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sed waterworks sludge modified
by chitosan and FeS for aqueous Cr(VI) adsorption
and reduction†

Jingxi Tie,‡a Weipeng Li,‡a Xiaohan Duan, ‡b Huawen Wang,‡a Shuli Liu‡a

and Weigao Zhao ‡*c

Heavy metals have been considered an evolving environmental concern due to their harmful and long-

lasting impacts. We synthesized a composite of FeS/CS@MIBWS for aqueous Cr(VI) adsorption and

reduction utilizing the iron-based waterworks sludge modified by chitosan and FeS. After determining

the optimal conditions for the FeS/CS@MIBWS preparation, its Cr(VI) removal capability was evaluated

using material characterisation and static Cr(VI) adsorption assays. Cr(VI) elimination by the composite was

a pH-dependent process, with pH 2 being the optimum in the range of 2–10. The adsorption process

was befitted a pseudo-second-order model, and the equilibrium results agreed well with the Langmuir

model. The thermodynamics investigation showed that Cr(VI) removal by the composite has both

spontaneous and endothermic nature. Considering the ionic effects, Cl−, SO4
2− and PO4

3− decreased

Cr(VI) elimination in the sequence of Cl− < SO4
2− < PO4

3−. The key mechanisms for Cr(VI) elimination

were physical and chemical adsorption, chelation, and Cr(VI) reduction into Cr(III). Furthermore, FeS/

CS@MIBWS demonstrated steady reusability (removal effectiveness of 70% after 5 cycles). FeS/

CS@MIBWS's rapid, high-performance, reusable, and easily separable adsorption properties make it

a promising choice for heavy metal environmental cleaning.
1 Introduction

The heavy metal pollution in wastewater has attracted wide-
spread attention.1 Chromium appearing in surface water,
ground water and soil primarily originates from wide range of
modern industries with the dominant forms of Cr(VI) and Cr(III)
compounds,2,3 and Cr(VI) has been reported to be carcinogenic,
teratogenic, mutagenic and non-biodegradable.4,5 Compared to
Cr(III), Cr(VI) has a higher solubility and exists in the forms
Cr2O7

2−, HCrO4
−, and CrO4

2−.6,7 Chronic exposure to Cr(VI) can
induce major human disorders and pose a considerable hazard
to aquatic creatures even at a very low concentration.8,9 As
a result, considering the mutagenic, poisonous, and long-
lasting impacts of aqueous Cr(VI), xing the problem is critical.

Electrochemical approaches, photocatalytic treatment,
membrane ltration, ion exchange, adsorption, and other
ineering, North China University of Water

50046, PR China

servancy and Environment, Zhengzhou

ering, Tianjin University, Tianjin 300350,

tion (ESI) available. See DOI:

the Royal Society of Chemistry
techniques have been developed to control the harm caused by
Cr(VI).10–13 In a variety of technologies, adsorption has attracted
the most attention due to its benets such as ease of use, low
cost, excellent performance, wide pH range, and so on.14

Iron-based waterworks sludge (IBWS) is a byproduct gener-
ated from drinking water treatment plants using iron-based
coagulants for water processing. Fe in IBWS mainly exists in
amorphous phases, endowing it with porosity and high
adsorption capability for a variety of contaminants such as
phosphorus and heavy metals, etc..15–18 Additionally, IBWS can
be magnetized by calcination or hydrothermal treatment,19,20

resulting in a rapid separation from solution upon adsorption.
However, due to the low affinity between Fe and Cr(VI), the
adsorption capacity of the IBWS for Cr(VI) removal is poor and
may be improved by modication.

Chitosan (CS), a natural polysaccharide, has the world's
second biggest yearly production,21 and has been proved to be
an effective adsorbent for numerous pollutants22–24 due to its
merits including degradability, high reactivity and charge
density, biocompatibility, renewability, and harmless.25–27 Given
that the form of Cr(VI) in water was oxyanions, existing hydroxyl
and amine groups in CS can easily react with Cr(VI) and achieve
better adsorption ability.28

Furthermore, because Cr(III) is substantially less toxic than
Cr(VI), lowering is a viable and safe technique of eliminating
Cr(VI). FeS may be a suitable material for immobilizing Cr(VI), as
RSC Adv., 2024, 14, 28915–28926 | 28915
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both Fe2+ and S2− can act as reducing agents. Yang et al., for
example, developed nano-FeS and CMC-FeS for Cr(VI) removal,
and the two materials efficiently converted Cr2O7

2− into
Cr0.75(OH)3.29 As a result, injecting FeS is thought to achieve
simultaneous magnetic and efficient purication of the
composite in this investigation.

In this work, we synthesized a novel composite with the aim
of immobilizing aqueous Cr(VI). We investigated the physico-
chemical parameters by characterisation, assessed the
composite's reduction ability towards Cr(VI), and proved the
process of adsorption. The ndings give detailed insight into
the manufacture of adsorption materials as well as a reference
for lowering Cr(VI) in water.
2 Materials and methods
2.1 Adsorbent preparation

MIBWS utilized in this research was prepared according to the
procedures disclosed in our earlier study.3 The adsorbents used
in this study were prepared via a modication of the way
described in the literature.30 Briey, 1 g CS and various amounts
of MIBWS (0.5, 0.75, 1 and 1.25 g) were added into 100 mL
C2H4O2 solution (2.5%, v/v) then stirred and sonicated for 2 h
for complete dissolution of CS and uniform dispersion of
MIBWS. Then, 50 mL FeSO4$7H2O (20 g L−1) was added into the
mixture dropwise. Next, the mixture was agitated for 12 h before
50 mL Na2S was added dropwise under a N2 environment at 60 °
C and mixed for 2 h. Following that, 5 mL glutaraldehyde was
added to the mixture once it had cooled. Aer fully aging for 24
hours, the combination was reacted at 60 °C for another 3 h,
and its pH was adjusted in succession with NaOH solution.
Finally, the mixture was rinsed and dried at 70 °C in a vacuum
for 12 h before sieving through 0.15 mm screen mesh to get four
FeS/CS@MIBWS adsorbents prepared with varying MIBWS
dosage.

The best MIBWS dosage determined in the Cr(VI) adsorption
studies with the four adsorbents stated above was used to
prepare several types of FeS/CS@MIBWSs with varying S2− and
Fe2+ dosages. The S2− : Fe2+ mole ratio was kept at 2 : 1 for all the
composites, and the other preparing techniques were the same
as mentioned earlier.
2.2 Adsorbent characterization

The functional groups of FeS/CS@MIBWS before and aer Cr(VI)
adsorption were analyzed using Fourier transform infrared
spectroscopy (FTIR, Nicolet IS50, Thermo sher, USA) in the
spectra range of 4000–400 cm−1. The Brunauer–Emmett–Teller
specic surface area (SBET) and pore diameter distribution was
measured using an automatic specic surface area analyzer
(BELSORP-max, MicrotracBEL, Japan). The surface element and
chemical state of MIBWS, FeS/CS@MIBWS before and aer
Cr(VI) adsorption were determined by X-ray photoelectron
spectroscopy (XPS, Escalab 250Xi+, Thermo Fisher Scientic
USA). The crystalline phases of MIBWS and FeS/CS@MIBWS
were studied using an X-ray diffractometer (XRD, SmartLab
SE, Rigaku, Japan) in the 2q range of 5–90° with a step size of
28916 | RSC Adv., 2024, 14, 28915–28926
0.02°. Magnetic properties of FeS/CS@MIBWS were studied
using a vibrating sample magnetometer (VSM, Lake shore 7404,
USA). The zero point charge (pHPZC) was determined using
a zeta potential meter (Particle Metrix GmbH, Germany). The
surface morphology of the composite was recorded using
a scanning electron microscope (SEM, Zeiss Genimi500, Ger-
many), and the element content of it was analyzed using a X-ray
uorescence spectrometer (XRF, primus, Japan).
2.3 Cr(VI)-containing wastewater preparation

The Cr(VI)-containing wastewater used in the study was
prepared by dissolving K2Cr2O7 into the deionized water. 0.1 M
HCl and NaOH solutions were used to adjust the pH of the
articial solution. All the chemical reagents utilized in this
study were analytically pure.
2.4 Batch adsorption experiment

0.02 g adsorbent and 50 mL articial wastewater was placed in
a ask in a shaker at 120 rpm, which reacted at xed time span
and temperature. The remnant Cr(VI) in the supernate was
detected by a UV-vis spectrophotometer (UV-5100, Yuanxi,
China) using the method described in our previous study.3 All
the tests were conducted in triplicate, and the average value was
used for analysis.
3 Results and discussion
3.1 Adsorbent preparation

Fig. 1a shows the Cr(VI) removal by four FeS/CS@MIBWS
prepared with varying MIBWS doses, denoted as FeS/
CS@MIBWS1, FeS/CS@MIBWS2, FeS/CS@MIBWS3, and FeS/
CS@MIBWS4. The four composites showed Cr(VI) removal
capacities of 77.13, 61.92, 50.47 and 41.47 mg g−1, respectively,
as the MIBWS increased from 0.5 to 1.25 g, while the corre-
sponding saturation magnetic inductions were 0.46, 7.22, 7.71
and 14.80 emu g−1 (Fig. 1b). FeS/CS@MIBWS1 has the best
Cr(VI) removal but the worst magnetism, resulting in poor
separability following Cr(VI) removal in a magnetic eld. Unlike
FeS/CS@MIBWS1, spent FeS/CS@MIBWS2 separated from the
aqueous solution in 10 s using amagnetic force, while removing
less Cr(VI). As a result, 0.75 g MIBWS was established to be the
optimal dosage for FeS/CS@MIBWS preparation, taking into
account both Cr(VI) removal and magnetic separation of the
spent composite.

As shown in Fig. 2a, Cr(VI) adsorption increased from 47.82
to 66.12 mg g−1 when the FeSO4 dose for the composite prep-
aration increased from 0 to 2 g, demonstrating that FeSO4 may
improve Cr(VI) adsorption. Because there was no discernible
improvement in Cr(VI) adsorption with increasing FeSO4 dose
from 1.5 to 2 g, hence, 1.5 g FeSO4 was determined to be the
optimal dosage for FeS/CS@MIBWS preparation. As a result, the
best mass ratio for FeS/CS@MIBWS preparation was MIBWS :
CS : FeSO4$7H2O = 0.75 : 1 : 1.5 g. Compared to IBWS, which
had a lower Cr(VI) adsorption of 1.23 mg g−1, FeS/CS@MIBWS
had a substantially greater Cr(VI) adsorption of 65.72 mg g−1,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Adsorption capacity of FeS/CS@MIBWS (a) and VSM (b) variation as function of MIBWS dosage (reaction time = 4 h, C0 = 200 mg L−1, T =

25 °C).

Fig. 2 Adsorption capacity of FeS/CS@MIBWS as a function of FeSO4$7H2O dosage in their ingredients (a); comparison of Cr(VI) adsorption by 6
adsorbents (b) (m = 0.02 g, T = 298 K, reaction time = 4 h, C0 = 50 mg L−1).
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showing that the approach adopted in this work was effective
for IBWS modication (Fig. 2a).
3.2 Characterization

The phase purity and crystallinity of the MIBWS and FeS/
CS@MIBWS samples were analyzed by XRD (Fig. 3). The XRD
patterns of MIBWS and FeS/CS@MIBWS were similar to each
other, the characteristic XRD peaks at 2q values of 30.2°, 35.6°,
Fig. 3 XRD patterns of MIBWS and FeS/CS@MIBWS.

© 2024 The Author(s). Published by the Royal Society of Chemistry
43.3°, 57.3° and 62.8° were attributed to the (220), (311), (400),
(511) and (440) crystal plane of Fe3O4 (JCPDS No. 19-0629).31

Meanwhile, the diffraction pattern was in good agreement with
the hexagonal phase of FeS (JCPDS Card No. 75-0602), and the
peaks at 30.1°, 33.9°, 43.6°, 53.4° can be indexed to the (100),
(101), (102), (110) planes of FeS, respectively.32–36 The broad peak
located at 20.40° were indexed to the semi-crystalline polymer of
chitosan.37,38

In our previous study,3 pristine IBWS exhibited type IV N2

adsorption–desorption isotherms with the usual type H3
hysteresis loop, whereas FeS/CS@MIBWS had the same kind of
N2 adsorption–desorption isotherms and hysteresis loop aer
modication (Fig. 4a).

As demonstrated in our previous study,3 IBWS had SBET of
115.34 m2 g−1, total pore volume (TPV) of 0.28 cm3 g−1, and
average pore diameter (APD) of 9.75 nm, whereas, the corre-
sponding parameters of FeS/CS@MIBWS were 27.05 m2 g−1,
0.32 cm3 g−1, and 14.54 nm, respectively (Fig. 4b and Table 1),
indicating that modication by CS and FeS signicantly
reduced the surface area while increased the TPV and APD.
IBWS had a greater SBET than FeS/CS@MIBWS, but a lower Cr(VI)
adsorption, demonstrating that SBET was not the essential
component in the adsorption process.

FeS/CS@MIBWS had a rough surface due to a high concen-
tration of small particles (a), however there were a considerable
RSC Adv., 2024, 14, 28915–28926 | 28917
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Fig. 4 Nitrogen physisorption–desorption isotherm (a) and pore size distribution (b) of FeS/CS@MIBWS.

Table 1 SBET and pore parameters of FeS/CS@MIBWS

Sample SBET (m2 g−1) TPV (cm3 g−1) APD (nm)

Fe/S@CMIBWS 27.05 0.32 14.54

Table 2 The main element content of FeS/CS@MIBWS

Element Content (%) Element Content (%)

Fe 24.30 Mo 0.31
C 11.00 Na 0.24
S 7.02 K 0.16
Si 1.73 Mg 0.15
Al 0.81 Ti 0.10
Ca 0.36 Mn 0.05

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 8
:2

9:
00

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
number of pores of varied sizes on its surface (b), as seen in
Fig. 5. As demonstrated in Table 2, Fe, C, and S were the top
three elements in FeS/CS@MIBWS, mostly derived from the
IBWS before and aer calcination, with FeS employed for
modication.

3.3 Effect of working solution pH

Cr(VI) adsorption by FeS/CS@MIBWS reduced from 163.0 to
15.2 mg g−1 with the increasing pH from 2 to 10 (Fig. 6a),
suggesting acidic environment was favorable for Cr(VI) elimi-
nation, which matched the previous studies.39,40

Fig. 6b shows that the pHpzc of FeS/CS@MIBWS was around
pH 5.16. Protonation at pH < 5.16 positively charged the surface
of FeS/CS@MIBWS, facilitating the electrostatic adsorption of
the negatively charged oxyanions of Cr(VI) such as HCrO4

−,
Cr2O7

2−, and CrO4
2−, whereas, negatively charged surface at pH

> 5.16 repulsed the oxyanions in the solution, resulting in
decreased Cr(VI) removal. Furthermore, the conict between the
oxyanions and hydroxyl groups for active points on the surface
of FeS/CS@MIBWS reweakened Cr(VI) adsorption.41,42
Fig. 5 SEM morphologies of FeS/CS@MIBWS magnified by 50 000 (a) a

28918 | RSC Adv., 2024, 14, 28915–28926
3.4 Kinetic study

Fig. 7a shows that both of the two Cr(VI) adsorption processes
increased as contact duration and Cr(VI) concentration raised.
Furthermore, the two processes had initial rapid phases that
were virtually at equilibrium at 360 minutes, and no additional
substantial Cr(VI) removal was seen during the ensuing slow
period. Pseudo-rstorder, pseudo-secondorder and Elovich
models (eqn (1)–(3))43,44 was utilized to further analyze the
experimental data. Fig. 7b–d shows the linear tting using the
three models.

logðqe � qtÞ ¼ logqe � k1

2:303
t (1)

t

qt
¼ t

qe
þ 1

k2qe2
(2)
nd 100 000 times (b).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Influence of the initial solution pH on Cr(VI) adsorption by FeS/CS@MIBWS (a), zeta potential analysis of FeS/CS@MIBWS (b).
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qt ¼ 1

b
lnðabÞ þ 1

b
ln t (3)

where qe (mg g−1) and qt (mg g−1) were the Cr(VI) uptake at
equilibrium and time t, respectively. k1 (min−1) and k2 (g
mg−1 min−1) are the pseudo-rst order and pseudo-second
order rate constants, respectively. a (mg g−1 min−1) and b (g
mg−1) are the initial adsorption rate and the desorption
constant, respectively.

As shown in Table 3, the correlation coefficient (R2) of the
pseudo-second order model was higher than those of the other
two models, and was closest to 1, suggesting that it was the
optimal model to depict Cr(VI) adsorption on FeS/CS@MIBWS,
and chemisorption was the rate-limiting step for the
Fig. 7 Effect of contact time on Cr(VI) adsorption (a), linear fitting pseu
model (d) (m = 0.02 g, pH = 4, T = 298 K).

© 2024 The Author(s). Published by the Royal Society of Chemistry
adsorption process in which electrons sharing or exchange
between Cr(VI) and FeS/CS@MIBWS was involved.
3.5 Isotherms and thermodynamics study

Langmuir and Freundlich models (eqn (4) and (5))45 were used
to further understand the interaction between Cr(VI) and FeS/
CS@MIBWS.

ce

qe
¼ 1

qmb
þ ce

qm
(4)

log qe ¼ log kf þ 1

n
log ce (5)
dofirst order kinetics (b), pseudosecond order kinetics (c) and Elovich

RSC Adv., 2024, 14, 28915–28926 | 28919
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Table 3 Kinetic parameters of Cr(VI) adsorption by FeS/CS@MIBWS

C0 mg L−1

Pseudo-rst order Pseudo-second order Elovich

qe k1 R2 qe k2 R2 a b R2

100 15.06 0.00172 0.825 53.16 0.000634 0.999 531.53 0.2293 0.9765
125 18.16 0.00191 0.835 61.84 0.000566 0.999 406.05 0.1887 0.9647
150 25.67 0.00127 0.948 72.20 0.000366 0.998 379.58 0.1634 0.9915

Table 4 Isotherm parameters of Cr(VI) adsorption by FeS/CS@MIBWS
at different temperatures

T (K)

Langmuir
parameters

Freundlich
parameters

Thermodynamic
constants

qm b R2 kf n R2 DG0 DH0 DS0

288 68.49 3.071 0.999 30.39 5.57 0.939 −1.40 39.41 0.14
298 78.74 1.806 0.999 36.11 5.44 0.853 −2.80
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where ce (mg L−1) was the Cr(VI) concentration at equilibrium,
qm (mg g−1) was the theoretical saturated Cr(VI) adsorption
calculated from the Langmuir equation, b (L mg−1) is the
Langmuir constant, kf and n are the Freundlich constant and
exponent, respectively.

As shown in Fig. 8a, qe was greater at higher temperatures
than at lower temperatures for all the three reaction tempera-
tures, indicating that higher temperatures resulted in improved
Cr(VI) adsorption. Fig. 8b and c present the linearized tting
results from the two adopted models.

Table 4 shows that all the three correlation coefficients (R2)
of Langmuir model exceeded 0.99, whereas the highest corre-
lation coefficient of Freundlich model was 0.939, suggesting
Langmuir model was better to describe the Cr(VI) adsorption by
FeS/CS@MIBWS, which is a monolayer adsorption process.

The inuence of reaction temperature on Cr(VI) adsorption
by FeS/CS@MIBWS and the feasibility of the process was
studied using three thermodynamics including standard free
energy change (DG0), standard entropy change (DS0), and
Fig. 8 The relationship between ce and qe under three reaction tempera
and the relationship between 1/T and ln K0 for Cr(VI) adsorption by FeS/C

28920 | RSC Adv., 2024, 14, 28915–28926
standard enthalpy change (DH0), which were obtained from
eqn (6)–(8).3

DG0 = −RT lnKL (6)

DG0 = DH0 − DS0 (7)

ln k ¼ �DG0

RT
¼ DS0

R
� DH0

RT
(8)
tures (a), linear fitting using Langmuir model (b), Freundlich model (c),
S@MIBWS (d) (reaction time = 24 h, pH = 4).

308 92.68 1.251 0.998 43.36 5.22 0.707 −4.21

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Comparison of monolayer Cr(VI) adsorption capacities of FeS/CS@MIBWS

Adsorbents Moments (emu g−1) Qm (mg g−1) Conditions (K & pH) Ref.

Chitosan/polymethylmethacrylate — 67.06 298 & 3 27
Magnetic zeolite/chitosan composites 18.67 28.47 303 & 3 46
Ethylamine modied chitosan carbonized
rice husk composite beads

— 52.7 298 & 2 47

FCN-500 54.3 52.63 308 & 3 48
Magnetic activated carbon for 11.07 45.3 318 & 2 49
Magnetic zeolite/chitosan composite 16.83 21.25 288 & — 50

23.76 303 & —
24.61 318 & —

Ethylenediamine-modied cross-linked
magnetic chitosan resin

— 51.81 293 & — 51
48.78 303 & —
45.87 313 & —

MnO2/CS nanocomposite — 61.56 298 & 2 52
FeS/CS@MIBWS 7.22 68.49 288 & 4 Current study

78.74 298 & 4
92.68 308 & 4
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where KL was a constant from Langmuir isotherm (L mol−1);
DS0 and DH0 were calculated from the relationship of ln KL and
1/T shown in Fig. 8d, R is the ideal gas constant (8.314 J (mol−1

K−1)), T was the adsorption temperature (K). As shown in Table
4, DG0 values for all the three reactions were negative and
declined with the increasing temperatures, indicating the
spontaneous nature of the adsorption process. The endo-
thermic nature of the adsorption process was proved by the
positive values of DH0 and DS0.
Fig. 9 The effect of coexisting ions on adsorption of Cr(VI) by FeS/
CS@MIBWS (T = 298 K, pH = 4, C0 = 50 mg L−1).

Fig. 10 Determination of regeneration reagent (a) and Cr(VI) uptake vari

© 2024 The Author(s). Published by the Royal Society of Chemistry
Table 5 gives Cr(VI) adsorption capacities calculated from the
Langmuir model for the modied chitosan adsorbents used in
the existing documents and this study. The composite used in
this study exhibited the fourth largest Cr(VI) uptake among the 9
composite, suggesting the adsorbent was an excellent material
for Cr(VI) removal from water.

3.6 Effect of co-existing anions

The effect of common anions in water including Cl−, SO4
2− and

PO4
3− on Cr(VI) adsorption by FeS/CS@MIBWS was studied. As

shown in Fig. 9, all the three anions impaired Cr(VI) uptake in
the sequence of Cl− < SO4

2− < PO4
3− with their increasing

concentration, which was consistent with our prior ndings and
other recent research.53 Due to the superimposition effect, the
coexistence of the three anions resulted in lower Cr(VI) absorp-
tion than the solo effect of each anion.

3.7 Regeneration and reusability

Acetic acid and hydrochloric acid were used for FeS/
CS@MIBWS regeneration (Fig. 10a). In comparison to 1 M
C2(H2O)2, all the three concentrations of HCl exhibited greater
ation with reuse cycles (b).

RSC Adv., 2024, 14, 28915–28926 | 28921
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regeneration effect, with 1 M HCl being the best for FeS/
CS@MIBWS regeneration. As a results, 1 M HCl was used for
FeS/CS@MIBWS regeneration.

As shown in Fig. 10b, there was 9.04% drop in Cr(VI) uptake
aer the rst regeneration, and Cr(VI) uptake decreased by
70.2% aer regeneration for 5 times, indicating the FeS/
CS@MIBWS can be reused for times.

3.8 Mechanism exploration

As shown in Fig. 11, the bands at around 3369.0 cm−1,
2924.0 cm−1, 1712.5 cm−1, 1648.8 cm−1,1376.0 cm−1 for FeS/
CS@MIBWS belonged to NH2 stretching,54 symmetric CH
vibration,55 C]O stretching, symmetrical C]O stretching,56

C–H bending,57 respectively. The above-mentioned bands shif-
ted to 3389.2 cm−1, 2925.2 cm−1, 1716.2 cm−1, 1649.9 cm−1and
1377.6 cm−1, respectively, indicating their involvement into
Cr(VI) elimination. The bands at 1031.7 cm−1, 612.3 cm−1 and
477.3 cm−1 belonged to the primary amine C–N in chitosan,58 a-
Fe2O3 (ref. 59) and Fe–O asymmetric stretching,60 respectively.
Fig. 11 FTIR spectra of FeS/CS@MIBWS before and after Cr(VI)
adsorption.

Fig. 12 The full XPS spectra of MIBWS, FeS/CS@MIBWS before and
after Cr(VI) adsorption.

28922 | RSC Adv., 2024, 14, 28915–28926
As shown in Fig. 12, the energy bands of Fe 2p, N 1s and S 2p
appeared at the wide-scan spectrum of FeS/CS@MIBWS, indi-
cating the chitosan and FeS were successfully loaded. The
energy band of Cr 2p emerged aer Cr(VI) adsorption, demon-
strating the Cr(VI) was adsorbed on the surface of FeS/
CS@MIBWS.

As shown in Fig. 13a, C 1s XPS spectrum of FeS/CS@MIBWS
before Cr(VI) adsorption contained three functional groups with
peaks at 283.7, 285.08 and 286.38 eV, corresponding to C]C,
C–N and C–O, respectively.61 Despite the fact that the bands of
the three peaks did not altered aer Cr(VI) adsorption, the peak
area of C–N declined from 40.89% to 31.28%, and the peak area
of C]C rose from 31.25% to 40.00% (Fig. 13b), respectively,
indicating the participation of the carbon functional group into
the Cr(VI) adsorption.

Fig. 13c shows that N 1s spectra contained three peaks at
398.1, 399.4 and 400.8 eV, respectively, which were attributed to
–NH, –NH2 and C–N, respectively,62 indicating the presence of
chitosan. Aer Cr(VI) adsorption, the peak area of –NH
decreased from 63.48% to 26.16%, while the peak area of –NH2

rose from 3.46% to 45.82%, respectively (Fig. 13d), indicating
the nitrogen-containing functional group were protonated and
participated in the Cr(VI) adsorption, which can be described by
eqn (9)–(11).63

−NH + H+ / –NH2 (9)

–NH2 + H+ / –NH3
+ (10)

−NH3
+ + HCrO4

− / NH3
+/HCrO4

− (11)

S 2p1/2 and S 2p3/2 had peaks at approximately 166.8 eV and
162.5 eV, respectively (Fig. 13e). The binding energy of S 2p1/2
consisted two peaks at 162.3 eV and 163.3 eV, corresponding to
FeS,64 whereas, the binding energy of S 2p3/2 of SO3

2− was found
at 166.5 eV and 167.6 eV.65 Aer Cr(VI) adsorption, the peak area
of FeS fell from 80.98% to 72.96%, whereas the peak area of
SO3

2− increased from 19.20% to 27.04% (Fig. 13f), indicating
the FeS formed during the participated into the Cr(VI) removal
as electron donor, and the reaction can be expressed by
equation.66

Fig. 13g shows the Fe 2p high resolution XPS spectra of FeS/
CS@MIBWS before Cr(VI) adsorption. Aer Cr(VI) adsorption,
the peaks attributed to both Fe3+ and Fe2+ shied, and a new
satellite peak emerged. Meanwhile, peak regions for Fe3+

increase from 30.37 to 43.13%, whereas, peak areas of Fe2+

declined from 69.63 to 56.87% (Fig. 13h). As a result, in
conjunction with the study of Cr(VI) conversion, it is possible to
assume that the Fe2+ in Fe3O4 in FeS/CS@MIBWS acted as
reductant to reduce Cr(VI) into Cr(III), as stated by the following
eqn (12)–(16).45

FeS + H+ / Fe2+ + HS− (12)

HS− / S2− + H+ (13)

3Fe2+ + HCrO4
− + 7H+ / 3Fe3+ + 2Cr3+ + 4H2O (14)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 The detail survey of C before (a) and after (b) Cr(VI) adsorption, N before (c) and after (d) Cr(VI) adsorption, S before (e) and after (f) Cr(VI)
adsorption, Fe before (g) and after (h) Cr(VI) adsorption, Cr 2p after Cr(VI) adsorption (i).
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3HS− + 8HCrO4
− + 29H+ / 3SO4

2− + 8Cr3+ + 20H2O (15)

3S2− + 2HCrO4
− + 14H+ / 3S + 2Cr3+ + 8H2O (16)

As shown in Fig. 13i respectively, suggesting that Cr was
adsorbed on the surface of FeS/CS@MIBWS.67 The peaks at
575.3 eV and 585.3 eV corresponded to Cr 2p3/2 and Cr 2p1/2 of
Cr(VI), and accounted for only 30.99% of the total peak area of
Cr(VI). Peaks of 576.6 eV and 585.5 eV corresponded to Cr 2p3/2
and Cr 2p1/2 of Cr(III),68 and its peak areas increased from 0 to
69.01% aer Cr(VI) adsorption.

It can be concluded from the above analysis, physical and
chemical adsorption, chelation and reduction of Cr(VI) into
Cr(III) was participated the reaction.
© 2024 The Author(s). Published by the Royal Society of Chemistry
4 Conclusion

In this study, MIBWS-based composite, namely FeS/
CS@MIBWS was prepared by magnetized iron-based water-
works sludge, chitosan and FeS. The composite was adopted for
a series of static Cr(VI) removal studies to investigate its Cr(VI)
adsorption ability. Cr(VI) adsorption by the composite rose as
the pH rose from 2 to 10. The pseudo-second order equation
was more suitable for the description of Cr(VI) adsorption, and
the Langmuir model tted the experimental data better than
the Freundlich model, the maximum uptake of aqueous Cr(VI)
was 92.68 mg g−1 in 308 K. The main mechanism include
physical and chemical adsorption, mainly the chelation and
RSC Adv., 2024, 14, 28915–28926 | 28923
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reduction of Cr(VI) into Cr(III). The composite could be used to
purify Cr(VI)-containing effluent.
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