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sive Y2Si2O7:Tb
3+ nanophosphor:

auto-combustion synthesis and structural and
photoluminescence characteristics with good
thermal stability for lighting applications†

Pawan Kumar,a Devender Singh, *a Sonika Kadyan,a Harish Kumarb

and Ramesh Kumarc

A cheap, versatile, sustainable and energy-efficient gel-combustionmethod was applied to develop a series

of green-emitting down-converted Y2Si2O7:Tb
3+ (YPS:Tb3+) nanophosphors. Employing XRD-based

Rietveld refinement approach, the phase purity and crystallographic evaluation of the produced

phosphor were conducted, revealing a triclinic crystal with P�1 space group. EDX and TEM analyses were

performed on the synthesized samples to determine their elemental composition and morphological

properties. Diffuse reflectance spectra yielded 5.61 eV and 5.79 eV optical energy band gaps for the host

and the optimized (0.04 mole of Tb3+) sample, respectively. UV light has the ability to excite the

nanocrystalline phosphor in an efficient manner, leading to significant luminosity qualities attributed to

the radiative relaxation of 5D4 / 7FJ (J = 6, 5, 4, 3). The bi-exponential decay function was derived by

the PL decay curves. With an activation energy of 0.2206 eV, the Y1.96Si2O7:0.04Tb
3+ phosphor exhibits

good thermal quenching capabilities. Improved photometric attributes including CIE coordinates, CCT

and color purity confirmed the green glow, indicating a strong competitor for cool-green emission in

lighting applications.
1 Introduction

Conserving energy is crucial and has great signicance for the
well-being of future generations as it actively contributes to
environmental preservation.1,2 In recent times, there has been
a growing focus on the study of solid-state lighting, predomi-
nantly pc-WLEDs. This attention is driven by the need to raise
awareness about energy consumption, conservation efforts, and
the associated environmental challenges.3,4 WLEDs exhibit
signicant advantages in this context owing to their impressive
features including high energy-efficacy, small power consump-
tion, absence of mercury, extended lifespan, compact design,
ecological friendliness, and superior illumination compared to
conventional uorescent lamps.5–8 In the present day, WLEDs
have found extensive applications across diverse elds
including optical waveguides, backlighting, sensors, automo-
bile headlights, ashlights, solid-state lasers, and common
and University, Rohtak-124001, Haryana,

emical Sciences, Central University of

iversity, Kurukshetra-136119, Haryana,

tion (ESI) available. See DOI:

6573
lighting.9–13 Generally, commercial wLEDs are typically
produced by coalescing blue-emanating InGaN-chips with
yellow-emitting Y3Al5O12:Ce

3+ nanophosphors.14,15 However,
these WLEDs oen lack a red module in the visible range,
resulting in a white emission with a subpar color-rendering-
index and high correlated-color-temperature.16 To address this
issue, an alternative approach involves coating primary red,
green, and blue nanophosphors onto a NUV-LED chip, aiming
to achieve WLEDs with high rendering-index, proper CCT and
adjustable color characteristics.17–19

Few studies have been conducted on yttrium orthosilicates
(YSO) and for a long time, the focus of research on the luminous
characteristics of RE-activated yttrium silicates was only on
yttrium pyrosilicates (YPS). The magnetic and electrical char-
acteristics of binary disilicates, particularly those of rare earth
disilicates, have been thoroughly studied.20 Specically, on
activation with RE elements, these materials show optimal
performance for luminous applications such as plasma
displays, laser materials, and high energy nanophosphors.21

These phosphors provide very efficient luminescence when
excited by UV and cathode rays. Because of their chemical
stability, yttrium disilicates, also known as yttrium pyrosilicates
(Y2Si2O7), are among the most suitable silicates.22 The photo-
luminescence of Ce3+ and Eu3+ was particularly explored with
respect to the luminescence characteristics of rare earth-doped
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Y2Si2O7. Nowadays, the green phosphor is quite popular in the
lighting industry. As a result, interest in an effective new green
phosphor has grown. The green color-emitter trivalent terbium
(Tb3+) is one of the rare earth ions that are most frequently
employed as an active center. Its many emission peaks
encompass a broad wavelength range from blue to orange light.
The ground state spectrum characteristics of the Tb3+ ion are 7Fj
(j = 0–6), while its outermost electron arrangement is 4f8. The
5D4 / 7Fj (j = 0–6) transitions are oen the source of the
distinctive green emission of Tb3+ ions, while the concurrently
existing 5D3 / 7Fj transitions that produce blue or ultraviolet
light are also conceivable.23,24 Moreover, the luminescence of 4f-
electrons is mainly a characteristic inherent to the RE ions and
remains unaffected by the crystal eld surrounding the lumi-
nescent center. This is because the 4f-electrons within the inner
layer of Tb3+ are protected by the outer electrons of 5s25p6.
Consequently, it is believed that Tb3+-activated phosphors
would show outstanding stability for the particular emission.
This work presents a thorough exploration of the structural and
optical features of Tb3+-doped Y2Si2O7 (YPS) phosphor that is
produced using the gel-combustion process. X-ray diffraction,
transmission electron microscopy, energy dispersive X-ray
spectroscopy, diffuse reectance spectroscopy and photo-
luminescence spectroscopy were employed to comprehensively
examine the structural, morphological, and spectroscopic
aspects of the prepared series of Y2−xSi2O7:xTb

3+ (x = 0.01–0.06
mole) samples to ascertain the suitability of the prepared
phosphors in pc-WLEDs.

2 Experimental
2.1 Synthesis and characterization

Employing ecologically-sound gel-combustion synthesis,
triclinic symmetry type Y2−xSi2O7:xTb

3+ phosphors with variable
dopant ion content as x = 0.01–0.06 mole were developed,
yielding a product that exhibits excellent crystallinity and
Fig. 1 Synthesis diagram of the gel-combustion process.

© 2024 The Author(s). Published by the Royal Society of Chemistry
homogeneity (Fig. 1). For the implementation of this procedure,
precise amounts of [Y(NO3)3$6H2O], [Tb(NO3)3$6H2O], silica
(SiO2), urea and nitric acid (HNO3) were employed. The goal is
to maintain a metal nitrate-to-fuel ratio of nearly one. Subse-
quently, the beaker containing the previously prepared mixture
was placed on a hot plate adjusted to 80 °C and warmed for 20
minutes. This step is crucial to ensure the effective inltration
of activator ions (Tb3+) into the Y2Si2O7 matrix. Following that,
the uniform mixture is initially warmed and subsequently
transferred to a muffle furnace preheated to 600 °C for a dura-
tion of 15 minutes. During this process, a self-restricted
exothermic reaction occurs, resulting in the release of
combustible gases (CO2 and N2).25,26 This reaction contributes to
the formation of a uffy powder. Subsequently, the obtained
powders were nely grounded, aer which they were transferred
to an alumina crucible for sintering at 1100 °C for 3 hours. To
evaluate the phase purity of the produced phosphors, X-ray
diffraction examination was performed using a Rigaku Ultima
X-ray diffractometer running at 40 kV and 40 mA with Cu-Ka
radiation. Using BaSO4 as the reference standard, an integrated
sphere-mounted UV-Vis-NIR spectrophotometer (UV-3600,
SHIMADZU) was used to produce the diffuse reection
spectra. Using a transmission electron microscope (JEOL JEM-
1400 Plus) running at 120 kV, the morphology of the doped
nanopowders was examined. A Hitachi SU-8010 SERIES device
was used to carry out the energy dispersive X-ray analysis.
Additionally, using a Fluorolog-3-Horiba spectrophotometer
tted with a 150 W xenon lamp, the material's emission and
excitation spectra were obtained.

3 Results and discussion
3.1 XRD evaluation

XRD is an approach employed for the structural assessment of
the produced phosphors. The resulting XRD patterns for the
undoped and Y2−xSi2O7:xTb

3+ (x = 0.01–0.06 mole) phosphors
RSC Adv., 2024, 14, 16560–16573 | 16561
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Table 1 Interplanar d-spacing values of the host and all Tb3+-doped
phosphorsa

Sample 2q-Angle d-Spacing (Å)

Y2Si2O7 (YPS) 29.32 3.0437 (�0.0094)
YPS:0.01Tb3+ 29.31 3.0447 (�0.0068)
YPS:0.02Tb3+ 29.30 3.0458 (�0.0072)
YPS:0.03Tb3+ 29.28 3.0477 (�0.0066)
YPS:0.04Tb3+ 29.25 3.0508 (�0.0069)
YPS:0.05Tb3+ 29.23 3.0528 (�0.0085)
YPS:0.06Tb3+ 29.20 3.0559 (�0.0081)

a Data in () shows the estimated uncertainties.
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are depicted in Fig. 2(a). It was found that the comparable
intensity of Tb3+-triggered phosphors and undoped phosphors
is essentially indistinguishable. The XRD lines of the Y2Si2O7

and Y2−xSi2O7:xTb
3+ (x = 0.01–0.06 mole) phosphors were

veried via the standard JCPDS card [38-0223], which followed
the standard pattern of the Y2Si2O7 (YPS) material with triclinic
phase and P�1 space group.27,28 It is conceivable to conclude the
emergence of single-phase crystal structure since there are no
diffraction peaks from the dopant or other phases. XRD
patterns remain essentially the same, but a little shi in the
diffractions lines toward lower angles, as seen in Fig. 2(b),
suggests a propensity for the lattice to expand as the dopant
ion's concentration increases. The interplanar distance (d)
increases on doping, as listed in Table 1. In order to keep nl
constant in Bragg hypothesis (2d sin q = nl), the angle (q)
determining their le shi in this case would have to be
smaller.29 The reliable doping of dopant ions in the phosphors
may oen be assessed by the ion radius resemblance method
and the valence state. Another useful technique is to calculate
the percentage of variance in the ionic radius of the dopant and
the substituted ions. Less than 30% of a percentage difference
generally implies the efficient doping of dopant ions.30 The
following eqn (1) may be used to get the percentage difference.31

Dr ¼ RhðCNÞ � RdðCNÞ
RhðCNÞ � 100% (1)

In the above relation, Rh(CN) & Rd(CN) stand for the host and
entering cation's respective ionic radii as well as coordination
number. The results show that the Dr-value is less than 30%,
which suggests that the Tb3+ ion has successfully replaced the
Y3+ ion in the Y2Si2O7 host. Scherrer is acknowledged for
formulating Scherrer's equation, a foundational method in X-
ray crystallography used to calculate the average size of crys-
talline solid materials. It correlates the size of the crystalline
Fig. 2 (a) Diffraction patterns of Y2Si2O7 and Y2−xSi2O7:xTb
3+ (x = 0.01–

samples.

16562 | RSC Adv., 2024, 14, 16560–16573
domains to the widening of diffraction peaks noted in the X-ray
diffraction patterns. The Scherrer's formula is represented by
eqn (2).32

Dhkl ¼ kl

bð2qÞcos q (2)

In the above formula, l, b and k represent the wavelength of
X-rays (0.154 nm), full width at half-maxima and Scherrer
constant (0.89), respectively. The computed crystallite size for
all the prepared samples is summarized in Table 2. The
following eqn (3), particularly based on the Williamson–Hall
formulation, was implemented to corroborate the crystallite
size ndings described above.33

bhkl cos qhkl ¼
Kl

D
þ 43 sin qhkl (3)

This method considers the intricate effects of crystallite size
and strain on the XRD peaks. It allows for a clear separation of
the effects of strain-induced deformation from those caused by
the crystallite size, which facilitates more accurate evaluations
0.06 mole) phosphors. (b) Enlarged pattern view of all the considered

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02571g


Table 2 Diffraction results of the Y2Si2O7 and Y2−xSi2O7:xTb
3+ (x = 0.01–0.06 mole) phosphorsa

Sample (YPS)
2 theta
(2q) FWHM

Crystallite size (nm)

Microstrain (3 × 10−4)Scherrer's W–H

Y2Si2O7 (YPS) 29.32 0.2997 (�0.00451) 27.40 (�0.0431) 35.58 (�0.0746) 5.1421
YPS:0.01Tb3+ 29.31 0.3012 (�0.00341) 27.26 (�0.0254) 34.42 (�0.0879) 5.4532
YPS:0.02Tb3+ 29.30 0.3032 (�0.00375) 27.09 (�0.0233) 33.97 (�0.0748) 5.8315
YPS:0.03Tb3+ 29.28 0.3071 (�0.00377) 26.74 (�0.0371) 33.12 (�0.0852) 6.0345
YPS:0.04Tb3+ 29.25 0.3142 (�0.00314) 26.15 (�0.0322) 32.54 (�0.0901) 6.2931
YPS:0.05Tb3+ 29.23 0.3188 (�0.00401) 25.76 (�0.0298) 31.77 (�0.0876) 6.6214
YPS:0.06Tb3+ 29.20 0.3219 (�0.00372) 25.52 (�0.0286) 31.04 (�0.0699) 6.8891

a Data in () shows the estimated uncertainties.
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and interpretations of the material properties. Employing linear
tting on the curve plotted between 4 sin q and b cos q, as
illustrated in Fig. 3, the crystallite size and strain induced in the
phosphor can be determined. The intercept of the linear curve
provides an insight into the crystallite size, while the slope
offers information about the strain present in the material. This
analytical method facilitates a straightforward extraction of
both the crystallite size and strain parameters from the X-ray
diffraction data. The crystal lattice experienced strain as
a result of the replacement of Y3+ ions with the larger Tb3+ ions.
This strain may have limited the size of the particles by lowering
their total free energy. The obtained results are listed in Table 2.

A strong method for determining a material's crystal struc-
ture from powder X-ray diffraction data is referred to as Rietveld
renement. Through the process of Rietveld renement, atomic
locations, lattice parameters and other structural features of
crystalline materials may be precisely determined by comparing
Fig. 3 W–H plot of the Y2Si2O7 and various doped Y2−xSi2O7:xTb
3+ (x =

© 2024 The Author(s). Published by the Royal Society of Chemistry
the computed patterns based on a suggested crystal structure
with the experimental XRD data. The Rietveld renement
patterns for the host and optimized doped phosphors are dis-
played in Fig. 4(a) and (b). The chi-squared values and reliability
factors being within the acceptable range show that the modi-
ed proles show signicant agreement with the original
structural model. During the renement process, it becomes
evident that the resulting nanophosphor possesses a triclinic
phase with the point group symmetry identied as P�1. The
outcomes indicate a favorable alignment between the observed
and calculated XRD patterns, as evidenced by parameters such
as Rwp, Rp and c2, which fall within acceptable ranges. The
rened results, including the lattice parameters, are compiled
in Table 3. The convergence of reliability factors yielded Rwp

values of 7.59% for YPS and 8.42% for YPS:0.04Tb3+, as well as
Rp values of 5.77% for YPS and 6.21% for YPS:0.04Tb3+. These
values affirm the rationality and reliability of the obtained
0.01–0.06 mole) phosphors.

RSC Adv., 2024, 14, 16560–16573 | 16563
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Fig. 4 Rietveld profiles of the (a) Y2Si2O7 and (b) Y1.96Si2O7:0.04Tb
3+

phosphors.

Table 3 Refinement outcomes of the Y2Si2O7 (YPS) and YPS:0.04Tb3+

phosphors

Sample Y2Si2O7 (YPS) YPS:0.04Tb3+

2q range; step (deg.) 10–80; 0.02 10–80; 0.02
System Triclinic Triclinic
Lattice-type P P
Wavelength (Å) 1.541 1.541
Space group P�1 P�1
Space group number 2 2
Formula unit (Z) 4 4
a 97.23 97.41
b 89.80 89.83
g 87.50 87.92
a (Å) 6.556 6.591
b (Å) 6.759 6.781
c (Å) 12.274 12.619
Volume (Å3) 539.03 558.89
c2 3.14 3.97
Rp (%) 5.77 6.21
Rwp (%) 7.59 8.42
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results. The cell parameters for YPS are indeed smaller than
those for the YPS:0.04Tb3+ phosphor, as indicated in Table 3.
This discrepancy provides additional evidence supporting the
successful substitution of Tb3+ ions into the Y3+ position within
the lattice, leading to an expansion of the lattice constants.
Fig. 5 TEM micrograph of the YPS:0.04Tb3+ nanophosphor.
3.2 Morphological analysis

The TEM prole presented in Fig. 5 offers valuable insights into
the structure of the prepared Y1.96Si2O7:0.04Tb

3+ sample. The
image vividly illustrates the existence of an aggregated nano-
crystalline material characterized by diverse shapes and sizes.
The observed aggregation of crystallites is likely attributed to
temperature variations experienced during the fabrication
process, as suggested by previous studies. Additionally, the
porosity evident in the material is linked to the release of gassy
by-products through the combustion process.34,35 This
phenomenon contributes to the formation of a porous structure
within the material. Notably, the size information obtained
from diffraction studies aligns closely with the evaluated size
derived from the TEM micrograph. Both analyses indicate
16564 | RSC Adv., 2024, 14, 16560–16573
a nanocrystalline range, specically within the dimensions of
20–40 nm. This congruence between the XRD and TEM results
reinforces the reliability of the characterization, affirming the
nanocrystalline nature of the Y2Si2O7:Tb

3+ sample.
3.3 EDX investigation

When a high energy electron beam strikes a sample, it induces
the emission of characteristic X-rays from the elements present
in the sample. The energy of these X-rays is characteristic of the
elements, allowing for the identication and quantication of
the elemental composition. The EDX plots of the host Y2Si2O7

(YPS) and 0.04 mole-doped YPS nanophosphor are shown in
Fig. 6(a) and (b). Numerous peaks that are associated with
different elements (Y, Si and O) integrated with the host YPS
framework can be seen in the spectrum in Fig. 6(a). The peaks in
Fig. 6(b) correspond to Y, Si, O and Tb, further validating the
produced phosphor's chemical compositions. The Tb charac-
teristic peaks demonstrate the homogeneous doping of ions in
the host matrix. The elemental compositions of the doped
sample and the host are shown in the table present in the inset
of Fig. 6(a) and (b). The formation of pure Y2Si2O7 and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 EDX profiles of the (a) Y2Si2O7 and (b) Y1.96Si2O7:0.04Tb
3+

phosphors, and the inset represents the chemical composition of the
respective samples.

Fig. 7 Excitation spectrum of the Y1.96Si2O7:0.04Tb
3+ nanophosphor.
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Y2Si2O7:Tb
3+ phosphor is validated by the elements individu-

ally, which reects the ndings of XRD.
Fig. 8 Emission spectrum of the Y2−xSi2O7:xTb
3+ (x = 0.01–0.06

mole) phosphors.
3.4 Photoluminescence study

3.4.1 Excitation and emission spectra. Fig. 7 illustrates the
photoluminescence excitation (PLE) spectrum for
Y1.96Si2O7:0.04Tb

3+ in the wavelength region of 200–500 nm by
xing the emission at 545 nm. The 4f8 / 4f75d1 transition of
Tb3+ ions is responsible for the peak that is centered at 258 nm.
Additionally, the spectrum disclosed numerous peaks at
301 nm, 325 nm, 347 nm, 367 nm, 386 nm and 489 nm, which
originated from the ground state 7F6 and moved to the higher
states 5H6,

5H7,
5L6,

5L9,
5G6 and 5D4, respectively.36,37 To

investigate the PL characteristics of Y2Si2O7:Tb
3+ nano-

phosphors in more detail, the PL emission spectra of powdered
YPS:xTb3+ (x = 0.01–0.06 mole) nanocrystalline samples were
captured at an excitation wavelength of 258 nm, as clearly
illustrated in Fig. 8. Numerous emission peaks that correlate to
the distinctive Tb3+ ion emission in the YPS host matrix can be
seen in the spectra. In essence, emission transitions to distinct
7FJ (J = 2 to 6) energy levels occur from two emission states, 5D3

and 5D4. The
5D3 to

7F5,
7F4 and

7F3 transitions deliver emission
peaks at 414 nm, 438 nm and 460 nm, correspondingly.
However, four distinct luminous bands of Tb3+ ion are charac-
terized and located at about 491 nm (5D4 /

7F6), 544 nm (5D4

/ 7F5), 589 nm (5D4 /
7F4) and 624 nm (5D4 /

7F3).38,39 The
© 2024 The Author(s). Published by the Royal Society of Chemistry
emission peak at 491 nm is the only one that is allowed to be
electric-dipole (ED); however, the transitions associated with
the other three emission peaks are permitted to be both electric
and magnetic-dipole (ED + MD).40 According to research, the
green emission of the YPS:xTb3+ (x = 0.01–0.06 mole) nano-
phosphor is caused by the strongest emission peak that coin-
cides with the 5D4 /

7F5 (544 nm) transition. The energy states
corresponding to the Tb3+ ions in the Y2Si2O7 host materials are
displayed in Fig. 9.

3.4.2 Concentration quenching (CQ). To determine the
most effective doping concentration for Tb3+ ions in YPS:xTb3+

(0.01–0.06 mole) phosphors, we analyze the variation in the
integrated emission intensity with respect to the Tb3+ concen-
tration (Fig. 10). The ndings indicate that as the doping
content increases from 0.01 mole to 0.04 mole, the emission
intensity initially increases, reaching its maximum at x = 0.04
mole, and subsequently diminishes. This implies that the
optimum amount of Tb3+ ions within the YPS host is 0.04 mole,
RSC Adv., 2024, 14, 16560–16573 | 16565
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Fig. 9 Energy level diagram for Tb3+ ions in the Y2Si2O7 nanophosphor.
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aer which the luminous intensity declines due to concentra-
tion quenching. This phenomenon, commonly observed in Tb3+

ions-doped inorganic phosphors, is characterized by increased
cross-relaxation and energy relocation amid nearby Tb3+ ions at
higher doping concentrations. Eventually, a portion of the
excited energy of Tb3+ ions is absorbed by nearby quenching
centers, resulting in a decline in the emission intensity. The
concentration quenching effect primarily arises from non-
radiative energy transfer among Tb3+ activators, assisted via
three pathways: radiation reabsorption, exchange interaction
and electric multipolar interaction. Our focus will be on eluci-
dating the mechanism behind CQ in the YPS:Tb3+ phosphors.
As both exchange interaction and multipolar interaction are
inuenced by the critical distance (Rc) between Tb3+ ions, we
analyzed Rc for YPS:Tb

3+ nanophosphors via eqn (4) suggested
by Blasse.41
Fig. 10 Concentration quenching profile of the considered
nanophosphors.

16566 | RSC Adv., 2024, 14, 16560–16573
Rc ¼ 2

�
3V

4pxcZ

�1 =

3

(4)

In this context, Rc represents the separation among adjacent
Tb3+ ions at optimal content, V denotes volume, xc denotes the
optimal amount of dopants and Z signies cations per unit cell.
Given the values V = 558.89 Å3, xc = 0.04 and Z = 4, the
calculated Rc is approximately 18.828 Å, exceeding the 5 Å
threshold. If the critical distance is greater than 5 Å, then
multipolar interaction us dominant over exchange interaction.
In this scenario, the energy transfer is solely driven by electric
multipolar interaction. As the doping amount of terbium ions
rises, the distance between Tb3+ ions shrinks, thus enhancing
the probability of energy transfer between them. The relation-
ship between log(I/x) and log(x) for YPS:Tb3+ nanophosphors
was evaluated using eqn (5) below.42

Log

�
I

x

�
¼ k � M

3
logðxÞ (5)

In above equation, x represents the doping concentration of
Tb3+ ions, I signies the PL intensity of samples, andM denotes
the electric multipole index. The values of M such as M = 6, 8
and 10 correspond to dipole–dipole, dipole–quadrupole and
quadrupole–quadrupole interactions, respectively.43,44 In
Fig. 11, the graph between log(I/x) and log(x) is depicted, and
the slope of the tted line is determined to be −2.28. Conse-
quently, the calculated value of M is 6.48, agreeing closely with
the value of 6. Hence, the dipole–dipole interaction is identied
as the primary reason responsible for the CQ effect in the
Y2Si2O7:Tb

3+ phosphors.
3.5 Luminescence lifetime

The decay curves for the 5D4 level were recorded at room
temperature, employing 258 nm excitation for the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Straight line fitted graph between log(x) and log(I/x).
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Y1.96Si2O7:0.04Tb
3+ phosphor, as illustrated in Fig. 12. Also, the

inset of Fig. 12 contains the log-based lifetime graph for the
considered sample. The experimental decay curve data were
tted using various exponential equations, and the most
optimal t was achieved with the bi-exponential eqn (6).45

It = I0 + A1 exp (−t/s1) + A2 exp(−t/s2) (6)

here, It and I0 denote luminescence intensities at time t and 0,
respectively. s1 and s2 correspond to the values of the lifetime
for the fast and slow exponential components, respectively.
Additionally, A1 and A2 are constants associated with the
parameters for curve tting. Formula (7) was used to determine
the average lifetime for the fabricated phosphors.46

savg = (A1t1
2 + A2t2

2)/(A1t1 + A2t2) (7)

Table 4 displays the average decay lifetimes (savg) for all the
synthesized doped samples. Notably, it is evident that the decay
Fig. 12 Lifetime curve of the Y1.96Si2O7:0.04Tb
3+ nanophosphor.

© 2024 The Author(s). Published by the Royal Society of Chemistry
times exhibit a decrease with an increase in the doping amount
of the trivalent terbium ion. This phenomenon can be attrib-
uted to the increasing concentration of dopant ions, causing
them to be in closer proximity. Consequently, there is a swi
transfer of energy between ions, leading to different decay paths
and ultimately resulting in a reduced decay lifetime. Fig. 13
further illustrates that the so value was found to be 4.339 ms, as
determined through Auzel's tting using eqn (8).47

1sC ¼ s0

��
1þ C

C0

eð�N=3Þ
�

(8)

The quantum efficacy (h) of the produced materials was
assessed by the ratio of experimental lifetime (savg) to radiative
lifetime value (so), as given by eqn (9) below.48

h = savg/s0 (9)

The following formula (10) was employed to calculate the
non-radiative transition rate (AnR) with the help of the experi-
mental and radiative lifetime values.

1

savg
¼ 1

s0
þ AnR (10)

Table 4 contains the calculated values of lifetime, quantum
efficiency and non-radiative transitions for all the synthesized
YPS:xTb3+ (x = 0.01–0.06 mole) nanophosphors.

3.6 Optical band gap analysis

Fig. 14 illustrates the characteristic diffuse reectance spectra
(DRS) of both the host and the YPS:0.04Tb3+ nanophosphor in
the 200–600 nm range. The doped sample exhibits an absorp-
tion band at 258 nm, corresponding to the f–d transition of Tb3+

ions. Additionally, the absorption peaks attributed to the f–f
transitions of Tb3+ are observed in the longer wavelength
spectral region, specically at 325 nm (7F6 /

5H7), 367 nm (7F6
/ 5L9) and 487 nm (7F6 /

5D4). To explore the impact of Tb3+

doping on the band gap (Eg) of the YPS host, the sample's
acquired DRS data were transformed into optical absorption
data employing the Kubelka–Munk formula illustrated in eqn
(11).49

FðRÞ ¼ K

S
¼ ð1� RÞ2

2R
(11)
Table 4 Decay time and quantum efficiency of the Y2−xSi2O7:xTb
3+ (x

= 0.01–0.06 mole) phosphorsa

Sample savg (ms) AnR (S−1) (h%)

YPS:0.01Tb3+ 3.73 (�0.014) 37.69 85.96
YPS:0.02Tb3+ 3.49 (�0.015) 56.13 80.43
YPS:0.03Tb3+ 3.17 (�0.012) 85.05 73.06
YPS:0.04Tb3+ 2.87 (�0.017) 118.03 66.14
YPS:0.05Tb3+ 2.52 (�0.013) 166.42 58.07
YPS:0.06Tb3+ 2.29 (�0.015) 206.28 52.77

a Data in () shows the estimated uncertainties.

RSC Adv., 2024, 14, 16560–16573 | 16567
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Fig. 13 Auzel's fitting curve of the Y2−xSi2O7:xTb
3+ (x = 0.01–0.06

mole) phosphors.

Fig. 14 Diffusion reflectance spectra of the host and
Y1.96Si2O7:0.04Tb

3+ nanophosphor.

Fig. 15 Tauc’s plot for the Y2Si2O7 and Y1.96Si2O7:0.04Tb
3+ phosphor.
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The symbols for the reection coefficient, scattering coeffi-
cient, and molar absorption coefficient are K, S, and R, respec-
tively. Eqn (12) explains the relationship between Eg and the
absorption coefficient (a) using Tauc's formula.

a ¼ C1

�
hn� Eg

�1 =

2

hn
(12)

Band gap energy will be conceivable from eqn (11) and (12),
which utilised formula (13).50

[F(R)hv] = C2(hn − Eg)
1/2 (13)

The band gap (Eg) of the sample is indicated by extrapolating
the resulting curve to the hn axis (x-axis), where [F(R)hn]2 = 0.
This is achieved through a plot of [F(R)hn]2 versus hn, as
16568 | RSC Adv., 2024, 14, 16560–16573
illustrated in Fig. 15. The band gaps for the host YPS and
YPS:0.04Tb3+ phosphor are 5.61 eV and 5.79 eV, respectively.
Burstein–Moss (B–M) theory results in a continual rise of the
optical energy gap from the host to the doped sample.
3.7 Temperature-dependent luminescence

The thermal stability of a phosphor at elevated temperatures is
a crucial factor in applications involving solid-state lighting.
The temperature-dependent photoluminescence spectra of the
YPS:0.04Tb3+ phosphor were examined across a range of
temperatures from 298 to 498 K, as illustrated in Fig. 16. The
peak's shapes and locations in the spectra remained consistent
as the temperature rose. A gradual reduction in intensity has
been attributed to an increased occurrence of non-radiative
transitions. To evaluate the impact of thermal quenching, the
activation energy may be determined by Arrhenius eqn (14).51,52

IT ¼ I0

1þ A exp

�
�Ea

kT

� (14)

Eqn (14) is further modied as

Ln

�
I0

IT
� 1

�
¼ ln A� Ea

kT
(15)

here, Ea, k, IT and I0 stand for activation energy, Boltzmann
constant, intensity at temperature T and original intensity,
respectively. As depicted in Fig. 17, a linear relationship is
observed between ln[(I0/IT) − 1] and 1/kT for the YPS:0.04Tb3+

phosphor. In accordance with eqn (15), the experimental data
ts well with a linear trend, allowing the calculation of the
activation energy (Ea) for thermal quenching from the slope.
The determined Ea value for thermal quenching is 0.2206 eV,
which is further supported by recent literature, i.e., Ca2LuHf2-
Al3O12:Ce

3+, Tb3+,53 Ca2YHf2Al3O12:Ce
3+,Tb3+,54 Ca14Al10Zn6-

O35:Tb
3+,55 Ba3YB3O9:Tb

3+,56 RbBaBP2O8:Tb
3+,57

Ca2Ga2SiO7:Tb
3+,58 La4GeO8:Tb

3+, Eu3+,59 Ba3(ZnB5O10)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Temperature-dependent photoluminescence of the
Y1.96Si2O7:0.04Tb

3+ phosphor.
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PO4:Tb
3+,60 Bi3TeBO9:Tb

3+61 and Na5Lu9F32:Tb
3+.62 In the

present study, multiphonon-assisted nonradiative transition
did not occur. The multiphonon-assisted nonradiative transi-
tion process is a mechanism that can contribute to quenching
luminescence in rare-earth-doped materials. The multiphonon-
assisted nonradiative transition typically occurs when there is
a small energy gap between the excited state and lower-lying
states. This energy gap might be relatively larger in Y2Si2O7

doped with Tb3+ ions, reducing the likelihood of multiphonon-
assisted nonradiative transitions. There may be other non-
radiative processes or quenching mechanisms more dominant
in this system, such as cross-relaxation or energy transfer to
defects. This outcome further suggests that the YPS:0.04Tb3+

phosphor exhibits admirable thermal stability for white light-
emitting diodes.

3.8 Photometric investigation

The substance that emits light is called a phosphor and the kind
of activator regulates the color that the phosphor emits.
Fig. 17 Linear fitted graph for the calculation of the activation energy.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Assessing the material's photometric behavior is imperative.
�x(l), �y(l) and �z(l) are the color matching variables that are
employed for assessing the color of the illumination. The values
(X, Y and Z), representing the necessary stimulation levels to
replicate a color from the spectral intensity, are provided by the
eqn (16)–(18) below, where P(l) represents the spectral power
distribution of light.63

X =
Ð
�x(l)P(l)dl (16)

Y =
Ð
�y(l)P(l)dl (17)

Z =
Ð
�z(l)P(l)dl (18)

The relative fraction of tristimulus values, or chromaticity
coordinates, can be obtained via the resulting formula (19).

x ¼ X

X þ Y þ Z
and y ¼ Y

X þ Y þ Z
(19)

The CIE coordinates of the YPS:xTb3+ (x = 0.01–0.06 mole)
phosphors are located in the green area of the color gamut, as
revealed in Fig. S1–S6.† The color purity (CP) in context of the
nanophosphors typically refers to the ability of the nano-
phosphors to emit light of a specic color without any unde-
sired spectral impurities or broadening. The color purity of the
achieved phosphors was evaluated using the given formula
(20).64,65

CP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2
ðxd � xiÞ2 þ ðyd � yiÞ2

s
� 100 (20)

The CCTs in Kelvin (K) indicate the color advent of light
output through an illumination source. Whether a light source
appears warm or cool may be determined by examining its CCT.
Cool white light is indicated by a CCT above 4000 K, whereas
warm light is signied by a CCT below 3000 K. To calculate the
CCT values, CIE points representing the light source were
renewed to (u0, v0) by eqn (21) below. The subsequent step
involved dening the temperature associated with the Planck-
ian locus closest to the light source on the (u0, v0) uniform
chromaticity chart portrayed in Fig. S7–S12.† This process
allows for the identication of the temperature on the Planck-
ian locus that is in proximity to the given light source's coor-
dinates on the chromaticity diagram.66

u
0 ¼ 4x

�2xþ 12yþ 3
; v

0 ¼ 9y

�2xþ 12yþ 3
(21)

Additionally, McCamy's third-order polynomial was utilized
for computing the CCT values based on the Kelvin (K) scale to
assess the quality of light, given by eqn (22).67

CCT = −437n3 + 3601n2 − 6861n + 5514.31 (22)

here, (x, y) are CIE coordinates, n= (x− xe)/(y− ye) is the inverse
slope line, and xe and ye = 0.332 and 0.186 are the values of
chromaticity epicenters. The values of photometric variables
RSC Adv., 2024, 14, 16560–16573 | 16569
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Table 5 Chromaticity parameters of the Y2−xSi2O7:xTb
3+ (x = 0.01–0.06 mole) phosphorsa

Sample (x, y) CP (%) (u0, v0) CCT (K)

YPS:0.01Tb3+ 0.3401, 0.5125 (�0.00011, 0.00012) 56.4 (�0.26) 0.1606, 0.5446 (�0.00013, 0.00014) 5346.37 (�6.14)
YPS:0.02Tb3+ 0.3422, 0.5069 (�0.00013, 0.00011) 55.3 (�0.21) 0.1630, 0.5432 (�0.00012, 0.00011) 5299.89 (�9.14)
YPS:0.03Tb3+ 0.3418, 0.5057 (�0.00013, 0.00010) 54.8 (�0.25) 0.1630, 0.5428 (�0.00014, 0.00016) 5307.39 (�7.34)
YPS:0.04Tb3+ 0.3389, 0.5175 (�0.00012, 0.00011) 57.5 (�0.27) 0.1589, 0.5459 (�0.00012, 0.00014) 5373.09 (�4.18)
YPS:0.05Tb3+ 0.3412, 0.5181 (�0.00014, 0.00014) 58.4 (�0.24) 0.1599, 0.5463 (�0.00012, 0.00014) 5327.01 (�6.16)
YPS:0.06Tb3+ 0.3424, 0.5097 (�0.00015, 0.00012) 56.2 (�0.32) 0.1625, 0.5441 (�0.00014, 0.00013) 5297.57 (�6.18)

a Data in () shows the estimated uncertainties.
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such as CIE, CP and CCT of all the synthesized Y2−xSi2O7:xTb
3+

(x = 0.01–0.06 mole) phosphors are summarized in Table 5.

4 Conclusions

Nanophosphors composed of yttrium disilicates (Y2Si2O7)
doped with terbium (Tb3+) were produced through a gel-
combustion technique. The diffraction patterns of the phos-
phors indicated a triclinic single-phase structure. Using Scher-
rer's equation andW–H plot, the crystallite size was determined
to be 24–36 nm, and TEM exploration validated this value. The
excitation of the phosphors at 258 nm resulted in a vivid green
luminescence. The blue region exhibited distinctive lumines-
cence and luminous bands at 417 nm, 436 nm and 458 nm,
which are attributed to the 5D3 /

7FJ (J = 5, 4, 3) transitions of
terbium ions. The peaks in the green region correspond to the
5D4 / 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, which are
caused by the f–f transitions of Tb3+ cations in the given lattice
and are attributed to dipole–dipole interactions. Based on the
emission spectra, the CIE chromaticity coordinates were
computed and were found to fall inside the green region. As
a result, the current phosphor is very benecial for lighting
applications.
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