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ycobacterium tuberculosis of
a new class of spirooxindolopyrrolidine embedded
chromanone hybrid heterocycles†

Manal Fahad Alkaltham,a Abdulrahman I. Almansour,a Natarajan Arumugam, *a

Siva Krishna Vagolu,*bc Tone Tønjum,bc Shatha Ibrahim Alaqeel,d

Saiswaroop Rajaratname and Venketesh Sivaramakrishnane

A new class of structurally intriguing heterocycles embedded with spiropyrrolidine, oxindole and

chromanones was prepared by regio- and stereoselectively in quantitative yields using an intermolecular

tandem cycloaddition protocol. The compounds synthesized were assayed for their anti-mycobacterial

activity against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid-resistant (katG and inhA promoter

mutations) clinical Mtb isolates. Four compounds exhibited significant antimycobacterial activity against

Mtb strains tested. In particular, a compound possessing a fluorine substituted derivative displayed

potent activity at 0.39 mg mL−1 against H37Rv, while it showed 0.09 mg mL−1 and 0.19 mg mL−1 activity

against inhA promoter and katG mutation isolates, respectively. A molecular docking study was

conducted with the potent compound, which showed results that were consistent with the in vitro

experiments.
1. Introduction

Tuberculosis (TB) is one of the deadliest airborne infectious
diseases, caused by various species and strains of mycobacteria.
Among them, pathogenic aerobic bacteria, the bacillus Myco-
bacterium tuberculosis, remains the major cause of TB in
humans. Mycobacterium tuberculosis usually forms an infection
in the lungs of the host and is one of the leading unfavorable
health problems globally. World Health Organization report in
2022 indicate that TB has replaced COVID-19 as the leading
cause of death from an infectious agent on a worldwide basis.1

It is estimated that 85% of drug-susceptible TB cases can be
cured with the current therapeutic treatment.2 Several rst-line
anti-TB medications are available, including rifampicin, isoni-
azid (INH), pyrazinamide, and ethambutol. These drugs have
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associated side effects, are ineffective in eliminating latent
pathogens, and require prolonged treatment.3 Second-line
drugs like bedaquiline, delamanid, or pretomanid are less
effective, has a higher toxicity prole, and is more expensive
than the rst-line medication. Moreover, the current evolution
of multidrug-resistant TB further aggravates the complications
associated with TB treatment. Thus, the disease continues to be
a major social health issue, particularly among low-income
populations.4,5 TB in combination with HIV5 increases the
overall incidence of TB by 50 times more in HIV-positive
patients than HIV-negative individual.6 Therefore, it is neces-
sary to develop structurally novel, potent, fast acting, affordable
anti-TB drugs with an innovative mechanism of action and low
toxicity prole that are capable of overcoming the mechanisms
of resistance posed by existence of multidrug and extensively
drug resistant tuberculosis (MDR-TB and XDR-TB) in order to
effectively combat TB.

In this context, nitrogen and oxygen comprising heterocy-
clic hybrid frameworks play crucial contribution in drug
discovery, a signicant part of which is the fact that they are
the active entrants in a many number of drugs.7 In addition,
molecules embedding heteroatoms possess promising drug
solubility and pharmacokinetic properties. It has been argued
that recent trends in the discovery of lead compounds have led
to a “escape from atland” in which planar aromatic or het-
eroaromatic ring systems are a rapidly replacing others with
higher saturation and three-dimensionality. Such molecules
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Spiropyrrolidine tethered chromanone heterocyclic hybrids,
5a–j

Entry
Structure
of compounds

Melting point
(°C)

Yielda

(%)

1 188–190 89

2 186–188 94

3 182–184 92

4 151–153 96

5 153–155 87

6 176–178 85

7 185–187 88

8 152–154 90

9 152–154 92

10 163–165 91

a Isolated yield of cycloadduct.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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are anticipated to have a better affinity for three-dimensional
binding pocket in proteins and be more solubilized which is
an essential property for drug development and practical
applications.8,9

In this connection, spiro compounds have emerged as an
attractive synthetic target in drug discovery,10–15 due to their
structural complexity and rigidity, facility to reveal function-
ality and inherent three-dimensional structural features,
which offer improved structural affinity to biological targets.
Perhaps for this reason, many spiro compounds are found in
biologically active alkaloids and synthetic products that have
evolved to interact with target proteins of the biological
system15 more readily than at hetero aromatic ring systems.
In this context, R. R. kumar et. al.16 reported an atom
economic, stereoselective synthesis and antimycobacterial
evaluation of spiropiperidine through cycloaddition method-
ology. Among these spiropiperidines, uoro substituted
compounds showed excellent activity against tested TB
organism. Similarly, a library of spirooxindolopyrrolidines/
pyrrolizidines/pyrrolothiazole derivatives were synthesized
and assayed for their antimycobacterium tubercular activity by
S. M. Rajesh et. al.17 and found that most them demonstrated
excellent activity against tested TB-organism. Recently, M.
Ganesh et. al.18 reported the synthesis, characterization,
molecular docking simulation and antitubercular activity of
new class of spiropyrrolidine oxindoles, these compounds
showed signicant activity against tested Mycobacterium
tuberculosis H37R. In addition, to the biological precedents of
the spiro compounds described above, most of the spi-
ropyrrolidines reported in the literature demonstrated signif-
icant biological activity, including anti-TB activity,19,20 some of
these spiro compounds were even more potent than reference
standard.21–24 Prompted by these nding, herein we report the
synthesis and anti-tubercular activity of structurally diverse
spirooxindolopyrrolidine integrated chromanones using three
component reactions involving 1,3-dipolar cycloaddition
reaction.25–29
2. Results and discussion
2.1. Chemistry

The cycloaddition protocol initiated by the reaction of 3-
arylidenechroman-4-ones 4 and in situ 1,3-dipole prepared
from diketone 1 and amino acid 2 under reux in MeOH
yielded exclusively the substituted spiropyrrolidine heterocy-
cles in quantitative yields (88–95%, Table 1) as described in
Scheme 1. In the initial stage of optimization, several solvent
systems were used including EtOH, MeOH, CH3CN, DMF and
CH3CN : MeOH (1 : 1 v/v). An excellent yield was obtained in
MeOH than to other solvents, indicating that MeOH is suit-
able for the reaction. Thus, the mixture of arylidene chroma-
none 4, diketone 1, and amino acid 2 is reuxed in MeOH until
the reaction is completed, as indicated by TLC and the prod-
ucts 5a–j are puried by crystallization. The spectroscopic
analysis unambiguously assigned by the structure of
RSC Adv., 2024, 14, 11604–11613 | 11605
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Scheme 1 Synthesis of dispiropyrrolidine tethered chromanone hybrids, 5a–j.
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View Article Online
compounds (vide, ESI†). Finally, X-ray diffraction analysis
described in Fig. 1 conrmed the stereochemistry and regio of
the structures 5a and 5g.30

Scheme 2 shows a possible mechanism for the construc-
tion of spiropyrrolidine 5. In the rst step, the reaction of
active ketone 1 and L-phenylalanine 2 produced the non-
stabilized azomethine ylide 8 via intermediates 6 and 7
under spontaneous decarboxylation reaction process. The
non-stabilized ylide 8 was further reacts with benzylidene
chromanone 4 yielded sole cycloadduct 5 via route A.
Furthermore, the reaction proceeded regioselectively, as no
traces of the possible regioisomer 9 were detected. The
dipole 8 adds to the electron less carbon of the chromanone
4, producing cycloadduct 5. Four new stereogenic carbons,
including two spirocarbons, were formed in this reaction
process, resulting from the construction of two C–C and one
C–N bonds.
11606 | RSC Adv., 2024, 14, 11604–11613
2.2. Anti-Mycobacterium tuberculosis activity of
spiropyrrolidine heterocyclic hybrids

The synthesized spirooxindolopyrrolidine embedded chro-
manones 5a–j were tested for their antimycobacterium activity
against Mtb H37Rv, isoniazid-resistant (katG or inhA promoter
mutation) clinical Mtb isolates using the Microplate Alamar
Blue Assay (MABA) method and Middlebrook 7H9 broth +
OADC (Growth supplement), with isoniazid used as the refer-
ence standard drug. Initially, we evaluated the rst series of
spirooxindolopyrrolidines 5a–j against Mtb H37Rv and Mtb
isoniazid-resistant (katG or inhA promoter mutation). Among
the compounds, four spirocompounds displayed potent anti-
tubercular activity against the tubercular organisms tested
(Table 2). Thus, the compound 5c that possessed 2-chloro
substituted derivative showed excellent activity against H37Rv
with MIC value 0.78 mg mL−1, which further showed potent
activity against inhA promoter and katG mutation clinical
isolates with MIC values 0.19 mg mL−1 and 0.39 mg mL−1,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 The persuasive pathway for the construction pyrrolidine, 5.

Fig. 1 Crystal structure of compounds 5a and 5g.

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 11604–11613 | 11607
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Table 2 Antimycobacterium tubercular activity of spiropyrrolidines, 5a–j

Compounds H37Rv (MIC mg mL−1) inhA promoter mutation (MIC mg mL−1) katG mutation (MIC mg mL−1)

>50 >50 >50

>50 >50 >50

0.78 0.19 0.39

1.56 0.39 1.56

>50 >50 >50

>50 >50 >50

>50 >50 >50

1.56 0.78 1.56

0.39 0.09 0.19

>50 >50 >50

Isoniacid (INH) 0.19 mM 1.56 mM 12.5 mM

a Compounds with promising activity.
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respectively. Similarly, the compound 5d bearing 4-chlor-
osubsitution on the aryl ring displayed good activity against
H37Rv with MIC value 1.56 mg mL−1 and the compound
showed excellent activity against inhA promoter and katG
mutation isolates with MIC values 0.39 mg mL−1 and 1.56 mg
mL−1, respectively. Compound 5h with 2-uorosubstitution
on the aryl ring showed signicant activity against H37Rv with
MIC value 1.56 mg mL−1, which displayed signicant activity
11608 | RSC Adv., 2024, 14, 11604–11613
against inhA promoter and katG mutation isolates with MIC
values 0.78 and 1.56 mg mL−1, respectively. Likewise,
compound 5i bearing 4-uoro on the phenyl ring exhibited
potent activity against H37Rv with MIC value 0.39 mg mL−1,
which showed 0.09 mg mL−1 and 0.19 mg mL−1 against inhA
promoter and katG mutation isolates, respectively. The above
mentioned antitubercular results revealed that the spiroox-
indolopyrrolidine integrated chromanones with halogen
© 2024 The Author(s). Published by the Royal Society of Chemistry
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substituted derivative showed signicant activity against the
tubercular organisms tested. In particular, the compound
possessing a uoro substitution on the aryl ring showed more
potent activity which was comparable against the standard
drug isoniazid (INH).
2.3. Molecular docking study

Molecular docking studies showed that the ligand had
a strong binding affinity with the active sites of Type II dehy-
droquinase (−9.59) and decaprenyl phosphoryl-beta-D-ribose
oxidase from Mycobacterium tuberculosis (−10.81). Further, it
showed a stronger binding affinity compared to known natural
ligands. Hydrophobic interactions were formed between the
amino acids PRO11, ASN12, LEU13, LEU16, TYR24, ASN75,
GLY77, GLY78 of Type II dehydroquinase (1H0R) active sites
and the ligand. In the case of decaprenyl phosphoryl-beta-D-
ribose oxidase, interactions with both the hydrogen bond
(CYS129) and hydrophobic amino acids (ILE131, ALA417,
ARG58, GLY125, VAL121, SER59, THR118, TYR60 and TYR415)
© 2024 The Author(s). Published by the Royal Society of Chemistry
were observed. This could probably contribute to stronger
binding affinity of the ligand with the decaprenyl phosphoryl-
beta-D-ribose oxidase compared to Type II dehydroquinase.
2.4. ADME studies

Absorption, distribution, metabolism, and excretion (ADME)
properties of the ligand were assessed using lipophilicity, phar-
macokinetics, water solubility, physio-chemical properties and
drug-likeness. The ligand lacked exibility and polar interactions.
This was reected in the interactions observed in the docking
studies. However, in general, the ligand exhibited good drugg-
ability properties. Swiss Target Prediction was used to bio-
informatically forecast additional possible targets to understand
the cross-reactivity of the drug molecule. Swiss Target Prediction
uses molecular similarity and Shape to forecast prospective
targets. Our study demonstrated that the ligand has a 46.7%
chance of binding to proteases, 26.7% with G-protein coupled
receptors and 13.3%with hydrolases. Overall, themolecule shows
good properties in order to be used as a possible drug for TB.

2.4.1 ADME studies.
RSC Adv., 2024, 14, 11604–11613 | 11609
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2.4.2 Type II dehydroquinase from Mycobacterium tuber-
culosis (1H0R).
Binding energy of 5i with the active site of 1H0R (decaprenyl
phosphoryl-beta-D-ribose oxidase from Mtb): −10.81.

Binding energy of known ligand (FAD) with the active site of
1H0R (decaprenyl phosphoryl-beta-D-ribose oxidase from Mtb):
−7.05.

2.4.3 Decaprenyl phosphoryl-beta-D-ribose oxidase from
Mtb (4FDN).
11610 | RSC Adv., 2024, 14, 11604–11613
Binding energy of 5i with the active site of 1H0R (decaprenyl
phosphoryl-beta-D-ribose oxidase from Mtb): −10.81.

Binding energy of known ligand (FAD) with the active site of
1H0R (decaprenyl phosphoryl-beta-D-ribose oxidase from Mtb):
−7.05.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.5. Swiss target prediction
Target
C
n

© 2024 The Author(s). P
ommon
ame T
ublished by
arget class
the Royal Society of
Probability
Acetylcholinesterase A
CHE H
ydrolase
 0.121906255

Thrombin F
2 P
rotease
 0.121906255

Urotensin II receptor U
TS2R F
amily A G protein-

coupled receptor

0.121906255
ADAMTS5 A
DAMTS5 P
rotease
 0.121906255

Phospholipase D1 P
LD1 H
ydrolase
 0.121906255

Dipeptidyl peptidase II D
PP7 P
rotease
 0.121906255

Dipeptidyl peptidase
VIII

D
PP8 P
rotease
 0.121906255
Dipeptidyl peptidase IX D
PP9 P
rotease
 0.121906255

Menin M
EN1 U
nclassied protein
 0.121906255

Gonadotropin-releasing
hormone receptor

G
NRHR F
amily A G protein-
coupled receptor
0.121906255
2.5.1 Boiled egg representation.
Chemistry
3. Conclusion

A series of structurally new class of spirooxindolopyrrolidine
tethered chromanones were synthesized in quantitative yields
using cycloaddition methodology. The spiro compounds were
evaluated for their antitubercular activity againstMycobacterium
tuberculosis H37Rv, isoniazid-resistant (katG and inhA promoter
mutation) clinical Mycobacterium tuberculosis isolates. The spi-
rooxindolopyrrolidine integrated chromanones that possessed
an electron withdrawing group substituted derivative displayed
signicant activity against tested Mycobacterium tuberculosis
H37Rv, as well as isoniazid-resistant Mycobacterium tuberculosis
strains. Among them, the compound bearing uorine derivative
displayed signicant activity against tested antimycobacterial
pathogens which were comparable to the activity of the refer-
ence standard drug isoniazid. Molecular docking simulation
was also performed with the most active compounds, and the
docking results in relation with ADME and receptor specicity
studies conrmed the possible role of the molecule as a poten-
tial drug for treating TB efficiently.
4. Experimental section
4.1. Preparation of spiropyrrolidines, 5a–j

The reaction consisted of a mixture of L-phenylalanine 2 (1.1
mmol), diketone 1 and dipolarophile 4a–j (1 mmol) was heated
to reux in MeOH at 75 °C for 2 h. TLC was used to verify the
completeness of the reaction, and ltration was used to obtain
the pure products.

Compound 5c: 1H NMR: dH 2.68–2.72 (1H, dd, J = 13.5, 5.0
Hz), 2.88–2.92 (1H,m), 3.28 (1H, d, J= 12.0 Hz), 4.34 (1H, J= 12.0
Hz), 4.64–4.68 (1H, m), 4.73 (1H, d, J = 9.5 Hz), 6.44 (1H, ArH, t, J
= 8.0 Hz), 6.49 (1H, ArH, d, J = 8.0 Hz), 6.54 (1H, ArH, d, J = 7.0
Hz), 6.71 (1H, ArH, d, J = 7.5 Hz), 6.80–6.84 (2H, ArH, m), 6.99
RSC Adv., 2024, 14, 11604–11613 | 11611

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra01501k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 4
:0

5:
17

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
(1H, ArH, t, J = 7.5 Hz), 7.07–7.16 (6H, ArH, m), 7.27 (2H, ArH, t, J
= 8.0 Hz), 7.71–7.73 (1H, ArH, dd, J = 8.0, 1.5 Hz), 7.88 (1H, ArH,
d, J= 8.0 Hz), 10.52 (1H, s, 1H); 13C NMR: dC 39.7, 50.5, 59.8, 63.9,
72.4, 72.7, 109.5, 117.1, 121.1, 121.3, 121.9, 126.2, 126.3, 127.0,
127.6, 127.9, 128.4, 129.1, 129.3, 129.7, 131.1, 135.3, 135.4, 135.9,
139.6, 142.5, 161.4, 178.7, 192.1; mass m/z: 521 (M+).

Compound 5d: 1H NMR: dH 2.75 (2H, d, J = 6.0 Hz), 3.29 (1H,
d, J = 12.0 Hz), 4.25 (1H, d, J = 11.0 Hz), 4.43–4.48 (1H, m), 4.73
(1H, d, J = 12.0 Hz), 6.40 (1H, ArH, d, J = 8.0 Hz), 6.51–6.57 (2H,
m, ArH), 6.68–6.73 (2H, m, ArH), 6.80 (1H, t, J = 8.0 Hz, ArH),
7.06–7.17 (7H, m, ArH), 7.31–7.35 (ArH, m, 3H), 7.41 (1H, ArH,
d, J = 8.0 Hz), 10.34 (1H, s, NH); 13C NMR: dC 39.8, 52.9, 61.1,
62.3, 70.6, 71.8, 109.2, 117.0, 120.9, 121.1, 121.4, 126.2, 127.6,
127.7, 128.1, 128.4, 129.1, 129.2, 129.5, 132.4, 135.8, 139.7,
142.5, 161.0, 179.5, 191.9; mass m/z: 521 (M+).

Compound: 5h: 1H NMR: dH 2.84–2.88 (2H, m), 3.27–3.40
(1H, m), 4.60–4.68 (3H, m), 6.51–6.57 (3H, m, ArH), 6.72–6.83
(3H, m, ArH), 7.03–7.34 (9H, m, ArH), 7.63–7.68 (2H, m, ArH),
10.48 (1H, s, NH); 13C NMR: dC 40.0, 59.9, 62.6, 67.9, 72.0, 72.3,
109.4, 117.1, 118.5, 121.1, 121.7, 121.9, 122.6, 124.9, 126.3,
127.4, 127.9, 128.5, 129.3, 129.4, 129.9, 135.9, 136.9, 139.7,
142.6, 160.5, 161.4, 162.5, 178.9, 191.9; mass m/z: 504 (M+).

Compound 5i: 1H NMR: dH 2.77–2.86 (2H, m), 3.18 (1H, d, J=
8.8 Hz), 4.29 (1H, d, J = 10.0 Hz), 4.40–4.51 (1H, m), 4.76 (1H, d,
J = 11.6 Hz), 6.43 (1H, d, J = 7.2 Hz, ArH), 6.57–6.62 (2H, m,
ArH), 6.74–6.77 (2H, m, ArH), 6.80–6.88 (1H, m, ArH), 7.11–7.21
(8H, m, ArH), 7.44 (3H, d, J= 8.0 Hz, ArH), 10.34 (1H, s, NH); 13C
NMR: dH 39.3, 52.4, 54.1, 60.6, 64.9, 70.1, 108.6, 115.6, 116.4,
120.5, 120.6, 125.9, 127.7, 127.8, 128.1, 128.6, 128.9, 129.1,
132.4, 135.2, 135.5, 139.3, 141.9, 160.1, 160.5, 162.5, 179.0,
191.6; mass m/z: 504 (M+).

4.2. Anti-tubercular screening

The strains H37Rv of Mycobacterium tuberculosis, clinical
isolates with inhA promoter mutation and katG mutation was
streaked onto 7H10+OADC agar plates and incubated at 37 °C.
Pure colonies grown on OADC-enriched liquid 7H9 medium
were grown to mid-log phase. A cultural growth was followed by
inoculation into 7H9 medium on 96-well plates at progressively
higher concentrations of the testing chemicals, using approxi-
mately 4 × 105 CFU mL−1 in 200 mL of culture per well. Plates
were incubated for one week at 37 °C before receiving 32.5 mL of
a Resazurin-tween mixture (8 : 5 ratio of 0.6 mM Resazurin in
PBS to 20% Tween 80). Resorun produced by uorescent
resorun is used for determining the minimum inhibitory
concentration (MIC) of compounds.31

4.3. Methodology

Molecular docking studies were performed using Autodock
(MGL-Tools) and Cygwin. Type II dehydroquinase (1H0R) and
decaprenyl phosphoryl-beta-D-ribose oxidase from Mtb (4FDN)
were used as target proteins. The methodology and the active
sites followed for docking studies were obtained from litera-
ture.32,33 Docking studies were also carried out with the natural
ligands and the binding efficiency of the ligands were assessed.
The ligand interaction plots were made using Discovery Studio
11612 | RSC Adv., 2024, 14, 11604–11613
and LigPlus sowares. Subsequently, ADME properties
(absorption, distribution, metabolism and excretion) and other
potential targets for the ligand was assessed using Swiss ADME
online portals (http://www.swissadme.ch/) and Swiss Target
Prediction (https://www.swisstargetprediction.ch/). The
interaction image was made using Liplot.34
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