons was utilized, with the
number of hidden neurons ranging from 4 to 12. The specic
architecture employed is denoted as ANN 5-9-1, where the rst
digit represents the number of input nodes, ‘N’ signies the
variable number of hidden neurons, and the last digit indicates
the number of target nodes. This conguration enables exi-
bility in the network's capacity to learn complex patterns and
relationships within the data. During the training process, two
primary metrics were utilized to gauge the network's perfor-
mance and convergence: MSE values and regression (R) values.
The MSE value quanties the average squared difference
between the predicted output and the actual target values. A
lower MSE value indicates better accuracy and network perfor-
mance. Conversely, the R-value measures the correlation
between the network's output and the target values. A higher R-
value, ranging between 0 and 1, indicates a closer relationship
between the predicted and actual values, with 1 indicating
Fig. 2 Variation of different hidden nodes with respect to their MSE valu

© 2024 The Author(s). Published by the Royal Society of Chemistry
a perfect correlation. The variance of maximum absolute MSE
values across different numbers of hidden nodes (4–12) is
depicted in Fig. 2, providing insights into the network's
performance under varying complexities. This analysis offers
valuable information for selecting the optimal number of
hidden neurons to balance model complexity and predictive
accuracy. Following thorough network evaluation, it was
determined that the architecture ANN 5-9-1 exhibited the most
desirable performance characteristics, boasting the lowest MSE
value among the evaluated congurations. This conclusion
underscores the effectiveness of the chosen neural network
architecture in capturing the underlying patterns within the
dataset and generating accurate predictions. The interaction of
input parameters through the hidden layer of neurons has been
represented in Fig. 3.
3. Results and discussions
3.1 Effects of individual parameters on methanol yield: one-
factor-at-a-time

3.1.1 Effects of HEG loading on methanol yield. The HEG
loading in the specimens of the catalysts varied from 10% to
40% to nd the optimum loading producing the best methanol
yield. All the gures (Fig. 4a, c, d, and e) show that the yield of
methanol is signicantly higher when the HEG loading
increases. This is because of the increase in HEG loading;
a signicant amount of CO2 gets absorbed by the HEG in the
catalyst, which is then reduced further by the TiO2 in the TiO2-
based material. Furthermore, graphene's high electron mobility
on the surface makes CO2 reduction via the catalytic reaction
much easier. This is why it is easily understandable that 10 wt%
HEG loading produced the lowest product yields. Correlations
es.
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Fig. 3 The selected ANN diagram with 5-9-1 configuration.

Fig. 4 Effects of different operational conditions onmethanol yield for different HEG loading of catalysts; (a) catalyst dose vs.methanol yield; (b)
CO2 flow rate vs. methanol yield; (c) temperature vs. methanol yield; (d) stirring time vs. methanol yield; (e) pH vs. methanol yield.
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between catalyst dose andmethanol yield can be seen in Fig. 4a,
where the methanol yield increases from 0.8 to 36 mg g−1

catalyst (HEG 20 wt%), 2.5 to 37 mg g−1 catalyst (HEG 30 wt%)
and 2.8 to 38 mg g−1 catalyst (HEG 40 wt%). During the varia-
tion of the CO2 ow rate, the yields for different catalysts varied
from 2.6 to 31.2 mg g−1 catalyst (HEG 20 wt%), 12 to 41 mg g−1

catalyst (HEG 30 wt%), and 13 to 38 mg g−1 catalyst (HEG
40 wt%), as shown in Fig. 4b. As per Fig. 4c. In contrast, the
variation of temperature, the yields for different catalysts varied
from 9.1 to 31 mg g−1 catalyst (HEG 20 wt%), 28 to 38 mg g−1

catalyst (HEG 30 wt%) and 27 to 38 mg g−1 catalyst (HEG
40 wt%). According to the Fig. 4d, by the increase in stirring
time, methanol yields of 0.5 to 29 mg g−1 catalyst (HEG 20 wt%),
2.2 to 40 mg g−1 catalyst (HEG 30 wt%) and 2.8 to 41 mg g−1

catalyst (HEG 40 wt%) were obtained. A decrease in pH results
12502 | RSC Adv., 2024, 14, 12496–12512
in an increased methanol yield, where the 20% HEG loading
resulted in a methanol yield of 27 mg g−1 catalyst, 30% loading
produced a methanol yield of 37 mg g−1 catalyst and 40%
loading showed a methanol yield of 27 mg g−1 catalyst (Fig. 4e).
HEG-based catalyst containing 30 wt% HEG is observed to
produce the best results in each of the cases of investigations of
Fig. 4. Though a bit of difference in numerical values could be
observed in 40 wt% loadings, concerning the outcome of
30 wt%, it is insignicant.

3.1.2 Effects of catalyst dose on methanol yield. Methanol
yield and catalyst doses of four distinct types of photocatalysts,
which were differentiated by their HEG wt%, showed a positive
correlation (Fig. 4a). High percentage of HEG present in the
photocatalyst captures more CO2, which, at the same time, leads
to a higher yield of methanol. More electrons can be released at
© 2024 The Author(s). Published by the Royal Society of Chemistry
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high catalyst concentrations, increasing methanol yield. At
a CO2 ow rate of 3 L m−1, the pH of the solution was 3, the
temperature was 50 °C, and the stirring time was 3 h, the
photocatalyst dosing was varied from 2 to 14 g L−1. The meth-
anol yields linearly increased for all the catalyst specimens of
different HEG loadings. But, at a catalyst loading of 10 g L−1, the
methanol yields were obtained as 32 mg g−1 catalyst (HEG
20 wt%), 37 mg g−1 catalyst (HEG 30 wt%), and 38 mg g−1

catalyst (HEG 40 wt%). More than this loading percentage, no
signicant increase in product yield could be observed for
30 wt% and 40 wt% HEG-loaded photocatalysts. Moreover, less
product yield improvement (only 1 mg g−1 catalyst) was
observed in a 10 wt% increase in HEG loading (30 wt% to
40 wt%). At very high photocatalytic doses, like 40%, it may be
due to turbidity in the solution; penetration of light gets pre-
vented inside the solution, leading to a lack of uniform light
distribution on the photocatalyst active sites, which ultimately
reduces the product forming reaction rates.

3.1.3 Effects of CO2 ow rate on methanol yield. CO2 ow
rate has a signicant impact on methanol yield when using four
different types of catalysts (10 wt%, 20 wt%, 30 wt%, and 40 wt%
of HEG loadings) at a xed photocatalytic dose of 10 g L−1,
process temperature (50 °C), solution pH (3), and stirring time
(3 h). As represented in Fig. 4b, methanol yields thoroughly
increased when the CO2 ow rate was increased from 0.5 to 4 L
m−1. Being the main raw material reactant, higher ow rates of
CO2 can increase the conversion for methanol formation while
using the HEG-loaded TiO2-assisted catalyst. In addition, high
CO2 ow in the feed solution increases the methanol yield due
to two factors: (i) uniform trapping of light intensity by photo-
catalyst and (ii) well-lled pores in the catalysts. For example, at
a CO2 ow rate of 3 L min−1, yields were found as 31 mg g−1

catalyst (HEG 20 wt%), 37 mg g−1 catalyst (HEG 30 wt%), and
37mg g−1 catalyst (HEG 40 wt%). Beyond this CO2 input rate, no
signicant growth in methanol yield could be observed. For
methanol synthesis at high doses of HEG loading in a catalyst
(e.g., 40 wt%) in a solution, a lack of substrate may be to blame
for low yields because of the overloading on the catalyst's active
sites. Moreover, at higher ow rates of CO2, less residence time
is needed for the effective conversion reactions that used to be
provided, which causes the transformation efficiency to decline
or remain constant.

3.1.4 Effects of process temperature on methanol yield.
Experimental investigations were run maintaining the catalyst
dose of 10 g L−1, CO2 ow rate of 3 L min−1, pH of the solution
at 3, and stirring time of 3 h. The temperature impacts
methanol yield, and the results in Fig. 4c show a positive
correlation with methanol yield. Linearly increased methanol
yields were observed when the process temperature was
increased from 40 to 60 °C, and this was due to the high
frequency of collisions between the photocatalytic substrate
and the feed substrate, as well as higher rates of substrate
diffusion into the photocatalyst. At a temperature of 50 °C,
methanol yields were found as 30 mg g−1 catalyst
(HEG 20 wt%), 38 mg g−1 catalyst (HEG 30 wt%), and 38 mg
g−1 catalyst (HEG 40wt%). No effective upsurge in product
yields was observed at temperatures higher than this value. So,
© 2024 The Author(s). Published by the Royal Society of Chemistry
no change in the product yield happens even if the reaction is
run with high doses of HEG loading in the catalyst (∼40 wt%)
at elevated temperatures. Moreover, overheating on the cata-
lyst's active sites further enhances the chances of the
unwanted desorption effect in this process.

3.1.5 Effects of stirring time on methanol yield. According
to Fig. 4d, a positive correlation could be observed between
stirring time and methanol yield when the stirring time was
increased from 60 to 300 min, controlling the catalyst dose of
10 g L−1, CO2 ow rate of 3 L min−1, pH of the solution at 3 and
the temperature of 50 °C. Due to the increase in stirring time,
more residence time could be provided to the photocatalytic
reaction system, enhancing the methanol yield. The yield of
methanol per gram of catalyst was found to be very low due to
incomplete hydrogenation of the feed solution up to 120 min,
whereas stirring time longer than 120 min signicantly
increased methanol synthesis as the reaction was completed. A
gradual decline in yield was observed aer a relatively stable
yield between 3 and 28 h of reaction time. The product (meth-
anol) yields were found as 26 mg g−1 catalyst (HEG 20 wt%),
37 mg g−1 catalyst (HEG 30 wt%), and 36 mg g−1 catalyst (HEG
40 wt%) at a stirring time of 180 min. But, beyond this stirring
time, an insignicant increase in the product concentration is
observed; as a result, the process gets delayed with reduced
productivity. As a matter of fact, due to the gradual loss of
catalytic activity, regeneration of the catalyst became
a necessity.

3.1.6 Effects of solution pH on methanol yield. As shown in
Fig. 4e, the effects of solution pH are inversely proportional to the
methanol yield. The pH was varied from 2 to 9, keeping the
constant values of other parameters like 10 g L−1 catalyst dose, 50 °
C process temperature, 3 L m−1 CO2 ow rate, and 3 hours of
stirring time. The investigation was unsuccessful at a low pH value
of 2, where the yield decreases above pH 3. The product yields were
found as 27mg g−1 catalyst (HEG 20wt%), 37mg g−1 catalyst (HEG
30wt%), and 38mg g−1 catalyst (HEG 40 wt%) by adjusting pH 3 of
the solution. This increase in methanol yield is attributed to
increased carbonate ions (CO3

2−) generation as the experimental
investigations were run at higher pH levels than pH 3.0. Beyond
this pH range, the adaptation of photo-generated electrons by the
CO3

2− ions signicantly decreases, preventing the formation of
methanol through hydrogenation.4
3.2 Statistical analysis through ANOVA

During the development of the regression model, all ve param-
eters (GO load, stirring speed, CO2 ow, time, and pH) were
considered input variables, and methanol yield (%) as the output
or response variable. The statistical coefficients were generated
using Design Expert Soware 11.0, as shown in eqn (6).

Observed methanol yield (%) = 38.315 + 4.075A + 0.275B

+ 1.025C− 0.925D + 2.025E− 1.59375AB + 0.59375AC

+ 1.40625AD + 1.15625AE − 0.78125BC − 0.71875BD

+ 2.03125BE − 0.15625CD − 1.03125CE + 0.53125DE

− 4.39375A2 − 6.14375B2 − 1.89375C2 − 1.39375D2

− 6.76875E2 (6)
RSC Adv., 2024, 14, 12496–12512 | 12503
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The analysis of variance (ANOVA) approach was used to
determine the signicant parameters in the regression model
equation, which was then utilized to validate the equation. A
study of numerous outcomes was conducted using Fisher's
statistical test (F-test), a statistical approach applied. When the
value of F is greater than the corresponding coefficient value,
the value of P is notable. When the value of P is smaller than the
corresponding coefficient value, the value of F is exceptional.
When the sum of squares value is signicantly greater than the
mean, it is noticed that the importance of any process variable
is also much larger. To get methanol yield, the value of 61.98
must be used in conjunction with the equivalent value of less
than 0.0001, the sum of squares value of 4786.74, the value of
20, and the mean square value of 239.34. When the F-value of
a model exceeds zero, it is considered signicant. An F-value
this large is around a 0.01% probability of being caused by
random noise. A model term's P-value is less than 0.05 and
considered signicant. Greater or equal to 0.1000 values suggest
model terms have little signicance. The number of meaning-
less terms in the model can be reduced by eliminating those
that are not necessary (such as those needed to maintain hier-
archy). A statistically signicant lack of t is indicated by an F-
value of 40.40. There is a 0.01% chance that the high lack of t
F-value is caused by noise.

The model was tested with a wide range of process param-
eters for the best methanol yield using ANOVA. Using the
model's standard deviation of 1, mean of 21, and CV percent
value of 9, the model has a correlation coefficient of 97.72%,
indicating good model accuracy. Furthermore, 96.14 and 91.45
are the respective models that predicted and observed R2 found
in ANOVA. The desirability index from the design experiment
was used to evaluate the model's applicability under different
process conditions. Maximum methanol yield of up to 36.3 mg
g−1 catalyst was achieved under the optimized governing
conditions: HEG loading of 30% and stirring speed of 200 rpm,
the CO2 ow rate of 3 Lmin−1, stirring period of 90 min, and pH
at 3. According to the attractiveness index, the model is well-
suited for analyzing the design experiment under discussion.

The different conjugate diagrams of observedmethanol yield
using various input parameters have been shown in [Fig. 5a–e
and 6a–e]. The actual data originated from the experimental
runs involving all process input parameters (GO load, stirring
speed, CO2 ow, time, and pH), as shown in the CCD (Table 2).
The soware calculates the predicted values with the help of
mathematical model equations. The correlation coefficient (R2)
value is measured using actual and predicted values. The
conjugate plot of graphene oxide load and stirring speed on
product yield has been depicted in Fig. 5a. Observing methanol
yield increased from 25 to 32 mg g−1 of catalyst when GO load
was increased from 20% to 40%, and stirring speed was
increased from 100 to 300 rpm. Simultaneous effects of CO2

ow rate and graphene oxide load have been shown in Fig. 5b,
where the observed methanol yield got enhanced from 28 mg
g−1 catalyst to 36 mg g−1 catalyst when graphene oxide load and
CO2 ow rate increased from 20% to 40% and from 2 to 4
L min−1, respectively. The coupled effects of time and GO load
have been represented in Fig. 5c. This shows that the observed
12504 | RSC Adv., 2024, 14, 12496–12512
methanol yield (%) increased from 25 to 36 mg g−1 of catalyst
when the time was increased from 60 to 120 min, and the gra-
phene oxide load increased from 20% to 40%. The conjugate
diagram of pH and GO load has been revealed in Fig. 5d. When
pH and GO load were increased from 2 to 4 and 20% to 40%,
respectively, methanol yield was enhanced from 22 to 30 mg g−1

of catalyst. Simultaneous effects of CO2 ow rate and stirring
speed have been shown in Fig. 5e, where the observed methanol
yield increased from 8 to 30 mg g−1 of catalyst when the CO2

ow rate was increased from 2 to 4 L min−1 and stirring speed
was increased from 100 to 300 rpm. The coupled effects of time
and stirring speed have been depicted in Fig. 6a. It could be
seen that the methanol yield upsurged from 8 to 33 mg g−1 of
catalyst when time increased from 60 to 120 min, and stirring
speed increased from 100 to 300 rpm. The conjugate effects of
pH and stirring speed have been represented in Fig. 6b.
Observed methanol yield grew from 0 to 25 mg g−1 catalyst
when pH increased from 2 to 4, and catalyst dose increased
from 100 to 300 rpm. Simultaneous effects of time and CO2 ow
rate have been shown in Fig. 6c. Observed Methanol yield
enhanced from 12 to 32 mg g−1 of catalyst when ow rate
increases from 2 to 4 L min−1 and time increases from 60 to
120 min. The conjugate effects of pH and CO2 ow rate have
been revealed in Fig. 6d. Methanol yield has been observed to
rise from 0 to 32 mg g−1 catalyst when pH rises from 2 to 4 and
CO2 ow rate increases from 2 to 4 L min−1. Simultaneous
effects of pH and time have been shown in Fig. 6e. Methanol
yield has been observed to increase from 8 mg g−1 catalyst to
35 mg g−1 catalyst when pH increases from 2 to 4 and time
increases from 60 to 120 min. Leonzio, investigated the design
of experimental analysis using RSM to analyze the synthesis of
methanol for better process efficiency.25 They have found that
carbon conversation, methanol yield, methanol selectivity, and
methanol production are higher than 60%, higher than 60%,
between 90% and 95%, and higher than 0.15 mol h−1, respec-
tively, with a feed ow rate of 1 mol h−1. Raee also performed
modeling and optimization of methanol synthesis from
hydrogen and CO2 through RSM and ANOVA.24 They noticed
a 95% correlation coefficient obtained at a ow rate of 5
L min−1, pH of 6, and time of 30 min. ANOVA analysis validated
the model with different process parameters for maximum
methanol yield.
3.3 Statistical analysis through ANN

Fig. 7a and b depict the model validation proles of the ANN
model when applied to the experimental database. In contrast,
Fig. 6 depicts the regression curve for each training, testing, and
validation data set. In the depicted ANN architecture, as shown
in Fig. 3, extensive experimentation has revealed that achieving
optimal performance is contingent upon several key architec-
tural decisions. Specically, aer rigorous testing and analysis,
it was determined that the ideal conguration involves
employing a total of 9 neurons. Furthermore, the activation
functions utilized within the hidden and output layers play
a pivotal role in shaping the network's efficacy. Through
meticulous evaluation, it was established that the combination
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 3D type conjugate diagram of methanol yield at different operating conditions; (a) stirring time and graphene dose versus observed
methanol yield; (b) CO2 flow rate and graphene dose versus observed methanol yield; (c) time and graphene dose vs. observed methanol yield;
(d) pH and graphene dose versus observed methanol yield; (e) CO2 flow rate and stirring speed versus observed methanol yield.
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Fig. 6 3D type conjugate diagram ofmethanol yield at different operating conditions; (a) time and stirring speed versus observedmethanol yield;
(b) pH and stirring speed vs. observed methanol yield; (c) time and CO2 flow rate versus observed methanol yield; (d) pH and CO2 flow rate vs.
observed methanol yield; (e) pH and time for observed methanol yield.

12506 | RSC Adv., 2024, 14, 12496–12512 © 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 7

/1
3/

20
25

 1
1:

51
:5

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra00578c


Fig. 7 Normalized feature importance chart.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 7

/1
3/

20
25

 1
1:

51
:5

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
of the log-sigmoid activation function within the hidden layers,
complemented by the linear activation function in the output
layer, consistently yields superior performance across various
metrics and tasks. This strategic choice in activation functions
enables the network to effectively capture and propagate
complex nonlinear relationships within the data, resulting in
enhanced predictive accuracy and generalization capabilities.
The overall regression score of 0.988 showcases the exceptional
performance of the ANN model in accurately capturing the
underlying patterns within the dataset. This high score signies
that the model has prociently completed the tting process,
effectively encapsulating the complexities of the design experi-
ment. To elaborate on this technical aspect, the regression
score, also known as the coefficient of determination (R2),
quanties the proportion of the variance in the dependent
variable that is predictable from the independent variables. A
score of 0.988 implies that approximately 98.8% of the vari-
ability in the target variable is explained by the input features
utilized in the ANN model. Such a remarkable score under-
scores the robustness and efficacy of the model in capturing the
intricate relationships present in the data.

To compare the ANN prediction and existing equations
based on the experimental database, the ratio Mtest/Mcalc was
used.

Mcalc = predicted value of methanol yield.
Mtest = experimental value.
A statistical analysis was performed to evaluate the ANN

model with experimental values, as shown in Table 2. It was
necessary to analyze the standard deviation (SD), mean, and
coefficient of variation (COV) to determine how well the ANN
results tracked the experimental data in the database. The pres-
ence of a mean value close to one with a slight standard deviation
indicates that the ANN network can generalize the information.
The coefficient of variation was used to determine the precision of
the ndings obtained by employing the ANN model, and it was
© 2024 The Author(s). Published by the Royal Society of Chemistry
calculated as follows: it depicts the degree to which variability
varies in proportion to the mean value. A lower coefficient of
variation indicates that the amount of scattering in the data has
been reduced to a minimum. The mean, standard deviation, and
coefficient of variance are determined using the experimental/
predicted ratio, and they are as follows: 1.010151, 0.115257, and
11.409%. In Fig. 7, a normalized feature importance chart is pre-
sented, providing a comprehensive visual representation of the
relative signicance of each feature. This visualization facilitates
a deeper understanding of the impact that individual features exert
on the overall outcome or phenomenon under investigation. This
insight aids in prioritizing resources and efforts towards the most
impactful features, thereby optimizing decision-making processes
and enhancing the efficacy of subsequent actions. The normali-
zation of feature importance ensures a fair comparison across
different features, mitigating biases stemming from variations in
scale or measurement units. This enables researchers, analysts,
and practitioners to make informed judgments regarding feature
selection, model renement, and strategic planning, fostering
more robust and insightful analyses.

As per Fig. 8a, a reasonably good corroboration could be
observed between the experimentally obtained methanol yield
data concerning the predicted values of ANN. The performance
graph of the epochs value and the MSE for the ANN model
utilizing these input parameters is depicted in Fig. 8b. It can be
observed from the graph that the best validation performance is
0.00066867 at epochs 0 and 1. A representation of the training,
testing, and validation of these distinct epochs in terms of MSE
valuesmay be found in Fig. 8b. A similar outcome has been seen
by several researchers who have carried out methanol synthesis
from CO2 and hydrogen gas utilizing ANNmodeling throughout
the last few years. Also, in the case of Fig. 9, well corroborations
in data tting for this 5-9-1 ANN model could be observed with
high values of regression coefficients. The ANN modeling of
syngas to methanol production and other topics were
RSC Adv., 2024, 14, 12496–12512 | 12507
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Fig. 8 Model validation results of ANN: (a) experimental versus predicted output of ANN model; (b) performance graph of ANN.
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investigated in the literature.37 According to the ndings of this
research study, an ANNmodel has been constructed to simulate
the generation of methanol from fuel gas. Overall, the results
showed that raising pressure from 10 to 30 bar increased
Fig. 9 The regression curves of the ANN model 5-9-1.

12508 | RSC Adv., 2024, 14, 12496–12512
methanol concentration and CO conversion, which climbed
from 21.1 percent to 22.3 percent and from 34.0 percent to 36.2
percent, respectively, with the increase in pressure. A kinetic
investigation of carbon dioxide conversion to methanol over
© 2024 The Author(s). Published by the Royal Society of Chemistry
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innovative carbon nanober-based Cu/ZrO2 catalysts was
carried out by Uddin et al., who then veried their ndings with
the use of an ANN.10 The results of an ANN were found to be
validated in terms of an experimental kinetic analysis. Chuquin-
Vasco et al. used neural networks to estimate methanol output
in a carbon dioxide hydrogenation plant, using 133 data pairs
and 12 hidden neurons in their analysis.38 The reported values
for the global regression coefficient R2 and the global mean
square error (RMSE) were 0.9442 and 0.0085, respectively.
3.4 Optimization of ANN model using genetic algorithm
(GA)

In our study, we leveraged the capabilities of ANN models,
which, owing to their inherent nature as black boxes, were
utilized for optimization purposes. Specically, we employed
a Genetic Algorithm (GA) as the optimization technique. The
parameters under consideration—HEG loading, stirring speed,
CO2 ow rate, reaction time, and pH—were bounded within
ranges to ensure practical feasibility. These bounds were set as
follows: HEG loading ranged from 10% to 50%, stirring speed
from 100 to 300 rpm, CO2 ow rate from 1 to 5 L min−1, reaction
time from 30 to 150 min, and pH from 1 to 10. Through this
comprehensive approach, we successfully achieved an optimal
methanol yield of 37.81 mg g−1 catalyst. This signicant outcome
was obtained under specic conditions: HEG loading at 30.16%,
stirring speed of 201.25 rpm, CO2 ow rate of 2.96 L min−1,
reaction time of 90.21 min, and pH of 2.86. Remarkably, upon
dWillmott ¼
"
1�

 Xn
R¼1

�
yieldn;RMS=ANN;model � yieldn;RMS=ANN;exp

�2,

Xn
R¼1

h			�yieldðn;RMS=ANN;modelÞ � yieldðn;RMS=ANN;expÞmean

�			þ 			�yieldðn;RMS=ANN;expÞ � yieldðn;RMS=ANN;expÞmean

�			i2
!#
closer examination, these optimal conditions closely resemble
those initially identied in the rst run of our experimental design
matrix, as illustrated in Table 2. This convergence not only vali-
dates the effectiveness of our optimization methodology but also
underscores the robustness of our experimental setup.
4. Error analysis

Errors calculated during the validation of model-predicted data
with experimental data are a good indicator of model
Table 3 Comparative results of statistical analysis of RSM and ANN mod

Optimization
techniques

Statistical analysis

Responses

RSM YieldRMS,exp vs. yieldRMS,model

ANN YieldANN,exp vs. yieldANN,model

© 2024 The Author(s). Published by the Royal Society of Chemistry
development. However, in the past, only a few standard statistical
methods were used to evaluate errors in themodel data. Therefore,
the accuracy of the model's predictions compared to the experi-
mental data was examined using the statistical tools discussed
below.

4.1 Relative error through RMSE analysis

For the calculation, RMSE (Root Mean Square Error), the
following expression has been used:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Xn

i¼1

yieldi;RSM=ANN;model � yieldi;RSM=ANN;exp

!vuut
where yieldi,RSM/ANN,model and yieldi,RSM/ANN,exp are the respec-
tive outcomes of model and experimental investigations
extracted from RSM or ANN optimization study, i is the number
of runs.

The following expression can be used to calculate the relative
error (RE) from the average of the experimental data (yieldi,(RSM/

ANN,exp)avg):

RE = (RMSE/yield(i,RMS/ANN,exp)avg)
4.2 d-Willmott index (dWillmott)

The d-Willmott index (dWillmott) parameters were calculated
using the equation below:
4.3 Regression coefficient (R2)

R2 was determined with the help of the following equation:

R2 ¼ CVxy
2

Vx
2 � Vy

2

where, CVxy
2 = the covariance of the dependent and indepen-

dent variable, Vx
2 = variance of the dependent variable, Vy

2 =

variance of the independent variable.
Suppose the regression coefficient is >98%. In that case, the

relative error is less than 0.09, and the dWillmott is greater than
el data

R2 Relative error dWillmott index

0.972 0.11 0.950
0.988 0.054 0.977

RSC Adv., 2024, 14, 12496–12512 | 12509
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95% for the experimental outcome, a signicant model
prediction is nominated. Table 3 shows the results of calcu-
lating the yield data's error values to assess the newly developed
mathematical approach.
5. Conclusions

It appears that, against the backdrop of several established and
emerging CO2 capture and conversion technologies, graphene-
coated catalysts produce a high yield of methanol from CO2.
However, most procedures fail during critical decision-making
based on all of the elements where ANN and RSM methods
can perform effective model prediction. Therefore, the two
methods were compared to determine which produced the
highest yield. According to the ANOVA table, HEG weight
percentage, CO2 ow rate, stirring speed, temperature, stirring
time, and solution pH had major effects on the yield quantity.
The most signicant parameters identied to control the reac-
tion mechanism were HEG dosing and volumetric input rate of
CO2. 30 wt% HEG loading in developed photocatalyst provided
the highest methanol yield of 36.3 mg g−1 catalyst, was achieved
under the other optimized governing conditions, such as stir-
ring speed of 200 rpm, the CO2 ow rate of 3 L min−1, stirring
period of 90 min, and pH at 3. Correlation coefficients for both
methods (ANN and RSM, R2 = 0.985 and R2 = 0.971, respec-
tively) indicate that the ANN model is better predictive and
more accurate than the RSM model. However, the RSM-
proposed model is equally capable of predicting the real nd-
ings. According to the results, the optimal point of methanol
yield for the RSM and ANN models was 36.3 and 37.3 mg g−1 of
catalyst, respectively.
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