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Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid
supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic
nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties,
which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of
appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and
adapted to both enzymes and support requirements for optimal efficiency. This review provides
a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols.
It covers methods, challenges, advantages, and future perspectives, starting with general aspects of
magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The
discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials,
highlighting advantages, challenges, and potential applications. Further sections explore the industrial use
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Accepted 27th May 2024 of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and
prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of

DO 10.1039/d4ra0293%a magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and
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1. Introduction

Magnetic materials are widely used in modern technologies and
devices with a broad classification of chemical and physical
properties directly dependent on their structural composition.*™
Specifically, materials with constituents such as iron, nickel,
aluminium, cobalt, and others that favour a response to
a magnetic field are characterized as magnetic.”™* These materials
can be classified as soft and complex, and magnets can attract
both; however, soft materials are attracted only temporarily, while
hard materials can be magnetized indefinitely."” Because of their
versatility, they can be applied in various fields: sensing, smart
devices, storage, biomedicine, immobilization and enzymatic
stabilization, and adsorption of effluents and wastewaters.'*>
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contributing to manufacturing optimization.

These materials can be used at different scales: macro metric,
micrometric, and nanometric.'*¢3%34

Magnetic nanomaterials have attracted significant interest
from various industries that synergistically apply nanoscience and
nanotechnology to solve ongoing challenges.™'**>*” The versatility
of magnetic nanomaterial-based compounds is attributed to
unique properties (e.g., superparamagnetism), which result from
the influence of thermal energy on a ferromagnetic nano-
particle."~"7** When used as reinforcement materials, these
compounds can enhance existing physical or chemical
properties.**?**%% The synthesis of these nanomaterials is
constantly evolving, and several routes have been proposed over
the years.**** The chemical or physical route used to produce this
compound is defined based on its proposal of the final applica-
tion. Several methods can be used, such as co-precipitation®***
aerosol route,*** hydrothermal reaction**" oxidative precipita-
tion,>*  organic  precursor = method*®  sonochemical
decomposition,**® and sol-gel synthesis technique.®

Immobilization and enzymatic stabilization are among the
most favourable application areas for these nanomaterials
because several factors favour catalytic activity and stabilization
in various reactive environments unsuitable for the use of
soluble enzymes.®**® Advantages include high surface area,
large surface-to-volume ratio and separation facilitated under

© 2024 The Author(s). Published by the Royal Society of Chemistry
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external magnetic fields.®”7° It should be noted that magnetite
nanoparticles (Fe;O0,) are used more frequently compared to
other types.”*”* The low toxicity, good compatibility and high
surface area justify the frequent use of this enzyme immobili-
zation matrix.”>”* One of the challenges to the efficient use of
these materials in enzyme immobilization protocols is their
high reactivity and easy degradation when exposed to specific
environments, causing instability and better dispersion of the
enzyme.66,72,75,76

However, several methods for modifying magnetic iron
nanoparticles have been developed to improve the carriers for
unrestricted use and with maximum efficiency.®¢7%7%7477-81
Polymeric molecules such as polyethene glycol (PEG)*>** poly-
vinylpyrrolione  (PVP),**®*¢  poly (lactic-co-glycolic  acid)
(PLGA)*"* and polyvinyl alcohol (PVA)*~* have been used as
coatings for these nanoparticles, mainly enhancing various
chemical and physical properties”™**** In addition, the surface
coating is made of natural and often abundant organic mole-
cules such as chitosan, chitin, ethyl cellulose, gelatin, starch, (3-
aminopropyl) trietoxylesan (APTES), carboxymethyldextrana
among others®"* has been used. Therefore, chemical modi-
fiers increase the versatility of these supports, allowing the
immobilization of various biologically active and complex
molecules.'1%4%¢

The enzyme immobilisation methods in magnetic nano-
particles are diverse, and their use depends on the final appli-
cation of the biocatalyst.”#'*”'*® Immobilization by physical
adsorption is one of the most common methods and one of the
first developed.®*®*7>»741% The interactions between matrix and
enzyme are weak, such as electrostatic interactions, hydrogen
bonds, van der Waals forces, and hydrophobic interactions.*>”*
The reaction conditions directly affect these interactions, which
include pH, temperature, ionic strength, and biomolecule
concentration.®®7%7»7511%11t The robustness of the support
properties in these protocols is fundamental to the efficient use
of these biocatalysts.®®”>'*»'3 The protocol of immobilizing
enzymes by covalent coupling is one of the most widely used
due to increased enzymatic stability, which improves enzymatic
activity."*™*® In addition, other immobilization methods that
use specific biologically mediated interactions are also used,
such as ionic binding, trapping, and
encapsulation.'***”

For years, several reaction processes have experienced
immobilisation and enzymatic stabilisation, improving proto-
cols for synthesising and immobilising magnetic nanoparticle
supports. Several enzymes have been immobilized in magnetic
matrices belonging to the groups: xirreductases,”®'** trans-
ferases,”*****  hydrolases,"***** lyases,"**"” isomerases,"®
lipases,***™** among others. The non-toxicity of magnetic
nanoparticles and their surface area allow most of the above
enzymes to interact efficiently, favouring immobilization
parameters such as increased catalytic activity, better opera-
tional, thermal and pH stability, increased immobilization yield
and more significant.*****°

Currently, enzymatic immobilization protocols are increas-
ingly being analyzed to optimize processes, reduce costs, and
improve immobilization parameters.’**** This experimental

enzymatic
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design is a powerful tool to overcome the challenges of indus-
trial scalability.”®>**® Variable analysis using experimental
design is a promising alternative that has been increasingly
used.””'*® Numerous studies have been published discussing
the main factors influencing enzymatic immobilization proto-
cols. 134157139160 Goglmohammad Khoobbakht et al. (2020) show
that Burkholderia cepaciaa lipase was stabilized in magnetic
nanoparticles of mesoporous silica shell-shell cores to synthe-
size biodiesel from residual soybean oil. Statistical optimization
methods such as response surface methodology (RSM) with
central composite design (CCD) were used. Notably, it predicted
the biodiesel yield to be 92% under ideal conditions.*** In this
sense, there is a latent need for the use of statistical tools to
optimize enzyme immobilization processes.'>**>*1%

In summary, immobilization protocols, the development of
new supports, and process optimization are based on much of
the current research on enzyme immobilization on solid
media."**'** Deciding on the most appropriate immobilization
protocol is fundamental to achieving maximum biocatalyst
efficiency."®**” The development of hybrid supports, focusing
on those of organic-inorganic composition with magnetic
properties, taking advantage of organic residues, offers
a promising option for the enzymatic immobilization process
with the sustainable prerogative in its synthesis.****”> Experi-
mental design, molecular simulation of biobehavioral, and
analysis of variance are essential pillars for process optimiza-
tion, focusing on the immobilization of active biomolecules,
seeking maximum efficiency of support synthesis protocols,
immobilization, and final application of the bio-
catalyst.1?4159162166.167173  Therefore, the following study will
address the most critical and current aspects of magnetic
matrices for enzymatic immobilization. It will be based on the
challenges and opportunities of this field, from the synthesis of
magnetic nanomaterials to the immobilization protocols to the
finalization of the essential aspects of process optimization.

2. Magnetic nanomaterials
2.1 Magnetic properties

The magnetic property of a material is determined by the
magnetic moments per unit volume within the material."”*
Magnetic nanoparticles (MNPs) have inherent magnetic prop-
erties that make them versatile for various applications.'”>'"®
The magnetic properties of a material are classified based on its
magnetic susceptibility (xm),"”® a fundamental response that
indicates how a system interacts with an external magnetic
field.

This parameter relates the magnetization of a material to the
strength of an applied magnetic field.** The five basic types of
magnetism are diamagnetism, paramagnetism, ferromagne-
tism, antiferromagnetism, and ferrimagnetism."”

MNPs exhibit unique properties, including high saturation
magnetization/sizeable magnetic moment, response to
moderate magnetic fields, and superparamagnetism.'®" These
properties make them ideal for magnetic separation by appli-
cation of a magnetic field."®'®® Superparamagnetism, which
results from the influence of thermal energy on ferromagnetic

RSC Adv, 2024, 14,17946-17988 | 17947


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a

Open Access Article. Published on 05 June 2024. Downloaded on 7/23/2025 11:51:25 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

nanoparticles, has attracted interest in recent decades.'®* High
saturation magnetization (M) and superparamagnetism are
essential for applying an external magnetic field.**®

MNPs address the challenges of handling and separating
immobilized enzymes with low density and high dispersion,
enhancing their reusability.'”*'#*'*” This allows for extended use
in continuous mode while protecting against thermal and
chemical changes during manufacturing and storage.'®”
Magnetic recovery reduces production costs, and immobilized
enzymes often exhibit higher activity and improved tempera-
ture and pH stability than unsupported enzymes."””

The excellent superparamagnetic property of MNPs allows
easy separation from the reaction medium by simply applying
an external magnetic field to the immobilized enzyme, followed
by easy dispersion after the field is removed.'®****'®* Unlike
ferromagnetic nanoparticles, superparamagnetic nanoparticles
do not retain their magnetic properties once the external
magnetic field is removed, which is a significant advantage for
reusing nanobiocatalysts.**® Fig. 1 illustrates the importance of
superparamagnetism in enzyme immobilization.

The magnetic properties of nanomaterials play a crucial role
in the recovery process using an external magnetic field."”
Higher M, indicates superparamagnetic activity,"* which is
characterized by low coercivity (H) and retentivity (M,)."*>
Superparamagnetism and high M; allow reactor operation at
relatively high flow rates and effective biocatalyst recovery.'®®
However, magnetic properties can be reduced after modifica-
tion and enzyme immobilization due to the presence of non-
magnetic nanomaterials.’**'** MNPs must be modified with
functional groups to increase the enzyme binding tendency
further and thus achieve efficient enzyme immobilization.'*®
Enzyme immobilization on MNPs can reduce M, if
a biopolymer-based coating imparts a diamagnetic quality.*®®
Coating MNPs improves multifunctionality and biocompati-
bility,*° with both aggregation'”**® and crystalline anisotropy*®”
influencing M.

Among the supports, magnetite (Fe;O,4) stands out as the
most widely used MNP for enzyme immobilization®® because of
its cost-effectiveness, biocompatibility, low toxicity, large
surface area because of small particle size, high magnetic
susceptibility, high saturation magnetization, and super-
paramagnetic properties at room temperature,'®*1%199:200
Consequently, immobilization of enzymes on MNPs signifi-
cantly improves stability, catalytic performance, and reusability
compared to pure enzymes.'**2°%°*

g " Enzyme Immobilization
Superparamagnetism

Tigh M,
Zero coercivity
No remanence

s | Reduction of production costs
Higher activity

Improved temperature

pH stability

Fig. 1 The superparamagnetism of MNPs in enzyme immobilization.
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2.2. Superparamagnetism

Among the properties of nanomaterials, superparamagnetism
occurs when the magnetic material is reduced in size, such as
between 10 nm and 150 nm in diameter®***® and presents
a single-state domain in which the magnetic spins are aligned®”
(Fig. 2). In nanomagnetic particles with a single domain and
smaller diameters, the superparamagnetic nanomaterial has
less hysteresis, and demagnetization occurs more readily, with
variations in hysteresis and magnetization becoming zero after
a critical size radius is reached***>* (see Fig. 1). Overall, the
practical advantages of superparamagnetic nanoparticles, such
as biocompatibility, low toxicity, easy separation, and flexibility
in modifying their surface, are relevant to their widespread use,
especially in medicine.**”*%®

Several biomedical applications using superparamagnetic
particles as drug-delivery systems can be found in the literature.
In Neuberger et al. (2005), iron oxide-based superparamagnetic
nanoparticles (SPIONs) are used as contrast agents in magnetic
resonance imaging for the diagnosis of cartilage pathologies.**
In addition, SPION can also be used as an oral contrast agent to
diagnose gastrointestinal tumours or as an intravenous agent to
detect other tumours in the body.”*”** To use these particles as
a drug-delivery system, the magnetic field is removed shortly
after the particles are combined with an external magnetic field,
which coordinates the delivery to the desired target area,
making drug delivery more effective and less time-
consuming.>%>*°

Using nanoparticles as a drug-delivery system is also
advantageous for treating skin diseases. In Raviraj et al. (2021),
SPIONs were developed to facilitate drug distribution in
chemotherapy treatments of myeloma in rats in a non-invasive
methodology, without needles and without controlling the local
application of drugs.”*®*'* The authors observed that the
application of SPIONs with steric stabilization showed excellent
penetration into the skin and promising results in treating skin
tumours, with an increase in the immune response of the
system associated with leukocyte infiltration in the studied
tissue.>®®*** The results also suggest that using these nano-
materials as a drug-delivery system may contribute to the
resumption of studies with drugs discontinued in chemo-
therapy regimens due to their high toxicity.>****?

Critical radius to
Superparamagnetic
nanomaterial

Paramagnetic/Multi-domain Single-Domain Material Superparamagnetic/Single-Domain

Fig.2 Changes in the physicochemical properties of nanomaterials as
a function of particle size. When particles are sized at the critical radius
for superparamagnetic nanomaterials, the hysteresis and magnetiza-
tion of the particle become zero.

Particles size

Hysteresis effect
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2.3 Magnetic nanoparticle preparation

Magnetic nanoparticles (MNPs) consist of a magnetic material
and a chemical component, and the functionality and applica-
tion of MNPs are directly influenced by these two compo-
nents.”* The core of MNPs is primarily synthesized from Fe;0O,
and typically comprises iron oxides such as Fe;0,, hematite (o-
Fe,03), maghemite (y-Fe,03), and FeO (iron(u) oxide).>** The
development and implementation of efficient techniques for
the synthesis of high-quality nanomaterials is crucial.***>*'® The
synthesis method and experimental conditions strongly influ-
ence the size and morphology of magnetic particles, which
determine the material's magnetic properties and its
applications.”**>*® Size and size distribution play a crucial role
in determining the chemical and physical properties of MNPs,
which further influence their functionality.>*>*'**'® Because of
their small particle size, MNPs often exhibit super-
paramagnetism,**®*'#**  characterized by  dimensions
approaching those of a single magnetic domain.*® Tailoring of
magnetic properties can be achieved by controlling the
magnetic moment and crystallite size by incorporating high-
entropy oxides.**®

Precise control of the nanoparticle production parameters is
essential, as the unique properties of MNPs are highly depen-
dent on their size and morphology.*** The synthesis method is
selected based on the desired length, stability, morphology, and
biocompatibility of the MNPs.**® The primary synthesis
methods for MNPs include physical, wet chemical, and a few
biological approaches (e.g,, green synthesis or biosyn-
thesis).?*®**>?2* physical methods involve fractionating bulk
material into smaller pieces through high-energy processes
such as ball milling, considered a “top-down” approach.>'>*** In
contrast, the “bottom-up” approach includes chemical and
biological methods that involve particle formation through
nucleation, growth, and precipitation.>>*** Biological and
chemical synthesis methods are the most widely used.**® Phys-
ical methods, while providing better control over size and
shape, have limitations, such as dispersed particle size distri-
bution, time-consuming processes, and higher costs.”** Stan-
dard methods for MNP synthesis include ball milling,
coprecipitation, sol-gel, hydrothermal, thermal decomposition,
microemulsion, and biological approaches,” as shown in
Fig. 3.

Coprecipitation, synthesis method,
a precursor salt and an essential precipitant,>®*** often
employing ferric (FeCl;) and ferrous (FeCl,) chlorides with
ammonium hydroxide (NH,OH).>**> This method is preferred to
achieve monodispersity of iron oxide MNPs and is considered
the simplest for Fe;O, synthesis.**®*'* The oxidation states play
a crucial role in controlling the dispersion behaviour of iron
oxide MNPs, with the size and state of superparamagnetic iron
oxide MNPs being modifiable by adjusting factors such as salt
type, iron(u)/iron(ur) molar ratio, ionic strength, temperature,
and pH.**® While coprecipitation is easy to perform, it tends to
result in poorer crystalline quality and magnetic behaviour due
to accumulation, although stability in aqueous media is main-
tained.”***** This synthesis process is suitable for applications

a chemical uses
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Ball milling

£ Plants and microorganisms: |
stabilizing and reducing agents
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[Coprecipitation] Sol-gel Hydrothermal | | Thermal decomposition Microemulsion

Fig. 3 Standard methods for MNP synthesis.

requiring large nanocrystals, where homogeneity in size and
magnetic properties is not critical.?*®> Compared to physical or
vapour phase methods, coprecipitation provides better control
over size and shape.***

Sol-gel synthesis involves gel formation at room temperature
by polycondensation reactions of metal alkoxides and hydro-
lysis and does not require special equipment.?*® The sol or
colloidal solution is prepared from metal salts dissolved in
water, and the gel is obtained after drying the solvent by heating
and roasting.”***** While size, shape, and composition can be
controlled, the sol-gel method requires many toxic organic
solvents and has some disadvantages, such as binding and high
permeability.**

Hydrothermal synthesis involves using an autoclave with
Teflon-lined stainless steel walls, typically containing water in
a supercritical/sub-supercritical state.”****??*¢ This method
operates under high temperature and pressure conditions,
resulting in oxidation and hydrolysis reactions that produce
MNPs of uniform size. Synthesis parameters affect crystallinity,
crystallite size, particle size, purity, and magnetic properties.**
Hydrothermal synthesis is preferred to produce highly crystal-
line MNPs with the desired size and shape.*™® It allows the
development of different crystalline iron oxide nanoparticles,
ensuring high crystallinity, size, shape and homogeneous
composition.**?

Thermal decomposition is an upscaled and extended
synthesis process using organic solvents and nonmagnetic
organometallic precursors.?”” It produces MNPs under extreme
temperatures by decomposing organometallic precursors with
organic surfactants.””>*** The products’ morphology, size, and
monodispersity can be tuned by modifying the experimental
conditions, and the annealing temperature affects the size and
magnetic properties of the MNPs.>****” The obtained hydro-
phobic MNPs have limited applications (e.g., biomedical
applications).>® The hydrophobic MNPs obtained have limited
applications, and thermal decomposition is energy-, material-,
and time-consuming, using and hazardous
substances.**

In the microemulsion process, a mixture of oil, surfactant,
and water is magnetically stirred at ambient temperature, with

expensive

RSC Adv, 2024, 14, 17946-17988 | 17949


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a

Open Access Article. Published on 05 June 2024. Downloaded on 7/23/2025 11:51:25 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

surfactants and co-surfactants stabilizing the inter-
phase.?**?**”??® The mixed system undergoes nucleation, crystal
growth, aggregation and agglomeration, followed by precipita-
tion of spherical microdroplets in a solid phase. The desired
material is obtained after adding organic solvent and centrifu-
gation.”” While the method offers precise control over shape
and particle size, high purity, good crystallinity, narrow size
distribution, and the synthesis of various MNPs, it has draw-
backs such as low-volume production, time consumption, and
specialized equipment.®*

In recent years, biosynthesis has gained popularity as an
environmentally friendly and cost-effective approach compared
to chemical or physical routes.”**** In this process, plants and
microorganisms stabilize and reduce gents.?*>****** The
produced MNPs are biocompatible and suitable for biomedical
applications, and biosynthesis does not require expensive or
hazardous chemicals, providing a simple and rapid processing
route.”*>*** However, biosynthesis may result in poor dispersion
of nanoparticles, and the related shortcomings, such as yield
and MNP dispersion, still need to be investigated.**®

2.4 Structural characterizations

The techniques used to synthesize and characterize magnetic
nanoparticles (MNPs) are vital in understanding their proper-
ties. Characterization is a critical preliminary step, especially
given the diverse synthesis routes and applications of
MNPs, 175:183,184223,233,234 Gtryctural characterizations are essential
to verify the effects on MNPs after synthesis and modifications,
and different techniques are used in MNPs research.'>**! Fig. 4
summarizes the significant approaches to the structural char-
acterization of MNPs.

Powder X-ray diffraction (XRD) is critical in determining
nanomaterials’ crystal structure and crystalline nature.”**** It
provides insight into the crystallinity, diameter, and structural

Fig. 4 The main structural characterization approaches of MNPs.
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changes introduced by coatings, functionalization, and immo-
bilized materials on MNPs.'?%?3323323¢ However, XRD alone may
not distinguish iron oxide nanoparticles such as y-Fe,O; and
Fe;0, because of their similar patterns originating from iden-
tical cubic spinel structures. Mdssbauer spectroscopy, a precise
technique, is used to study the local structure of Fe and provides
detailed information about the composition.**>**” Mossbauer
spectroscopy, a precise technique, is used to investigate the
local structure of Fe, providing detailed information about the
composition.”®® While giving a screening approach, Raman
spectroscopy does not determine the exact amount of Fe;O,,
a capability that Mossbauer spectroscopy has.?*

Energy dispersive X-ray (EDX) analysis and energy dispersive
spectroscopy (EDS) are used to identify the chemical composi-
tion of synthesized MNPs.7*?%*%° These techniques are critical
to confirm the material's successful modification and evaluate
the impact of surface modifications,”®'#>3%?** such as enzyme
immobilization on MNPs.>**?3¢>t X.-ray photoelectron spec-
troscopy (XPS) confirms each magnetic nanoparticle surface
modification step and successful enzyme binding.'**'** XPS is
a powerful method to verify the existence of the Fe;0, phase due
to the coexistence of Fe?" and Fe®* cations.?”” Fourier-transform
infrared spectroscopy (FTIR) is used to evaluate functional
groups and their possible interactions, providing insight into
the formation of MNPs and surface modifications.8%'94214235241

Vibrating sample magnetometer (VSM) measurements
assess nanostructured magnetic materials' magnetic behaviour
and magnetic moment when subjected to vibrations perpen-
dicular to a uniform magnetic field.>***** VSM reveals changes
in magnetization that may indicate the presence of a non-
magnetic layer at the core of the material.’*® The magnetiza-
tion curve obtained from VSM can provide information about
the behaviour of immobilized enzymes on MNPs and verify the
superparamagnetic properties of the composite material.'*****
Successful immobilization of enzymes on MNPs is often
confirmed by studying their saturation magnetization M.>*!

Magnetization curves indicate superparamagnetism without
hysteresis, visible coercivity and remanence, and a fully
reversible magnetization process."'*® The analysis of super-
paramagnetism can be further refined by calculating the
material's diamagnetic properties by comparing the sample's
mass and the corresponding magnetic properties.**

3. Enzyme immobilization onto
magnetic nanoparticles
3.1 Enzymes and enzymes immobilization techniques

Enzymes are essential biocatalysts involved in biosynthesis and
biodegradation that enable a wide range of human activities,*
providing energy for most of the metabolic processes of the cell
and assisting in a variety of biochemical reactions that generally
occur under favourable conditions in the physiological
environment.?**->*

In addition, they have high chemo-, regio-, and stereo-
selectivity, resulting in more pure and selective reactions that
can even reduce the need for functional group protection,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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reduce purification steps, and increase the atom economy of the
process, resulting in shorter synthetic routes.>****

Become an essential pillar of the bio-economy, indispens-
able for the sustainable development of various scientific and
technological sectors, industry, medicine, and society. Playing
a notable role in several segments (such as energy production
processes, biofuels, pharmacists, biosensors, the food industry,
and textiles).>*#>°

However, enzymes' applications and desirable properties are
constantly hampered by their instability at elevated tempera-
tures or in aggressive solvents. Their inability to be recovered
and reused makes their widespread use challenging. Immobi-
lization can overcome these disadvantages, which enhances
photocatalysts, making them more robust and resistant to
thermal and solvent stress and preserving their catalytic activity
under extreme conditions.>****

Thus, immobilization improves the stability, selectivity, and
kinetics of the enzyme, the main goal of which is to strengthen
the biocatalyst's physical and enzymatic stability. Several
methods are used to immobilize the enzymes. However, the
industry always chooses the most accessible and economical
ones based on physical or chemical immobilization, such as
adsorption, covalent bonding, crosslinking, and encapsula-
tion.>° Fig. 5 shows the enzymatic immobilization techniques
according to their classification and approaches.**

3.1.1 Adsorption. The adsorption process is simple, inex-
pensive, reagent-free, and generally does not cause chemical
changes in the enzyme as it does not involve functionalization
of the support.>®>** It occurs through physical forces of attrac-
tion, and enzymes are immobilized on supports via van der
Waals bonds, hydrophobic interactions, hydrogen bonds, and
ionic bonds.>***

3.1.2 Covalent attachment. Enzymes can be covalently
immobilized on supports through chemical interactions, which
provides high stability and enzymatic adherence to the support
matrix, resulting in low leakage of the supported enzyme and
attesting to the rigidity of its structure, which in turn can be
naturally preserved against destructive agents such as heat,
organic solvents, extreme pH, and others.>*®

The covalent immobilization method usually involves two
steps. First, the support surface is activated by bifunctional

Adsorption

. ." [
Entrapment ':' » €et¢
/€ € ¢
Covalent
Attachment -¢

Cross-Linking

Fig. 5 Methods for enzymatic immobilization.

r— Physical Methods

Enzymes
Immobilization |

'— Chemical Methods
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agents such as glutaraldehyde,” and then the enzyme is
immobilized on the covalently activated surface. The cross-
linkers, generally used in covalent binding, link the support
material and the enzyme molecules.>>**%”

3.1.3 Crosslinking. In this method, enzymes are cross-
linked to the support matrices by bifunctional reagents, of
which glutaraldehyde is usually one of the most commonly
used. Based on intermolecular reactions, the enzymes are thus
immobilized with solidity through covalent bonds to improve
reusability and stability. However, the catalytic activities of the
enzymes may disappear during crosslinking.?**>>°

Essential cross-linking techniques are obtained by crystal-
lizing, atomizing, and aggregating enzymes; at the end of cross-
linking, the enzyme is immobilized, resulting in the production
of cross-linked enzyme (CLE), cross-linked enzyme crystals
(CLEC), bound enzyme aggregates (CLEA), and cross-linked
spray drying enzyme (CSDE).>**2°

3.1.4 Encapsulation. In immobilization by encapsulation,
enzymes are held in polymeric structures with pores that allow
substrates and products to pass through. Unlike adsorption,
encapsulation protects the enzyme from direct contact with the
reaction medium, minimizing inactivation effects because of
the nature of the solvent in the medium. In addition, the
method allows the enzymes to remain stable for a relatively long
time and does not require extraction of the enzymes from the
medium.>**>>

3.2 Magnetic nanoparticles as supports

Good support material and its interaction with the enzyme are
essential in immobilization, as the support properties can alter
biocatalyst activity and enzyme loading.>*

Thus, several nanostructured materials represent a relevant
and new class of support matrices that have been investigated
for the immobilization of various enzymes,*** such as nano-
particles,*** nanofibers,**® nanotubes,*** and nanosheets.

Thus, they have promising applications in the biotechnology
industry, as the catalytic activity of nanomaterials is similar to
that of enzymes®*® because of their low cost, flexible catalytic
activity, and high operational stability.””

In addition, the magnetization of substrates before use has
shown great potential for recyclable applications.”*® Since
nanomaterials can be easily collected and recycled by an
appropriate external magnetic field through the incorporation
of magnetic nanoparticles,***** magnetite (Fe;0,) is considered
to be favourable as a nanocarrier for immobilization of enzymes
due to its large surface area.>****

Recently, several published works have developed such
support for the presence of magnetic compounds to immobilize
enzymes. The relevance of Fig. 6 can be seen in a Scopus search
using the keywords nanoparticles and magnetic supports.

Yang et al. (2016) synthesized in situ rGO-Fe;O, nano-
composites to support the immobilization of catalase enzyme
(CAT) up to 312.5 4+ 12.6 mg g, with almost no enzymatic
leaching and the recovery of CAT activity can be increased to
about 98% due to the high surface area of graphene and
a magnetic field effect of Fe;O, nanoparticles. Studies direct
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nanocomposites as versatile nanosupports for biological or
chemical reactions and separations.””®

In this study, Lin et al (2017) synthesized Fe;O, nano-
particles and coated them with chitosan, and glutaraldehyde
was used as a cross-linking reagent for cellulase immobiliza-
tion. The tests showed that the immobilized particles exhibited
optimum cellulase loading efficiency (LE) of 99.6% and stan-
dard recovery rate (RR) of 68.5%, with a broader range of
adaptability to pH and hydrolysis temperature compared with
free cellulase, in addition to hydrolyzing efficiently for five
experiments, maintaining an average of 80% of free cellulase
activity. They were suggested to have promising potential in
applying cellulose hydrolysis.?”*

Mehnati-Najafabadi et al. (2018) immobilized the xylanase in
graphene oxide (GOMNP) superparamagnetic nanofilms func-
tionalized with polyethene glycol bisamine (PEGA). The results
showed that the xylanase was bound to the functionalized
nanocomposite, yielding 273 mg of enzyme per gram of PEGA-
GOMNP. The immobilized enzyme retained approximately
40% of the initial activity after eight cycles and 35% of the initial
catalytic activity after 90 days of storage at 4 °C. The study
indicated that the support is biodegradable and suitable for
bioengineering.””*

Xue et al. (2019) immobilized lysozyme in a 1,2,3,4-butano-
tetracarboxylic acid-modified cellulose magnetic microsphere
(BTCA), which exhibited better properties such as resistance to
temperature, pH, and thermal and storage stability compared to
free lysozyme. The apparent kinetics of immobilized lysozyme
showed that its K,, value was 1.37 times higher than that of free
lysozyme, and its V., was slightly lower, with an acceptable
reuse of 51.9 £ 2.2% of activity after six cycles.””*

Bezerra et al. (2020) immobilized Thermomyces lanuginosus
(TLL) on a new hetero-functional divinyl sulfone (DVS) support
in superparamagnetic nanoparticles functionalized with poly-
ethyleneimine (SPMN@PEI-DVS), the remaining DVS groups
were blocked with ethylenediamine (EDA), ethanolamine (ETA)
and glycine (GLY) to prevent uncontrolled enzyme support
reactions. As a result, 100% immobilization yield was achieved
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in 1 hour at pH 10. However, at pH 5.0, they obtained the most
excellent stability during thermal inactivation and good enan-
tioselectivity for the hydrolysis of racemic methyl mandelate,
the nanocatalysts blocked with EDA and ETA being 68% and
72%, respectively. They showed that the biocatalyst has excel-
lent potential for industrial applications.*”*

Coutinho et al. (2020) used the co-precipitation method to
synthesize hydroxyapatite (HA)/cobalt ferrite (CoFe,O,)
composites with different mass ratios to evaluate the viability
support for the immobilization of B-glucosidase, phytase, and
xylanase enzymes. The results showed that the composite with
the highest cobalt ferrite content (2 : 1 ratio) was highly effective
for immobilizing the three different enzymes, with immobili-
zation yields (IYs) between 70 and 100% and recovered activities
of 78 to 100%. Biocatalysts could be recovered rapidly, espe-
cially B-glycosidase, which could be reused 10 times while
retaining about 70% of its initial activity.>”*

Carvalho et al. (2020) used magnetic nanoparticles (Fe;0,)
for the physical adsorption of Yarrowia lipolytica MUFR]50682
lipase, achieving a high immobilization efficiency of 99%, and
this biocatalyst was recycled 30 times with 70% lipase activity at
the end. Moreover, they showed that immobilization on
magnetic nanoparticles could achieve high pH tolerance and
thermostability with a 40% improvement in thermodynamic
parameters at 60 °C.*”®

Coskun et al. (2021) aimed to increase the enzymatic activity
and enantioselectivity of the lipase Candida antarctica B (Cal-B)
by immobilization on graphene oxide (GO) nanoparticles, iron
oxide (Fe;0,4) and graphene oxide/iron oxide nanocomposites
(GO/Fe;0,). The prepared samples were used as biocatalysts in
the enantioselective transesterification reaction of (R,S)-1-phe-
nylethanol reported for the first time in the literature.>”

Perveen et al. (2021) fabricated a bioanode using nano-
composites containing magnetic particles of iron oxide (Fe;0,),
carbon nanotubes (CNT), gold nanoparticles (Au), and
a conductive polypyrrole polymer (PPy), which was used as
a support electrode for the immobilization of glucose oxidase
(GOD) and investigated for its application in an enzymatic
biofuel cell (EBFC) of glucose to improve the electron transfer
kinetics and electrode stability. The bioanode was considered as
a prospective material for the development of better electro-
chemical biosensors and biofuel anodes and showed promising
results, such as the maximum current density of 6.01 mA cm >
(0.22 V vs. Ag/AgCl) in 40 mM glucose concentration at 0.38 V
open circuit potential (OCV).>”®

Paz-Cedeno et al. (2021) synthesized magnetic graphene
oxide (GO-MNP). It was used as immobilization support for an
industrial preparation containing cellulase and xylanase, which
showed high activity for hydrolysis of pretreated sugarcane
bagasse (PSB) and related activities of endoglucanase, xylanase,
B-glucosidase and P-xilosidase of 70%, 66%, 88% and 70%,
respectively, after 10 cycles, also maintained about 50% and
80% of their efficiency for cellulose and xylan hydrolysis. Thus,
the study indicated the biocatalyst as a potential candidate for
industrial applications such as second-generation ethanol
production.*”®
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biopolymers (hard or soft gels), polymerization to form insol-
uble polymers (hard or soft gels), and supramolecular assembly
(soft gel),** as shown in Fig. 7. The sol-gel method is particu-
larly suitable for immobilising or encapsulating labile enzymes
in inorganic oxide matrices, offering the advantage of low
temperature and pressure conditions. The extent to which the
molecule retains its native properties depends on the interac-
tion between the matrix network and the encapsulated enzyme.
This process has successfully encapsulated various enzymes,
including therapeutic enzymes, cellobiase, amylase, and
lipase.®®* The sol-gel method, especially for hydrophobic
enzymes such as lipase, forms a wide range of active biocatalytic
materials, and the hybrid carriers produced can prevent enzyme
leakage while providing increased mechanical stability.?°***

Recent advances in enzyme entrapment include 3D printing,
metal-organic frameworks, smart gels (enzyme-responsive
entrapment), ionic liquids, and hybrid materials.*® The field
of 3D printing for enzyme immobilization by entrapment is,
with a few exceptions, primarily dominated by hydrogel-based
3D printing, with direct ink writing being the most commonly
used method.*”® Enzymes such as B-galactosidase and laccase
have been successfully used in 3D printable bioinks for enzyme
entrapment. 3D printing is promising, particularly in industrial
biocatalysis for flow reactions.**

3.4 Crosslinked enzymes

The aggregation of enzymes characterizes the method of
enzyme immobilization via cross-linked enzyme aggregates
(CLEAs) by cross-linking, where a collection of active molecules
is linked by chemical interactions, forming cross-links that hold
the enzymes together.*** Moreover, cross-linked aggregates
represent an irreversible technique of enzyme immobilization,
providing autonomous and reusable stable biocatalysts with
high enzyme activity retention, making them applicable in
various industrial fields.?**3%

Enzymatic aggregates are synthesized by crosslinking
enzyme aggregates prepared by mixing an aqueous protein
solution with organic solvents, polymers, or anionic salts and
then crosslinking with a bifunctional chemical reagent.**” The
cross-linking reagent is a molecule with at least two reactive

© 2024 The Author(s). Published by the Royal Society of Chemistry
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ends that bind to specific regions of the enzyme that are not
essential for catalytic activity, allowing the enzyme molecules to
interact with macromolecular structures®*****® physically. The
resulting covalent cross-links are rigid and effectively prevent
enzymatic denaturation, thereby preserving or enhancing
catalytic activity and increasing enzyme stability.**® In this
method of enzyme immobilization, the enzyme is not attached
to a solid support.*"*

This enzyme immobilization protocol highlights two cross-
linking immobilization approaches: cross-linking enzyme
aggregate (CLEA) and cross-linking enzyme crystal (CLEC).>**"*
The CLEA technique involves the addition of salts, organic
solvents, or nonionic polymers to form enzyme aggregates with
high catalytic activity.**> The CLEC technique is more complex
and involves controlled enzyme precipitation to produce
microcrystals, followed by the formation of crystal aggregates
through covalent bonding with a cross-linking agent to promote
this chemical interaction.**®* Both protocols use cross-linking
agents to form enzyme aggregates. CLECs offer several advan-
tages, including high operational stability, catalytic activity, and
ease of recycling. However, the protocol is complex and costly
regarding time and resources.****'® CLEAs, on the other hand,
are advantageous due to their simplicity, low cost of protein
processing, and robustness of the biocatalyst. However, cross-
linking agents can sometimes lead to structural changes or
enzyme formation that may block active groups.*"”

In their innovative research, Akkas et al. (2020) presented
a novel method for immobilizing ureases. This method involves
a reticulated enzyme aggregation technique using lyophiliza-
tion to enhance enzyme stabilization. In this study, lyophiliza-
tion of bovine serum albumin (BSA), crosslinking with
polyaldehyde dextran (DPA), and pH optimization of the
crosslinker were used to immobilize jack bean urease (JBU).
Notably, the relative catalytic activity of urea-CLELs was
approximately 1.47 times higher than free urease's. In addition,
the biocatalyst exhibited enhanced thermal stability, allowing it
to function in reactions at temperatures up to 85 °C while
maintaining catalytic efficiency. According to the authors, the
shelf life of the immobilized enzyme was extended to 4 weeks
with unchanged catalytic activity. In addition, the recyclability
of the enzyme was demonstrated, as its residual activity
remained unchanged after 10 reaction cycles, and its thermal
stability was nearly doubled. This approach opens new
perspectives for enzyme engineering, providing access to new
information and potential industrial applications.**®

3.5 Covalent attachment

The covalent enzyme immobilization protocol is one of the
most commonly used methods because it increases or main-
tains operational stability, thereby improving catalytic perfor-
mance.*"® This method involves the formation of stable covalent
complexes or bonds between the functional groups of the
support and the enzyme, making it a chemical method of
immobilization.**® The enzyme-binding functional groups need
not be essential for enzyme activity.** The primary functional
groups involved in interactions with the support are typically
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found in the side chains of the enzyme, such as cysteine (thiol
group), aspartic acid, glutamic acid (carboxyl group), and lysine
(e-amino group).*®® The major functional groups capable of
interacting and forming a covalent bond with these side-chain
enzyme groups include the imidazole, thiol, indole, hydroxyl,
amino, and sulfhydryl groups.**-%**

In most covalent coupling immobilization protocols, two
essential steps are required to maintain the technique's effi-
ciency.*” The first step involves the activation of the surface of
the solid support. In this step, one region of the ligand molecule
covalently interacts with the surface of the support, activating
the support while leaving the other region of the ligand mole-
cule free for interaction with the enzyme.**® Several activating
reagents can be used for this purpose, including glutaralde-
hyde, carbodiimide, glycidol, epichlorohydrin, and formalde-
hyde.*” The binding molecules bridge the support surface and
the enzyme at this stage through covalent interactions. These
binding reagents are multifunctional, thus allowing for this
covalent coupling.®®® The next step involves the interaction
between the activated solid support and the non-essential
region of the enzyme. The pre-activated support forms a cova-
lent bond with the enzyme, establishing a bond between the
free portion of the binding reagent and the enzyme binding
region.**** The selection of the activating reagent and the
immobilization protocol is determined based on the analysis of
the support surface and the structural and conformational
characteristics of the enzyme.**

Covalent fixation is characterized as an efficient technique
for the immobilization of enzymes.****** This protocol provides
vital links between enzymes and solid support. Therefore, the
leaching of the enzyme immobilized on the support is minimal,
thus improving the stability of the immobilized enzymes and
the immobilization yield.****** Notably, the high uniformity of
the bonds between enzyme and support allows reasonable
control of immobilised enzyme amounts.?**33%33¢

Much of the work published in the last five years has shown
that the parameters associated with enzyme immobilization
(e.g., immobilization yield, protein content, enzyme activity,
thermal stability, and pH) are favourable.?*® In particular, the
expressed activity of the biocatalyst is often maintained or
increased after immobilization, as the conformations of the
enzymes remain unchanged.**® Therefore, the covalent fixation
approach to immobilization mitigates the desorption
phenomenon, reduces the spontaneous deactivation rate of the
enzyme, and prolongs its useful life and operational stability.

The covalent fixation technique is often preferred as the
primary immobilization protocol because of its proven efficacy
in the literature. Helm et al. (2019) reported the covalent
immobilization of the hydroxy-nitrile lyases HbHNL (from
Hevea brasiliensis L.) and MeHNL (from Manihot esculenta C.) on
porous silica substrates, achieving high immobilization
performance. Because of the high enantioselectivity of these
enzymes, biocatalysts have been used in kinetic resolution
reactions to achieve superior chiral construction. As a result,
a project was developed for a continuous flow micro-reactor
with minimal HNL loads, resulting in a significant improve-
ment in catalytic performance compared to the batch system.
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The application of the constant flow system enabled the rapid
production of chiral cyanohydrins with high conversion (97%)
and high enantiomeric excess (98%) in only 3.2 minutes, using
the lowest possible enzymatic load. The monolith immobiliza-
tion protocol achieved high protein loads with immobilization
yields of 89% (11.3 mg total protein; 1120 U per monolith) and
72% (17.4 mg total protein; 1310 U per monolith) for HbHNL
and MeHNL, respectively, demonstrating the overall versatility
of the covalent immobilization method. This protocol increased
enzyme activity, improving substrate conversion rates and
superior chiral construction.*”

4. Enzymatic magnetic nanoparticle
applications
4.1 Oxirreductases

Oxidoreductase (EC 1) enzymes include at least 26 subclasses of
enzymes (https://enzyme.expasy.org/enzyme-byclass.html) that
play a central role in metabolic pathways critical for cell
function (https://www.brenda-enzymes.org). They catalyze
oxidation-reduction reactions that involve the transfer of
electrons, either as free entities or as hydrogen atoms,
between a donor (reducing agent, which is oxidized) and an
acceptor (oxidizing agent, which is reduced), or the transfer of
oxygen atoms from O,, which is reduced, to an organic
molecule, which is oxidized. These reactions account for at
least one-third of all enzymatic reactions recorded in the
BRENDA (Braunschweig ENzyme DAtabase).3#33°
Oxidoreductases are a diverse group of enzymes that play
a central role in various chemical oxidation-reduction
reactions. These enzymes facilitate the transfer of electrons or
the performance of oxidation and reduction reactions
between different substrates.****** They have a variety of
properties that make them useful in many fields, including
agriculture, environmental management, medicine, and
analytical chemistry. These enzymes include oxidases,
peroxidases, dehydrogenases, and oxygenases.***31:34>

Oxidoreductases can be functionally classified into several
categories: (i) oxidases catalyze oxidation reactions using
oxygen as the final electron acceptor. A well-known example is
laccase, one of the first oxidases studied.****** (ii) Peroxidases:
these enzymes catalyze the oxidation of substrates using
a peroxide, with hydrogen peroxide (H,O,) being the most
commonly used peroxide.*** (iii) Dehydrogenases: these
enzymes oxidize substrates by transferring electrons from
hydrogen atoms to acceptor or donor cofactors. Some dehy-
drogenases can use molecules other than oxygen as electron
acceptors.***** (iv) Oxygenases: these enzymes catalyze oxida-
tion reactions that directly incorporate oxygen into the
substrate.**®

Kouasse et al. (2020) used cholesterol oxidase (CHO) to be
bound to magnetic nanoparticles via carbodiimide activation.
FTIR spectroscopy analyses confirmed the binding between
CHO and the nanoparticles, with efficiencies ranging from 98%
to 100%. After nanoparticle association, comparative kinetic
studies between free and immobilized CHO showed significant
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stability and enzymatic activity improvements. In addition, the
bound enzyme exhibited improved resistance to variations in
pH, temperature, and substrate concentration.**” Cholesterol
oxidase has industrial and commercial importance, particularly
in bioconversions, for clinically determining total or free serum
cholesterol and agricultural applications.?**3*°

Huang et al. 2023 covalently bound lipase to magnetic iron
nanoparticles using carbodiimide activation. The efficiency of
lipase binding to magnetic nanoparticles was confirmed by
FTIR analysis. Compared to the free enzyme, the nanoparticle-
bound lipase showed a 1.41-fold increase in activity, a 31-fold
improvement in stability, and better tolerance to temperature
and pH variations.**°

Ren et al. 2023 carried out the immobilization of yeast
alcohol dehydrogenase (AmDH) on titanium nanoparticles.
First, AmDH was coated with polyethyleneimine (PEI), which
created a hydrophilic environment that stimulated the hydro-
lysis and condensation reaction of titanium, resulting in the
formation of nanoparticles. This process created a rigid matrix
that acted as a pocket, preventing the enzyme structure from
unfolding. The immobilized enzyme, named AmDH-PEI-Ti,
retained 80% of the activity observed in the free enzyme, with
an entrapment efficiency of 90%, showing potential for indus-
trial production.®*%

Oxidoreductases represent biocatalysts of great interest, with
significant potential in producing polymeric building blocks,
sustainable chemicals and materials derived from plant
biomass in lignocellulose biorefineries. However, despite these
promising applications, the chemical industry, especially in
large-scale chemical manufacturing, has not yet widely adopted
enzymatic oxidation reactions.*”

This reluctance is mainly attributed to the lack of bio-
catalysts that possess the necessary selectivity, are commercially
available, and are compatible with stringent process conditions.
Such conditions include high substrate concentrations, use of
solvents, and strongly oxidative environments. Overcoming
these challenges is crucial for effectively integrating enzymatic
oxidation reactions into industrial processes, presenting the
potential to contribute significantly to the sustainable produc-
tion of diverse chemical products and bio-based materials.?3***

4.2. Transferases

Transferases are enzymes that are part of a group responsible
for transferring various functional groups, such as the methyl
group of a compound, to other groups that accept them, thereby
creating a bond between the donor group and the acceptor
group.*” Transferase enzymes can be divided into subgroups
based on the transferred functional groups. The first subgroup,
known as glutathione S-transferases (GSTs), catalyzes the
transfer of a methyl group from glutathione (GSH). The second
subgroup, N-acetyltransferase (NATs), transfers an acetyl group.
The third subgroup, sulfotransferases (SULTSs), transfer one or
more sulfate groups. The fourth subgroup, UDP-
glucuronosyltransferases  (UGTs), transfers a  glycosyl
group.****” The scope and outcomes of transferases are still
poorly understood and require further investigation. However,
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it is known that transferase enzymes are mainly used in the
health field, especially in pharmacology and biochemistry, as
their primary function is to conjugate drug metabolites, making
the studied drugs more hydrophilic, facilitating their absorp-
tion and allowing for their natural elimination.

Glutathione S-transferase enzymes (GSTs) are the most
extensively studied of the transferases and are known as drug-
metabolizing enzymes (DMEs). Based on the sequential catal-
ysis analysis, these enzymes can be divided into phases I, II, and
IlI, each with a different role.**® Glutathione S-transferases
(GSTs) are part of phase II and crucial enzymes in combating
oxidative stress. They act as detoxification enzymes, conjugating
products from phase I reactions. Phase I involves the oxidation
of drugs, and the primary function of GSTs is to conjugate drug
or xenobiotic metabolites to make them more hydrophilic. This
occurs through several pathways, including methylation, glu-
tathionylation, acetylation, and sulfation. Sulfotransferase
enzymes (SULTSs) are also part of phase Il and are involved in the
sulfation pathway.** In addition to their detoxification role,
GSTs have isomerase and peroxidase functions and can bind to
numerous endogenous substances and exogenous ligands.?***%*

Transglutaminase (TGM) enzymes are a subgroup of trans-
ferase enzymes. Transglutaminases (TGMs) facilitate intra-
molecular and intermolecular cross-links between glutamine
and lysine residues, with the former serving as acyl donors and
the latter as acyl acceptors. These residues are commonly found
in peptides and various proteins.**»** Transglutaminases
(TGMs) play an essential role in the food industry, enhancing
the properties of proteins and improving the texture and overall
quality of food products. Viable technological methods
contribute to more efficient use of raw materials, thereby
improving the cost-benefit ratio of food production.****** TGMs
also have potential applications in other industries, including
the leather and textile sectors.**

In a recent study, transglutaminase enzymes (TGMs) were
subjected to enzymatic immobilization using magnetic nano-
particles (MNPs). Microbial TGMs were investigated to create
cleaner and more environmentally friendly industrial applica-
tions. Immobilization of TGMs was achieved by covalent
attachment, starting with the preparation of MNPs, which were
then modified by a co-precipitation process with Fe*" and Fe®*.
Subsequent modifications included carboxymethyl dextran
(CMD) and CMD with oleic acid. The MNPs were activated with
the crosslinking agent's pentamethylene hexamine (PEHA) and
glutaraldehyde (GA), the latter being a common choice for
enzyme immobilization techniques.*® The immobilized TGMs
on magnetic nanoparticles were thoroughly analyzed, including
protein concentration, activity, thermal stability (in both free and
immobilized forms), stirring speed, and reuse (cycles). The study
concluded that the enzymes were quickly recovered from TGMs
immobilized in CMD-oleic and CMD-MNPs, with CMD-MNPs
showing the highest success rate in terms of immobilization.
The enzymes were also hyperactivated, showing % residual
activity of 110% and excellent thermal stability at 50 °C and 70 °©
C. This led to the conclusion that the immobilization studies
with magnetic nanoparticles of TGMs were successful and could
be used in industrial applications as an economical and
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biodegradable biocatalyst, with potential applications mainly in
the leather and wool industries.*®*?” In a recent study, trans-
glutaminases (TGMs) were subjected to enzymatic immobiliza-
tion, a widely used method for enzyme stability. Two different
approaches were used, magnetic cross-linked enzyme aggregates
(mCLEAs) and cross-linked enzyme aggregates (CLEAS), to obtain
promising results regarding the enzymatic activity of the
enzymes immobilized by these methods. After studying the
techniques, the TGMs were subjected to a colourimetric
hydroxamate procedure using CBZ-glutamine glycine (CBZ-GIn-
Gly) as an amine acceptor substrate to identify the activity of
the TGMs.*”* The TGMs showed the highest results among the
enzymes included in the study. The ideal reagent for CLEAS
TGMs was 2-propanol, resulting in a residual activity of 231%. In
addition, both immobilization techniques, CLEAS and mCLEAS,
showed more excellent storage stability when exposed to 4 °C for
44 days. mCLEAS TGMs showed very positive results compared to
CLEAS TGMs, with residual activity of 53% under these condi-
tions, providing more excellent stability of the immobilized
TGMs. The study showed that mCLEAS had better operational
stability and catalytic efficiency than CLEAS, demonstrating that
magnetic nanoparticles significantly affect stabilization results.
The two immobilization techniques have particular specificities
and depend on the behaviour of the enzymes in specific envi-
ronments and conditions to which they are subjected. Both
immobilization techniques are promising, but the enzymes have
no particular rules or parameters, whether CLEAS or mCLEAS.
Both methods could be used in many future bioapplications.*”

Scientists are increasingly studying and analysing trans-
ferases worldwide, with several studies presenting promising
analyses for future applications. Although studies on
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immobilization in magnetic nanoparticles (MNPs) and trans-
ferases are still in their infancy, guidelines for future scientific
analysis already exist, especially in the food industry.’”*=”*
Although still in its infancy, scientific work on transferase
enzymes aimed at enzymatic immobilization is already avail-
able, especially for TGMs. For example, an enzymatic
membrane reactor (EMR) has been developed to recover whey
protein.*”® In addition, a study describes the usefulness of TGM
enzymes for immobilization in poly(N-isopropylacrylamide).*”
Glutathione S-transferases (GSTs) are used in enzymatic activity
studies because of their high detoxifying properties.’”® They are
also used to separate and purify proteins when labelled with
GSTs. These enzymes protect the body from chemical carcino-
genesis and conjugate glutathione (GSH) to various electro-
philic substrates.’”® Transferases are expected to become the
most studied group of enzymes for enzyme immobilization
because they have desirable properties for all fields, especially
for current studies focusing on cleaner, ecologically correct, and
economically sustainable technologies. These enzymes have
large-scale and industrial applications.

4.3. Hydrolases

Hydrolases (EC 3) catalyse hydrolysis reactions in living organ-
isms.***%* They are divided into subclasses based on the
particular bonds they target during chemical reactions. The
diversity and adaptability of these enzymes in hydrolyzing
a wide range of substrates, from small to large molecules, make
them particularly attractive for industrial applications.***

Of the various subclasses of hydrolases, certain enzymes
such as tannases, o-amylases, [B-galactosidases, proteases,

Table 2 Applications of immobilized hydrolases on magnetic nanoparticles

Immobilization
Enzyme Support yield Application Reference
Rhizomucor miehei (RML) and Fe;0,@8Si0," 81-100% Biodiesel production 390
Thermomyces lanuginosa (TLL)
Bacillus subtilis ZnO nanoparticles 71.9-79.5% Detergent formulation 391
Rhizopus oryzae (ROL) Magnetite nanoparticles  74.7% Synthesis of triacylglycerols 392
Pseudomonas fluorescens (PFL) AGMNP-Co?*? 89% Biodiesel production 393
Thermomyces lanuginosus (TLL) Fe;0,@PEI° 69.6-74.4% Synthesis of ethyl valerate 394
Rhizomucor miehei (RML) Carbon nanotubes 95-98% Hydrolysis of p-nitrophenyl butyrate 395
Bacillus atrophaeus (BaL) Graphene oxide 81.35% Synthesis green apple flavor ester 396
nanosheets
Proteases produced by solid state Magnetic iron oxide 93-96% Hydrolysis of different protein sources 397
fermentation nanoparticles
Rhizopus oryzae (ROL) CoFe,0,¢ 77.43% Biodiesel production 398
Candida rugosa (CRL) Multiwalled carbon 88.5% Synthesis of fruit flavors 399
nanotubes with Co
Tannase from Aspergillus ficuum mDE-PANT* 90% Removing tannins from aromatic drinks 400
Bacillus subtilis A (BsLA) Fe;0,@Si0, 89.94-93.72%  Hydrolysis of p-NPC 401
Candida antarctica B (CALB) Fe;0,@CHY 95% Photo-curable functional esters 402
Burkholderia cepacia (BCL) GTAMNPs? 98.8% Standard esterification reaction between lauric 403

acid and 1-dodecanol

“ Note: magnetic nanoparticles coated with silica. ” Magnetic nanoparticles with glycidoxypropyltrimethoxysilane (GOPTS), 5-AIPA and Co>'.
¢ Superparamagnetic magnetite nanoparticles modified with polyethyleneimine (PEI). ¢ Core-shell cobalt ferrite nanoparticles. ° Magnetic

nanoparticles composed of polyaniline-coated diatomaceous earth.

Magnetic nanoparticles cross-linked with chitosan. ¢ Melamine-

glutaraldehyde dendrimer-like polymers grafted on aminated magnetic nanoparticles.
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phospholipases, and various lipases have been used in immo-
bilization processes using magnetic nanoparticles as
supports.’*** Table 2 provides some examples of these appli-
cations in industrial processes.

Studies indicate that proteases are increasingly used for
enzymatic immobilization with magnetic nanoparticles.****%
Ibrahim et al. (2021) demonstrated that the nanobiocatalyst
prepared by covalent immobilization of alkaline protease from
Salipaludibacillus agaradhaerens in mesoporous double-core
nanospheres (DMCSS) exhibited enhanced enzyme stability in
high concentrations of NaCl, solvents, surfactants, and
commercial detergents. Furthermore, the immobilized protease
exhibited excellent operational stability, retaining 79.8% of its
activity after ten cycles, thus proving to be a promising nano-
catalyst for industrial applications.*”” Razzaghi et al. (2018)
concluded that immobilization of the protease Penaeus vanna-
mei in zinc sulfide (ZnS) nanoparticles improved the function-
ality of the enzyme at high temperatures, extreme pH
conditions (pH 3 and 12) and during storage while also
extending its optimal temperature range.**®

In their study, Li et al. (2018) aimed to develop a novel bio-
catalyst for tea infusion clarification. To achieve this, they
immobilized Aspergillus niger tannase on chitosan-coated
magnetic nanoparticles (Fe;04-CS). The immobilized tannase
retained more than 50% of its initial activity even after eight
reaction cycles. It exhibited improved pH and thermal stability
and effectively enhanced the colour of both black and green tea
infusions.***

In recent years, magnetite (Fe;0,)-based nanoparticles have
emerged as a successful choice for immobilizing various lipases
due to their numerous advantages, including high stability, low
toxicity, and easy separation by an external magnetic
field.?*>#01499411 Garno et al (2017) used citric acid-
functionalized Fe;O, nanoparticles to immobilize Thermo-
myces lanuginosus (TLL) lipase and applied the resulting bio-
catalyst in banana flavour synthesis. In particular, they achieved
a remarkably high activity recovery compared with the free
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lipase, with values reaching up to 144% at pH 7 and 323% at pH
7.5. Furthermore, the immobilized enzyme exhibited superior
stability and improved reusability, retaining 75% of its initial
activity after 60 days of storage during the third cycle of banana
aroma production and 64% after 120 days. These results
demonstrated the improved performance of the immobilized
enzyme compared to its free counterpart.**>

Lipases immobilized onto magnetic nanoparticles are also
widely used in biodiesel production reactions.***'* In a recent
study, Zulfiqar et al. (2021) developed a novel nanobio-catalyst
by immobilizing lipase from Aspergillus niger onto titanium
dioxide nanoparticle-modified polydopamine (PDA-TiO,). They
used it to synthesise biodiesel via enzymatic transesterification
using Jatropha curcas seed oil. The immobilized lipase exhibited
greater resilience to changes in pH and temperature conditions.
Moreover, the optimal biodiesel yield of 92% was achieved by
conducting the transesterification process for 30 h at 37 °C with
a 10% concentration of the nanobio-catalyst.**

Thus, research confirms hydrolases' considerable diversity
and adaptability while demonstrating the significant benefits of
using magnetic nanoparticles to aid immobilization. This has
improved their properties and efficiency in various reactions,
facilitating their application in numerous industrial processes.

4.4 Lyases

Lyases (EC 4) are enzymes that catalyze addition and elimina-
tion reactions. They cleave chemical bonds but do not undergo
this process by oxidation or hydrolysis.****** Studies have
demonstrated their use in vital areas such as agriculture and
food****** and medicine.**>*** Some of the applications of these
enzymes immobilized on magnetic nanoparticles are shown in
Table 3.

Like other classes of enzymes, lyases have their subclasses.
Among them are alginate lyases, which are synthesized by algae,
bacteria, marine molluscs, fungi, and viruses and play essential
roles in the degradation and assimilation of alginate.****** In the
study by Jiang et al (2021), the alginate lyase AlgL17 was

Table 3 Applications of lyases immobilized onto magnetic nanoparticles

Enzyme Support Immobilization yield Application Reference
Alginate extracted from Fe;0, 97.8% Antioxidant and 427
Escherichia coli antiapoptotic bioactivities in
human umbilical vein
endothelial cells
Pectate lyase from Fe;0, 96.5% Bioscouring of coarse cotton 428
Clostridium thermocellum
Benzaldehyde lyase from Epoxy-chelate magnetic 87% Synthesis of critical 429
Pseudomonas fluorescens support synthons for pharmaceutical
products
Pectate lyase Calcium hydroxyapatite >70% Processes of both high and 430
nanoparticles and single- low temperatures
walled nanotube
Phenylalnine ammonia lyase Hybrid nanoflowers 90% Biosensors 431
Cystathionine y-lyase TiO, 95% Biomineralization 432
Pectin lyase from Magnetic carboxymethyl 80% Purification of some fruit 433

Acinetobacter calcoaceticus cellulose nanoparticles
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immobilized onto magnetite (Fe;0,) nanoparticles. In the end,
they obtained a new biocatalyst that showed superior thermal and
pH tolerance, excellent storage stability, and capacity for reuse.
This biocatalyst was used to produce alginate oligosaccharides,
which showed antioxidant activities and prevented cell self-
destruction, being effective against hydrogen peroxide-induced
oxidative stress in human umbilical vein endothelial cells.**”

Another study by Shin et al. (2010) revealed a new biocatalyst
prepared by immobilizing marine alginate lyase from Strepto-
myces sp. (ALG-5) in magnetic iron oxide and hybrid magnetic
silica nanoparticles. It exhibited the most significant alginate
degradation activity and could be reused more than ten times
after magnetic separation.*”

Another subclass of lyases is pectate lyases (PLs), which act
on the degradation of pectin produced by pathogenic organ-
isms and can potentially have industrial applications.****
Chakraborty et al. (2017) immobilized the recombinant Clos-
tridium thermocellum pectate lyase in magnetite nanoparticles
and, from this process, produced a biocatalyst with more
significant activity, improved thermal stability 32 times at 80 °C
and 14 times at 90 °C, and with the ability to be reused for five
cycles followed by 70% of the initial activity. Its application in
the biofouling of cotton fabric showed an efficient removal of
pectin from the fabric surface.**®

An analysis of the existing research shows that lyases are
enzymes that have not been widely studied in immobilization
processes using magnetic nanoparticles as a support. However,
the limited number of published studies highlights the poten-
tial applicability of these enzymes and the advantages of
immobilizing them on these particles.

4.5. Isomerases

Isomerases catalyze reactions that can induce intramolecular
changes that convert the substrate into an isomer.

Immobilization magnetic nanoparticles increase isomer-
ases' stability and offer advantages in the reaction medium
because of their large surface area, ease of separation from the
reaction medium by an external magnetic field, mobility, and
mass transfer. Consequently, isomerases immobilized on
magnetic particles find applications in various industrial
sectors, as shown in Table 4.

The industrial production of phenylacetaldehyde is essential
in the flavour and fragrance industry because it synthesises
various products, including insecticides, disinfectants, and
pharmaceuticals. This aromatic aldehyde is obtained from the
isomerization of styrene oxide in the presence of alkali-treated
silica or various zeolite compounds. In addition, oxidation of

Table 4 Applications of industrial isomerases
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2-phenylethanol can be performed using hexavalent chromium
compounds or rhodium complexes.

The enzyme r-arabinose isomerase is of industrial impor-
tance because of its applicability. The process can occur in vivo,
catalyzing the isomerization of r-arabinose to vr-ribulose. In
vitro, it can generate the reaction of p-galactose to p-tagatose in
nutraceutical foods.**® Therefore, the overall applicability of the
process can be optimized when r-arabinose isomerase is
immobilized on chitosan supports with magnetic nano-
particles.*”**® Moreover, using chitosan with magnetic nano-
particles acts in applications, sewage, water treatment, and food
preservatives in the food industry and presents a tremendous
antioxidant specificity and antimicrobial practice.**

Lactose, a by-product of yoghurt and cheese production, is
used in various food and pharmaceutical products.*** However,
industrial production of lactose is limited by its low solubility,
sweetness, and bioavailability.** Concentrated lactose yields
less sweet p-tagatose than sucrose.**” p-Tagatose, an isomer of p-
galactose, exists in a-p-tagatose-2,6-pyranose, p-p-tagatose-2,6-
pyranose, a-bD-tagatose-2,5-furanose, and [-p-tagatose-2,6-
furanose structures catalyzed by the enzyme r-arabinose isom-
erase.**® p-Tagatose synthesis involves catalytic isomerization at
high pH using soluble bases that are neutralized with sulfuric
acid after conversion. However, p-galactose isomerization with
essential catalysts results in lower p-tagatose selectivity due to
by-product formation.*** Using magnesium-based catalysts
(MgO) improves the isomerization of glucose, galactose, and
arabinose with satisfactory yields. Supported by various mate-
rials such as carbon nanotubes, hydrotalcite, and aluminates,
the stabilization of MgO during the reaction is improved.*****”

Glucose isomerase, an enzyme that catalyzes reversible
isomerization reactions, is critical in the conversion of b-
glucose and p-xylose to p-fructose and p-xylulose, which are
widely used in industrial contexts.**® In the food sector, its role
is prominent in producing high fructose corn syrup (HFCS),
a mixture of glucose and fructose suitable for people with dia-
betes.*****° The process can also involve the interconversion of
xylose to xylulose by glucose isomerase. Therefore, magnetic
particle immobilization provides an efficient method for easy
recovery and reuse while reducing costs.*** As a result, glucose
isomerase and other enzymes present an opportunity for large-
scale industrial mobilization and are widely used in various
food industry sectors.*>%*

The disulfide isomerase (PDI) enzyme is a redox chaperone
with applications in thiol oxidoreductase and isomerase in
nascent proteins in the endoplasmic reticulum.*** The PDI
enzyme has several functions at the cell surface, primarily

Enzyme Application References
L-Arabinose isomerase Food industry 442
Glucose isomerase High fructose corn syrup (HFCS) production 443 and 444
Protein disulfide isomerase (PDI) Thiol-disulfide of ADAM17 and «IIbB3 444

Triose phosphate isomerase High definition proton magnetic resonance study 445
p-Psicose 3-epimerase Food additives 444 and 445

17960 | RSC Adv, 2024, 14, 177946-17988

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a

Open Access Article. Published on 05 June 2024. Downloaded on 7/23/2025 11:51:25 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

maintaining redox homeostasis and the thiol-disulfide isom-
erization process of ADAM17 and allbB3.**® Therefore, the
effects associated with thrombosis, platelet activation, and
vascular thiol isomerases**® can be reduced or inhibited by
using the PDI process as an antithrombotic criterion.*”” Using
chitosan-polyacrylic hybrid microspheres offers advantages
regarding Hof stabilization, temperature, and operation during
its application. Consequently, a technique is required for GI
mobility with a high enzymatic reactivity process and stabili-
zation at the junction of iron changes.**®

Triosephosphate isomerase extracted from rabbits and chicken
was analyzed by high-resolution proton magnetic resonance
imaging. The analytical techniques detected five possible histi-
dines in the chicken protein and one histidine in the rabbit
enzyme over a pH 5.4 to 9 range in the amino acid sequences.*®
Specifically, the resonances of histidine 100 in chicken and
rabbit and only histidine 195 in the chicken enzyme were
considered.*”® Histidine 100 is destabilized by the addition of
ligands such as bp-glycerol-3-phosphate, which changes the
conformation of the enzyme but remains stabilized in the pres-
ence of inhibitors such as phenyl phosphate. In this way,
a peptide-NH proton exchange occurs in the histidine resonance
regions, eliminating any deformation of the enzyme.*”*

p-Psicose production via the epimerization reaction of p-
fructose using class 3 epimerases is under consideration.*”
Psicose, the carbon-3 epimer of the sugar p-fructose, is rare and
has a lower sugar content than sucrose. It is a food additive with
functions such as suppressing glucose in type 2 diabetes,
producing a near-defensive effect, and inhibiting hepatic lipo-
genic proteins.*”? p-Tagatose 3-epimerase from Pseudomonas
cichorii catalyzes the C-3 epimerization of p-fructose to produce
p-psicose.””* The b-psicose-3-epimerase from Agrobacterium
tumefaciens was selected because of its substrate preference.
This enzyme is also present in several other species, such as
Ruminococcus sp. and Clostridium bolted.*”® However, certain
factors limit the production of p-psicose-3-epimerase on an
industrial scale. The immobilization process can optimize the
reaction yield, and titanium dioxide (TiO,) is often used as
a support material for nanoparticle immobilization due to its
conductivity physical and chemical stability.*’¢**

D-

4.6. Other enzymes

Trehalose is an enzyme developed by a mechanism that maintains
the processability and biological properties while preserving the
activity of macromolecules.””® Therefore, the reaction process
through metal-organic frameworks (MOFs) is optimised using
ZIF-8 to permeabilize two encapsulated enzymes from Bacillus
subtilis coated with glycemic isomerase. The enzyme glucose
isomerase converts trehalose synthase and the by-product
glucose to fructose for industrial applications.** Because of its
stability, the trehalose-protected enzyme is used in biological
studies, agriculture, and the pharmaceutical and food industries.
In addition, the food industry creates a stable, protective layer to
delay nutrient loss and adjust food flavour.*****>

Lipases are enzymes widely used in biodiesel synthesis due
to their mild reaction conditions, easy product recovery, and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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environmental  sustainability compared to chemical
processes.**>*#* Therefore, immobilization of lipases allows
reuse and improves stability and catalytic activity. The support
choice provides the most suitable surface area and low cost.***
Using magnetic silica/iron oxide nanoparticles promotes
advantages in partitioning the material controlled by
a magnetic field.**® Covalent bonds have been used on various
supports to produce the reaction between an active group on the
support and the amino acid residue of the lipase.**”

The enzyme Burkholderia cepacialipase (BCL) is considered
a chiral high-resolution catalyst.*®®* Immobilization in nano-
particles increases enzyme activity and stability. When immo-
bilized in nanoparticles, they can be modified by dendrimer
polymers to protect the structure of Burkholderia cepacialipase
and thus increase the contact levels between substrates and the
enzyme centre.**® Applications in the pharmaceutical field
through drugs are chiral drugs that present differences in
dynamics and kinetics in vivo, requiring the separation of drug
enantiomers. The surface modification controls the
morphology (i.e., improves the affinity of the compounds by the
active groups), increasing the charge and favouring the recovery
of the enzyme. Therefore, these chiral programs are widely used
in the spice, textile, and pharmaceutical industries.*°

The protein from Thermomyces lanuginosus (TLL) is a lipase
with high catalytic efficiency due to its enantioselectivity and
isoelectric point (pI).** Therefore, the use of the support with
the reactive group divinyl sulfone (DVS) with polyethyleneimine
(PEI) provides the hetero-functionality of the DVS-PEI support
to generate intense multivalent covalent bonding.*> Thus, the
octyl DVS matrices in the immobilization process by super-
paramagnetic nanoparticles allow interfacial activation to
occur, ensuring stabilization through the points of multivalent
bonds.***** The coating by nanoparticle immobilization
protects the surface from oxidation and minimizes non-specific
interactions. Thus, covalent nanoparticle immobilization opti-
mized on DVS-containing supports provides a better pH ratio,
incubation time, and different blocking intermediates. There-
fore, its applications are targeted to the medical and fine
chemical industries.***”

Glutathione (GSH) enzyme is a tripeptide protein (y-i-glu-
tamyl-i-cysteinyl-glycine). When used with GSH-agarose, it
allows the isolation and purification of recombinant protein
with glutathione S-transferase (GST) activity by GSH-GST inter-
action chromatography.**® The composition of GSH has one free
amino group, two free carboxyl groups and several free thiol-
reduced structures. Therefore, the GSH enzyme and agarose
microbead are activated and cross-linked by the amino group
medium.*” Its application in closed GSH nanoparticles is used
to conjugate folic acid in cancer cell detection.****** Iron oxide
nanoparticles are coated with GSH and are also used to promote
the stability of immobilized GSH through covalent bonds such
as tetraethoxysilane (TEOS).>* Thus, magnetic nanoparticles
attached to GSH can couple enzymes fused to GST through the
GSH-GST interaction. In this way, the protease enzyme used
with nanoparticles is bound to GSH in identifying the three-
dimensional structure as they improve the stability and solu-
bility of the protein.>*****
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5. Bioreactor projects with enzymatic
magnetic nanoparticles

The content presented above highlights a growing interest in
nanotechnology applications in bioreactor projects, focusing on
using enzymatic magnetic nanoparticles. Dutta S. et al. (2023)>%
highlight the use of nanoparticles in various stages of bio-
ethanol production from lignocellulosic (LB) materials, helping
to overcome challenges associated with complex compositions
and inefficient degradation processes. The authors outline
nanotechnological methods during pretreatment that offer
significant advantages for different types of LB, improving both
biofuel yield and quality. Recent experiments have shown that
using magnetic nanoparticles offers remarkable advantages,
facilitating the recovery and reuse of immobilized
enzymes,***>* leading to an overall reduction in process costs.

The study by M. V. C. da Silva et al. (2023)** highlights the
creation and verification of methods and processes for using 2-
ethylhexyl oleate catalyzed by Candida antarctica lipase immobi-
lized in poly(styrene-co-divinylbenzene) magnetic particles (STY-
DVB-M). The detailed analysis focuses on the physical proper-
ties of the STY-DVB-M copolymer, such as the glass transition
temperature of 85.68 °C and the onset of thermal degradation,
which occurred at 406.66 °C, demonstrating the importance of
support stability in bioreactors. Additionally, the work investi-
gates the influence of magnetic field strength on reaction yield
and productivity, emphasizing the versatility and control enabled
by magnetization in the systems,***" crucial aspects when
exploring bioreactors with magnetic nanomaterials.

N. K. Abd-Elrahman et al. (2022)**> deal with the production
of biohydrogen by microbial electrolysis cells (MECs). By eval-
uating various parameters, including the configuration of
MECs, electrode materials, substrates, pH, temperature,
applied voltage, and nanomaterials, the MEC stands out for its
efficiency in converting substrates to hydrogen, achieving
between 80 and 100% efficiency, compared to dark fermenta-
tion with 33% and water electrolysis with 65%. The preferential
choice of carbon materials due to their high porosity highlights
the importance of careful material selection,>**** while the use
of nanomaterials in MECs to increase the efficiency of anodic
and cathodic reactions indicates the strategic potential of this
application in bioreactors. Their approaches validate and
suggest the feasibility of integrating both methods discussed in
bioreactor projects with enzymes in magnetic nanoparticles.>*

Although at an early stage of development, both studies
emphasize the urgency of further research to ensure the
improvement and effectiveness of bioreactors considering
kinetic and engineering aspects, another emerging challenge is
the aggregate use of Al and computer simulations.>**>'¢5%7

6. Study of countries, journals, and
institutions

Bibliometric data analysis provides a quantitative and objective
view of scientific publications, allowing the identification of the
most influential countries in the production of knowledge in

17962 | RSC Adv, 2024, 14, 17946-17988

View Article Online

Review

3000

2500 2450

2000
1794
1 1683 1ea

1432

1000 | 869
" 747

507
500 : 424

Total number of citations and
publications

80 58 60

21 5 14 2 1" 14
o - - |

Brazil China Spain  Japan India  Saudiarabia Malaysia  faly  Potugal  USA

Countries

mDocuments = Citations

Fig. 8 Prominent countries have published the most and were most
cited in magnetic nanomaterials for enzyme immobilization in the last
five years.

a given research area. Brazil, China, and Spain emerged as the
most important countries regarding citations and a number of
publications on the research topic. As shown in Fig. 8, Brazil
recorded 2450 citations associated with 80 publications, fol-
lowed by China with 1794 citations and 58 publications, and
Spain with 1683 citations and 60 publications during the study
period. These data highlight the significant impact of research
on the topic in the international academic and scientific sphere.
The high production of articles and the substantial number of
citations attributed to these countries indicate an active interest
and a significant contribution to the advancement of knowledge
in this specific field.

Fig. 9A illustrates the scientific collaboration between
countries, with Brazil and China emerging as central players in
this network. Brazil (58% of total citations) and China (42% of
citations) are the most cited countries and have strong
connections, as indicated by their size, the number of connec-
tions with other countries, and the thickness of the connecting
lines. This suggests that both countries are major contributors
to global research and have extensive international connec-
tions. Strengthening these collaborations could further
promote the exchange of knowledge and resources worldwide.
Fig. 9B visualises the temporal landscape of cross-country
collaborations from 2016 to 2023. The map shows the
strength of connections between countries and their clusters,
with purple shades representing older years and light green
shades representing more recent publications. This progression
suggests a continued consolidation of research over time. In
particular, clusters such as Brazil, China, Spain, Italy, and the
United States maintain their relevance and significant contri-
bution to knowledge in the field, laying a solid foundation for
future scientific progress.

In Fig. 10A, we observe the importance of leading journals in
different groupings (represented by clusters in yellow, red, and
purple), with a focus on the journal with the highest impact, the
Journal of Molecular Catalysis, which has 2441 citations across
63 publications, averaging 38.74 citations per article. This
journal stands out as a central hub within its respective cluster

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Bibliometric maps of country co-authorship. (A) Network of
clusters of most cited countries. (B) Overlay visualization of country
link power.

(vellow) and explores the molecular and atomic aspects of
catalytic activation and reaction mechanisms. We also highlight
the Process Biochemistry cluster (purple), with 32 publications
and 422 citations, focusing on processes related to bioactive
molecules and living organisms. The Biochemical Engineering
Journal (red), with 354 citations and 11 publications in the
research topic clusters, is instrumental in developing biological
processes, from preparing raw materials to recovering relevant
products for industry.

The presence of these journals in the same thematic area
underscores the concentration of efforts and interests in
specific areas of science as well as the active networking and
collaboration among researchers working in this field. This
interconnectedness is fundamental to the exchange of knowl-
edge. Furthermore, when analyzing Fig. 10B, which shows the
number of publications over five years, the Journal of Molecular
Catalysis accounts for 60% of the published documents, fol-
lowed by Process Biochemistry with 30% of the publications
and Biochemical Engineering Journal with 10%. This visual
representation highlights the interactions between countries
regarding citations and mutual collaborations. It also high-
lights the importance of the links between different research
centres and academic institutions, underscoring the crucial role
of international cooperation in driving scientific and techno-
logical progress on a global scale.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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In Fig. 11A, the top institutions are ranked by the number of
published documents, most citations, and total link strength,
highlighting those that have contributed the most to the
research and their collaborative interactions. Aligarh Muslim
University stands out, leading with 997 citations and 18 publi-
cations, reaffirming its dominance in research on magnetic
nanomaterials for enzyme immobilization. The Superior
Council for Scientific Investigations (CSIC) appears in second
place with 841 citations and a higher number of 27 published
documents, indicating increasing progress in research on this
topic.

In third place is the Federal University of Ceara, in Brazil,
with 722 citations and 14 published documents, highlighting
Brazil's role in researching new technologies and advances. On
the other hand, Fig. 11B provides a visualization map of the
most important universities, identifying the clusters with the
highest number of connections between universities. The
Federal University of Ceara cluster (yellow) leads with 74
connections, followed by the CSIC cluster (orange) with 52
connections, and the University of Sdo Paulo cluster (blue) with
36 connections. These results show that the total number of
connections reinforces the strength of the overall connection of
each institution. Of the 10 universities analyzed by the VOS-
viewer software, six are of Brazilian origin, highlighting Brazil as
an important research center in this area.
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7. Future trends (current challenges
and prospects)

Magnetic nanoparticles are carriers with high potential for
enzyme immobilization due to their easy separation and
recovery from the reaction medium, large surface area, and high
mass transfer capacity.”**>** However, the specific interactions
between the carrier and the enzyme require optimization
protocols to enhance the enzymes' catalytic activity, stability,
and recyclability.”®>>* Furthermore, the engineering and
design of new magnetic nanomaterials with tailored structural
properties and functionalities for specific applications while
ensuring properties such as minimal toxicity, high biocompat-
ibility, low environmental impact, and the selection of the
appropriate immobilization method are critical considerations
for industrial use.?***”

An example of a recently developed nanomaterial is cellulose
nanocrystals, a versatile natural-based nanocarrier that has
gained more attention in recent years due to its renewability,
low cost, feasible synthesis and modification, high mechanical
strength, and high stability against temperature and chemical
compounds.®*®*** Incorporating magnetic nanoparticles into
the support matrix can facilitate the recovery and reuse of bio-
catalysts in practical applications.”**>* Another important
aspect of using magnetic cellulose is that it allows for a single-
step purification and immobilization of recombinant enzymes.

Enzymes fused with cellulose-binding domains.?**-*** On the
other hand, the diversity of biocatalysts available and the diffi-
culty in scaling up the production process of this biocatalyst
indicate the need for new strategies to incorporate these
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biotechnological units in the industrial sector.>*”****> Dopa-
mine is a functionalization reagent that gives excellent results
for this type of nanomaterials.’*****% Dopamine is gaining
attention for its versatility in anchoring various biologically
active macromolecules such as antibodies, enzymes, DNA, and
growth factors.**>**53¢33% The presence of catechol and amine
in dopamine provides efficient conjugation of enzymes to
various nanocarriers and does not require additional coupling
reagents/complex linkers or organic solvents.>*>>33-5%

In addition to the aspects already discussed, for the use of
magnetic nanoparticles on an industrial scale, it is also neces-
sary to have a complete understanding of the functionalization
effects of the support, the surface density of enzymes, the
binding sites between nanoparticles and enzymes, how immo-
bilization chemistry can affect the activity and stability of the
biocatalyst, the involvement of conformational changes in the
immobilization process, and the design and development of
immobilized enzyme-based bioreactors.***»****** From the topics
discussed, it can be concluded that magnetic nanoparticles
have a broad perspective in biocatalysis and several other
ﬁelds-522,541—546

8. Conclusions

In summary, this review presents an overview of the develop-
ment and construction of nanomaterial supports for possible
applications in immobilising and stabilising enzymes. It is
worth mentioning that enzymes immobilized on magnetic
supports present advantages for commercial application due to
their ease of separation and reuse, enabling greater scalability
in the industrial sector. Furthermore, magnetic biocatalysts
grouped by lipases have shown diverse applications and
growing interest in the pharmaceutical and biofuel industries.
It should also be noted that the bibliometric analysis explained
that cooperation between countries and researchers is
increasing on a large scale. Citations between journals and
institutions generate high-impact articles and increase cita-
tions. The relevance of this topic and the high impact generated
by the production of magnetic catalytic derivatives with bio-
logical content are increasingly apparent. However, magnetic
biocatalysts still present some challenges that need to be over-
come. Even though the advantages provided by enzyme
immobilization add value, such as the possibility of recycling
and improving their catalytic properties, the complexity of the
synthesis and the different particularities of the lipase immo-
bilization process still require more significant investments.
Therefore, more research is needed to address these issues for
long-term industrial applications of enzymes in addition to
increased investment in this sector. To conclude, prospects are
promising and have high industrial potential, allowing them to
enhance existing processes further and produce new reaction
routes that favour the sustainability and scalability of processes.
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