
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 4

:0
1:

04
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Carbohydrate NM
aDepartment of Information Technology, Up

bankestad@it.uu.se
bRISE Research Institutes of Sweden, Stockh
cDepartment of Organic Chemistry, Stockhol

Cite this: RSC Adv., 2024, 14, 26585

Received 9th May 2024
Accepted 2nd August 2024

DOI: 10.1039/d4ra03428g

rsc.li/rsc-advances

© 2024 The Author(s). Published by
R chemical shift prediction by
GeqShift employing E(3) equivariant graph neural
networks

Maria Bånkestad, *ab Kevin M. Dorst, c Göran Widmalm c and Jerk Rönnolsb

Carbohydrates, vital components of biological systems, are well-known for their structural diversity.

Nuclear Magnetic Resonance (NMR) spectroscopy plays a crucial role in understanding their intricate

molecular arrangements and is essential in assessing and verifying the molecular structure of organic

molecules. An important part of this process is to predict the NMR chemical shift from the molecular

structure. This work introduces a novel approach that leverages E(3) equivariant graph neural networks

to predict carbohydrate NMR spectral data. Notably, our model achieves a substantial reduction in mean

absolute error, up to threefold, compared to traditional models that rely solely on two-dimensional

molecular structure. Even with limited data, the model excels, highlighting its robustness and

generalization capabilities. The model is dubbed GeqShift (geometric equivariant shift) and uses

equivariant graph self-attention layers to learn about NMR chemical shifts, in particular since

stereochemical arrangements in carbohydrate molecules are characteristics of their structures.
1 Introduction

Carbohydrates are intricate organic compounds that ubiqui-
tously occur in all living organisms. Their signicance spans
across all domains of life, but especially in cell–cell interactions
and disease processes. In recent decades, a remarkable
advancement in our comprehension of carbohydrate chemistry
and biology has been attributed to their vital importance. The
molecular structure of carbohydrates is notably complex and
diverse and, therefore, challenging for chemists to construct
and manipulate.1,2 The role of carbohydrates in biological
processes heavily depends on their three-dimensional struc-
tures, which include the covalent bonds and the conformations
these molecules adopt over time. Nuclear magnetic resonance
(NMR) spectroscopy is a fundamental technique to decipher the
intricate three-dimensional structure of molecules. This study
introduces a cutting-edge machine-learning model to interpret
NMR spectra, which considers molecule geometries and known
symmetries.

The inherent complexity of carbohydrate molecules in struc-
tural studies and stereochemical assignments stems from two
key factors: their large number of stereocenters and the extensive
possibilities for interconnecting monosaccharides. For example,
combining two glucopyranosyl residues can yield as many as 19
distinct disaccharides, each with a unique structure.3
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olm, Sweden

m University, Sweden

the Royal Society of Chemistry
Additionally, variations in substitution patterns, like acetylation
and sulfonation, further contribute to the complexity of carbo-
hydrate structures. Determining carbohydrate structures by NMR
spectroscopy can be a formidable task.4

The peaks observed in an NMR spectrum of a molecule
provide valuable information about the presence of nuclei and
their chemical surroundings, such as carbon and hydrogen
isotopes 13C and 1H, and how they are interconnected. Fig. 1
provides examples of 13C and 1H NMR spectra for
a monosaccharide.

The position of a peak for a particular nucleus, indicated by
its chemical shi d (dH and dC for 1H and 13C chemical shis,
respectively), corresponds to the resonance frequency of the
nucleus within a magnetic eld. The local environment of the
atom, especially the electron density in the vicinity of the
nucleus, strongly inuences this resonance frequency (see
Fig. 2). Besides the atomic species of the studied nucleus, the
primary factors inuencing chemical shis are the neighboring
covalently bonded atoms within the molecule because the
electronegativity of these nearby atoms correlates closely with
the observed chemical shis. Electron-withdrawing groups, like
oxygen and uorine, located near the observed nuclei deshield
them, increasing their chemical shis. Conversely, proximity to
electron-donating groups enhances shielding, thereby
decreasing the chemical shis.

In molecular ring systems (appearing in carbohydrates), the
orientation of a hydrogen atom, either axially or equatorially,
signicantly impacts its dH value. Similarly, for carbon nuclei in
a ring system, the arrangement of substituents they carry
inuences their dC value. Fig. 3, showing the

13C chemical shis
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Fig. 1 Schematic representation of methyl a-D-galactopyranoside
and 1H and 13C NMR spectra thereof. The peaks of the specific protons
(from H1 to H6 and the O-methyl group) and the corresponding
carbons are indicated in the plots. Resonances are annotated (H1–H6,
Me; C1–C6, Me) close to their chemical shifts.

Fig. 3 13C NMR chemical shifts of two glucose isomers, a-D-gluco-
pyranose and b-D-glucopyranose. These isomers differ only in the
stereochemistry of the anomeric center (highlighted). This subtle
variation substantially impacts the chemical shifts in an NMR spectrum.
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of a- and b-glucopyranose, illustrates this discrepancy. The
change in conguration at the anomeric center not only affects
the chemical shi of highlighted anomeric carbon but also has
a ripple effect, altering the shis of all carbon atoms in the
molecule. It is important to note that spatial interactions can
inuence chemical shis beyond the effects of covalent bonds.5

A standard method for predicting the chemical shis of
carbohydrate molecules involves utilizing an extensive database
Fig. 2 (a) The compound under examination moves within a fluid enviro
induced magnetic field Bind(ri) at a specific position ri determines the ch
constant under the Euclidean group E(3), i.e., it is unaffected by translati

26586 | RSC Adv., 2024, 14, 26585–26595
of known carbohydrates.6 This approach entails comparing new
carbohydrate structures with those existing in the database,
making necessary adjustments for recognized patterns around
glycosidic bonds.

The CASPER program7 relies on a relatively small set of NMR
data of glycans. It uses approximations to predict chemical
shis of glycan structures not present in the database, which
facilitates the coverage of a large number of structures.
However, the reliance on these databases is less effective when
new structures containing previously uncharacterized sugar
residues are encountered.

Alternatively, chemical shis can be estimated using
Quantum Mechanical Density Functional Theory (DFT)
nment and interacts with an external magnetic field denoted as Bext. An
emical shift of a resonating nucleus. (b) The chemical shift d remains
on, rotation, and reflection.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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calculations.8 While this technique is effective for many mole-
cules, it comes with substantial computational demands,
making it both costly and time-consuming. A notable
advancement in carbohydrate chemical shi calculation was
recently published by Palivec et al.9 and involves an in-depth
simulation of the water environment surrounding the mole-
cules under study. This approach employs molecular dynamics
and DFT to calculate chemical shis for small carbohydrate
molecules, including mono-, di-, and one trisaccharide.

As previously mentioned, the relationship between a mole-
cule and its chemical shi is intricate, suggesting the utility of
articial neural networks (ANNs), recognized as universal
approximators, to model this relationship from data. Neural
networks, a subset of machine learning methods, are adept at
learning high-dimensional feature spaces and capturing subtle,
intricate patterns within the data.10 For predicting chemical
shis, neural networks trained on carefully constructed data-
sets of experimental chemical shis can account for various
inuencing factors, such as electronic environments, steric
effects, and long-range interactions, leading to fast, accurate,
and reliable chemical shi predictions. As early as 1991, Meyer
et al.11 proposed using a feed-forward network to identify 1H
NMR spectra for oligosaccharides. More recently, graph neural
networks (GNNs) have emerged to predict chemical shis.12

Some of these models use only the molecular structure (the
atoms and their bonds) as input,13–15 while others incorporate
atom–atom pairwise distances as additional input features.16,17

While these models demonstrate strong performance for
numerous molecules, they struggle when dealing with mole-
cules featuring complex stereochemistry, such as carbohy-
drates. It is appropriate to assume that these molecules must be
treated as dynamic, three-dimensional entities for accurate
representation, demanding a network capable of capturing this
complexity. This study proposes a model that integrates the
three-dimensional molecular structure while preserving the
fundamental symmetries of the underlying physics of the
molecule.

More specically, we introduce an E(3) equivariant graph
neural network, also known as an Euclidean neural network.18

Equivariance is a transformation property that assures
a consistent response when a feature transforms. An example of
equivariance is the intramolecular forces holding the atoms
together in a molecule. These forces are equivariant to rotation
since these forces rotate together with the molecule. An equiv-
ariant function preserves relationships between input (mole-
cule) and output (interatomic forces) during transformations. If
we have an equivariant function deriving the interatomic forces,
these derived forces rotate with the molecule.

An Euclidean neural network is equivariant to the Euclidean
group E(3), which is the group of transformations in the
Euclidean space, including rotation, translation, andmirroring.
Compared to a network that solely considers pairwise distance,
an equivariant network considers the relative distance between
atoms, encompassing both pairwise distance and pairwise
direction. Euclidean neural networks have recently gained
recognition for their success in various chemistry applications,
© 2024 The Author(s). Published by the Royal Society of Chemistry
spanning from modeling molecule potential energy surfaces19

to predicting toxicity20 and studying protein folding.21

Our model, denoted as GeqShi (geometric equivariant
shi), is a GNN that utilizes equivariant graph self-attention
layers22 to learn chemical shis, particularly when stereo-
chemistry is crucial. These attention layers update the node
features by considering features of close nodes, so-called
neighbors, and weights these neighbors to emphasize the
most important information, using so-called attention weights.
Our contribution is three-fold: the chemical shi prediction
model GeqShi, an innovative data augmentation method
inspired by the dynamic movement of molecules in a uid, and
a compiled carbohydrate chemical shi dataset suitable for
machine learning applications. By making this dataset public,
we hope to stimulate further research in data-driven automated
chemical shi analysis.

Our experiments demonstrate that our model and training
approach achieve precise predictions, especially in intricate
stereochemistry cases. Notably, for the carbohydrate dataset,
our network reaches mean absolute errors (MAEs) of 0.31 for dC
and 0.032 for dH.

2 Results

Our model is trained on 13C and 1H NMR chemical shi data
from the CASPER program,7 which is further detailed in the
methods section. We evaluate the model's generalization
capability using cross-validation. In machine learning, the
fundamental assumption is that data points are independently
and identically distributed (iid) samples from a specic distri-
bution, such as a distribution of carbohydrates. Validation
shows that themodel generalizes well to other samples from the
same distribution, indicating its ability to interpolate between
data points.23 However, it is important to note that there are no
general guarantees for performance on data from different
distributions. Tenfold cross-validation is a well-established
validation method, where 10% of the data is withheld during
training and used for testing, repeated ten times with different
subsets.24 This ensures that each carbohydrate sample is tested
on a model that has not seen that specic carbohydrate before,
providing a robust measure of the model's generalization
capabilities within the given distribution. We let each split
maintain a balanced mono-, di-, and trisaccharides distribu-
tion. Each split comprises approximately 336 carbohydrate
structures for training and 39 for testing.

A molecule is inherently dynamic, continuously changing its
conformation. The likelihood of these conformations follows
the Boltzmann distribution, p(R) ∼ exp(−E(R)), where E is the
molecule energy function and R its conformation. Conven-
tionally, in data-driven models, this problem is alleviated by
selecting the conformation with the lowest energy, implying the
highest probability. This is typically determined through
methods like density functional theory (DFT) simulation.

We take a different approach by considering the molecule
conformation as dynamic, with not just one but an ensemble of
conformations. The predicted NMR chemical shi varies
depending on the conformation, resulting in an ensemble of
RSC Adv., 2024, 14, 26585–26595 | 26587
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Table 1 An overview of our two models with their training and test
data variations

Models
Nbr conf.
train

Nbr conf.
test ‘max in hidden layers

GeqShi_1TT_inv 1 1 0
GeqShi_1TT 1 1 2
GeqShi_1T_inv 100 1 0
GeqShi_1T 100 1 2
GeqShi_inv 100 100 0
GeqShi 100 100 2
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predictions per molecule. The nal prediction is the average.
We use this technique during both training and testing.

In machine learning terms, this is a data augmentation
technique. We hypothesize that this will enhance the general-
ization capacity of the model, especially given the limited size of
the training dataset. As a result, our nal model, GeqShi, does
not rely on a specic low-energy conformation as input,
enabling effective generalization to molecules not seen during
training. Fig. 4 presents an overview of the model.

To establish a baseline, we compare our model with the
scalable GNN by Han et al.,15 referred to as SG-IMP-IR, which
performs state-of-the-art results on the NMRShiDB2 dataset.25

Additionally, we conducted six ablations to assess the effec-
tiveness of various components in our model, as summarized in
Table 1. These evaluations include comparing the use of an
invariant version (inv) of the model, the same as setting
‘max ¼ 0, the maximum degree of the irreducible representa-
tions of the hidden layers (explained further in Section 4.1).
Furthermore, we examined the impact of testing and training
on an ensemble of conformations by evaluating the model on
only a single conformation (1T) and training and testing on
a single conformation (1TT). It is important to note that the
train/test splits are consistent across all models, with data
augmentation achieved by sampling multiple conformations
per molecule.

Fig. 5 presents an overview of the performance of the model
using violin plots, a combination of a box plot, and a density
plot.26 Furthermore, Table 2 provides a detailed comparison of
the models, emphasizing prediction accuracy for different types
of carbohydrates, including mono-, di-, and trisaccharides.

Among our models, GeqShi emerges as the top-performing
model, closely followed by GeqShi_inv. Compared to using
just one conformation per molecule for training, we observe
a signicant performance improvement when using an
ensemble of 100 conformations. For instance, in the case of
monosaccharides, the mean absolute error (MAE) notably
Fig. 4 An overview of themodel. The left side (labeled a) shows the comp
embeddings with atom type and neighboring hydrogen information an
between connected nodes. The rcut parameter denotes the cutoff radius
the right side (labeled b). It consists of K equivariant layers, with the fina
chemical shift data are processed individually, passing through a multi-la

26588 | RSC Adv., 2024, 14, 26585–26595
decreases from 0.55 to 0.37 when trained with 100 conforma-
tions. Subsequently, it further drops slightly to 0.31 when also
predicting 100 conformations. These results underscore the
advantage of incorporating multiple conformations in our
training and prediction processes.

GeqShi surpasses the CSDB and NMRDB simulation tools
in predicting carbon and proton chemical shis. Although this
comparison is not entirely straightforward, since the CSDB
database contains molecules that are part of the testing distri-
bution but does not include all molecules from the training
dataset, it still highlights GeqShi's superior generalization
capability.

In Fig. 6, we delve deeper into the prediction accuracy of our
best-performing method, GeqShi. The gures within this plot
illustrate histograms of prediction errors and scatter plots
depicting the relationship between the actual and predicted
values for both 13C and 1H nuclei. We combined the test sets'
prediction results across all ten cross-validation folds to create
these visualizations. Notably, the distributions of prediction
errors are approximately zero-centered, with a standard devia-
tion of 0.39 for 13C and 0.052 for 1H.

Fig. 7 visualizes the predictions from the whole ensemble of
conformations for the monosaccharide a-L-lyxopyranose. The
gure displays histograms representing the predictions for each
onents involved in processingmolecule input data. These include node
d edge embeddings representing bond types and relative distances

for defining neighboring atoms. Themodel architecture is illustrated on
l layer producing an invariant vector for each node. Nodes containing
yer perceptron (MLP) to generate an invariant chemical shift prediction.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of the test prediction accuracy in mean absolute
error MAE between the baseline model SG-IMP-IR and our proposed
model GeqShift, and its invariant version GeqShift_inv. The result is
visualized using violin plots.

Fig. 6 The figure examines the test prediction outcomes of our
proposed method, GeqShift. To the left, scatter plots illustrate the
relationship between actual and predicted values. Histograms repre-
senting the distribution of prediction errors Dd are shown on the right.
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13C atom in the molecule, the ensemble mean, and the actual
NMR peaks. These histograms showcase the distribution of
predicted values, allowing for a comparison with a real NMR
spectrum (refer to Fig. 1). Furthermore, the ensemble of
predictions per chemical shi enables an estimation of
prediction uncertainty by examining the standard deviation.

2.1 Out of distribution predictions

In the previous section, we examined the model's ability to
generalize to other molecules within the same distribution as the
Table 2 Comparison of prediction test accuracy for 13C and 1H chemic
saccharides, disaccharides, and trisaccharides. The accuracy is presente
refers to a state-of-the-art model15 retrained with our data. All GeqShift m
carbohydrate structure database (CSDB), and NMR database (NMRDB) p

Monosaccharides 13C Di

MAE RMSE M

CSDB 1.23 (1.00) 3.40 (3.94)
NMRDB 2.02 (0.29) 2.87 (0.41)
SG-IMP-IR 1.18 (0.20) 1.61 (0.30) 1.
GeqShi_1 TT_inv 0.54 (0.12) 0.86 (0.23) 0.
GeqShi_1 TT 0.55 (0.15) 0.90 (0.37) 0.
GeqShi_1T_inv 0.39 (0.11) 0.69 (0.23) 0.
GeqShi_1T 0.34 (0.08) 0.61 (0.19) 0.
GeqShi_inv 0.37 (0.11) 0.66 (0.23) 0.
GeqShi 0.31 (0.08) 0.58 (0.18) 0.

Monosaccharides 1H Disa

MAE RMSE MAE

CSDB 0.11 (0.032) 0.19 (0.083)
NMRDB 0.30 (0.036) 0.37 (0.039)
SG-IMP-IR 0.071 (0.026) 0.110 (0.039) 0.04
GeqShi_1 TT_inv 0.064 (0.011) 0.100 (0.022) 0.04
GeqShi_1 TT 0.061 (0.016) 0.115 (0.053) 0.04
GeqShi_1T_inv 0.046 (0.014) 0.078 (0.040) 0.03
GeqShi_1T 0.037 (0.009) 0.062 (0.020) 0.02
GeqShi_inv 0.044 (0.015) 0.077 (0.041) 0.03
GeqShi 0.035 (0.009) 0.057 (0.018) 0.02

© 2024 The Author(s). Published by the Royal Society of Chemistry
training data using cross-validation. Now, we focus on evaluating
the model's capability to generalize beyond the training data
distribution. To achieve this, we omit specic molecular struc-
tures from the training dataset and assess whether the model can
al shifts in terms of MAE (ppm) and RMSE (ppm) split between mono-
d as the ten-fold mean, standard deviation in parenthesis. SG-IMP-IR
odels were produced in this work. Details of how the simulation tools,
redictions are found in Section 4.3

saccharides 13C Trisaccharides 13C

AE RMSE MAE RMSE

02 (0.17) 1.53 (0.37) 1.13 (0.16) 1.61 (0.20)
44 (0.07) 0.73 (0.15) 0.65 (0.11) 1.06 (0.21)
47 (0.08) 0.75 (0.17) 0.63 (0.11) 1.05 (0.24)
28 (0.06) 0.51 (0.16) 0.37 (0.10) 0.64 (0.21)
25 (0.06) 0.48 (0.18) 0.33 (0.09) 0.57 (0.20)
26 (0.06) 0.49 (0.16) 0.33 (0.08) 0.59 (0.14)
23 (0.06) 0.46 (0.19) 0.30 (0.09) 0.53 (0.16)

ccharides 1H Trisaccharides 1H

RMSE MAE RMSE

5 (0.007) 0.075 (0.014) 0.055 (0.011) 0.087 (0.020)
9 (0.009) 0.076 (0.017) 0.067 (0.009) 0.102 (0.015)
1 (0.006) 0.061 (0.012) 0.060 (0.010) 0.103 (0.030)
4 (0.006) 0.053 (0.012) 0.050 (0.010) 0.079 (0.018)
8 (0.003) 0.046 (0.010) 0.038 (0.009) 0.057 (0.017)
0 (0.004) 0.048 (0.011) 0.043 (0.009) 0.069 (0.015)
6 (0.003) 0.044 (0.011) 0.033 (0.009) 0.052 (0.016)

RSC Adv., 2024, 14, 26585–26595 | 26589
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Fig. 7 A histogram representing the test predictions of 13C chemical shifts obtained from 100 different molecular geometries of the mono-
saccharide a-L-lyxopyranose. We highlight the prediction mean and the actual peak value. While various geometries yield slightly different
chemical shift values, the average of these peaks closely approximates the experimentally determined value.

Table 3 Description of the excluded structures: these molecular structures were deliberately omitted from the training data and subsequently
used as a test set to evaluate the model's performance

Name Structures le out Nbr remove

Xyl All with a Xyl residue 10
Qui All with a Qui residue 7
Ur_acid All with a uronic acid GlcA, sManA and GalA le out 14
Ur_acid/GlcA All with a uronic acid but keep GlcA (ManA and GalA le out) 8
Ac Remove all with acetylated compounds 19
34Ac Remove all with acetylated compounds at carbon 3 and 4 10
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accurately predict the NMR spectrum for these excluded struc-
tures. This approach serves as a stress test for the model's
robustness and extrapolation abilities. Table 3 lists the excluded
substructures used as the test set for this evaluation.

Fig. 8 compares the prediction accuracy of GeqShi with SG-
IMP-IR, where GeqShi outperforms SGIMPIR on a majority of
the substructures. This experiment underscores the importance
of including structurally similar molecules in the training data
for accurate machine learning predictions. Specically, when
the model is trained on the Ur_acid dataset with all uronic acids
excluded, it performs poorly in predicting the NMR spectra of
molecules containing uronic acids. However, when GlcA,
a specic uronic acid, is included in the training data, the
model's performance signicantly improves for the excluded
uronic acid molecules, ManA and GalA. This result suggests
that similar structural motifs in the training data enhance the
model's ability to generalize to new, unseen molecules within
the same chemical family. Furthermore, it demonstrates the
model's capability to extrapolate structural information from
one molecule (GlcA) to different but related molecules (ManA
and GalA).
Fig. 8 Prediction performance for chemical shifts (13C and 1H) in
terms of mean absolute error (MAE) for the out-of-distribution eval-
uation. The specific structures that were excluded from the training
data and then used as a test set are listed in Table 3.
2.2 Polysaccharides

In addition to predicting the mono-, di- and trisaccharides in
the original dataset, we examine GeqShi's capability to extend
to larger carbohydrate structures. We predict the chemical
shis of two polysaccharides, each constructed of
26590 | RSC Adv., 2024, 14, 26585–26595 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Prediction performance for chemical shifts (13C and 1H) in
terms of mean absolute error (MAE) within the context of the two
polysaccharides introduced in Fig. 10. In this evaluation, the models
employ an average prediction derived from the ten models trained
during ten-fold cross-validation.

Fig. 10 The figure illustrates the prediction errors for the 13C and 1H
chemical shifts of two E. coli O-antigen polysaccharides, each
composed of tetrasaccharide repeating units, from serogroup O77
(upper) and serogroup O176 (lower).27,28 The structures are visualized
using symbols from the SNFG standard.29 The repeating units are
enclosed in square brackets. The box plots visually represent the
prediction errors Dd per-atom basis.
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tetrasaccharide repeating units. In Fig. 9, the prediction accu-
racy of GeqShi is compared to GeqShi_inv and SG-IMP-IR.
Notably, GeqShi outperforms these models regarding both
13C and 1H prediction accuracy. Furthermore, Fig. 10 details the
prediction errors using bar plots for individual 13C and 1H
nuclei.

3 Discussion

This work introduces a novel machine learningmodel to predict
chemical shis, explicitly addressing the stereochemistry of the
molecule. We employed an Euclidean graph neural network
that utilizes molecular structure and geometry as input to
construct a model capable of capturing changes in molecule
geometry in response to stereochemical alterations.

To enhance accuracy, we employed data augmentation
techniques that replicate the dynamic behavior of molecules.
Instead of restricting each molecule to a single conformation,
we utilized an ensemble of conformations for both the training
and testing datasets. To sample the conformations, we priori-
tized simplicity and speed. Therefore, we opted for the RDKit
open-source toolkit, which employs an energy force eld tech-
nique (further details in Section 4.3). The results in Table 2
illustrate this approach, demonstrating a decrease in mean
absolute error from 0.55 to 0.34 for the predicted 13C chemical
shis of monosaccharides when transitioning from training the
model with one conformation per molecule to training on 100
conformations per molecule.

As previously mentioned, this enhancement likely stems
from two factors: a better representation of molecular reality
and reduced sensitivity of the trained model to minor input
variations. Relying solely on a single conformation, as done in
previous attempts using 3D information in the input,16,17 for
training poses a problem, as it leads to a less resilient model.
Moreover, discovering a low-energy conformation through
© 2024 The Author(s). Published by the Royal Society of Chemistry
Density Functional Theory (DFT) is time-consuming and
computationally intensive.

Because the training set includes various conformations, the
model can make precise predictions when the input confor-
mation is relatively similar to the correct one. However, there is
room for improvement in conformation sampling. One poten-
tial approach for future research is to rene sampling tech-
niques, such as those based on Gibbs free energy.

The obtained prediction errors exceeded our expectations. It
must be emphasized that the ranges of chemical shis are
approximately 0–200 ppm for 13C and 0–10 ppm for 1H, so the
achieved prediction errors approach the levels that qualify as
error margins in measurements. However, for even better
chemical shi predictions, additional developments, e.g.,
considering the temperature at which the NMR data are
acquired, will be required to evaluate and train the GNN. To
RSC Adv., 2024, 14, 26585–26595 | 26591
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further put the results into perspective, one can compare the
prediction errors to other works using similar techniques for
different classes of compounds and alternative ways of calcu-
lating chemical shis. The main results are those detailed in
Table 2, where our model is compared to a state-of-the-art
neural network for chemical shi prediction, which has been
retrained on our dataset.

The developed model has great potential for predicting
chemical shis for other organic molecules, particularly
compounds with asymmetric centers. This includes, among
many different classes, pharmacological compounds and
proteins.

Furthermore, the ability of the model to accurately predict
physical observables, i.e., chemical shis based on the molec-
ular structure, highly encourages future application of similar
methodology for other analytical techniques, e.g., X-ray photo-
electron spectroscopy and X-ray absorption spectroscopy and
potentially for predicting other physical parameters.

Most, if not all, studies of prediction methods for NMR
chemical shis are focused on predicting chemical shis from
molecular structure. The inverse problem, where a molecular
structure is generated from chemical shis, is more compelling
for experimental practice. At the same time, it is more complex.
However, making proper chemical shi predictions builds
a solid ground for tackling the inverse problem and a natural
segue for future research. The implications are far-reaching and
go beyond an advanced understanding of carbohydrate struc-
tures and spectral interpretation. For example, it could accel-
erate research in pharmaceutical applications, biochemistry,
and structural biology, offering a faster and more reliable
analysis of molecular structures. Furthermore, our approach is
a key step towards a new data-driven era in spectroscopy,
potentially inuencing spectroscopic techniques beyond NMR.

4 Method

In this section, we detail the model and the dataset by giving
relevant background information, then explaining GeqShi in
more detail, and nally describing the carbohydrate dataset.

4.1 Background

4.1.1 Graph neural network. A graph G ¼ ðn; EÞ consists of
nodes i˛n and edges i; j˛E, dening the relationships between
the nodes i and j. One can represent a molecule as a graph with
the atoms as nodes and bonds as edges. To expand this to an
even richer representation of the molecule, one can include
additional edges between atoms close to each other in space;
typically, we dene a cutoff radius rcut and introduce edges
between any two atoms that are less than the cutoff distance
apart. A graph neural network consists of multiple message-
passing layers. Given a node feature xi

k at node i and edge
features eij

k between node i and its neighborsN ðiÞ, the message
passing procedure at layer k is dened as

mij
k = fm(xi

k,xj
k,eij

k), (1)

x̂i
kþ1 ¼ fj˛N ðiÞ

a
�
mij

k
�
; (2)
26592 | RSC Adv., 2024, 14, 26585–26595
xi
k+1 = fu(xi

k,x̂i
k+1), (3)

where fm is the message function, deriving the message from
node j to node i, and fj˛N ðiÞ

a is the aggregating function, which
aggregates all messages coming from the neighbors of node i,
dened by N ðiÞ. The aggregation function is commonly just
a simple summation or average. Finally, fu is the update func-
tion that updates the features for each node. A graph neural
network (GNN) consists of message-passing layers stacked onto
each other, where the node output from one layer is the input of
the successive layer.

4.1.2 Equivariant convolutions. Equivariance is a funda-
mental concept that appears throughout the natural world,
governing the symmetry and behavior of physical systems, from
subatomic particles to the organization of molecules in bio-
logical systems. It underpins the consistency and invariance of
natural phenomena under various transformations, making it
a crucial concept in the natural sciences.

Equivariance is an essential factor when considering NMR
chemical shis. In this study, we focus on predicting the
isotropic part of the chemical shi tensor, denoted as diso,
which is a scalar and remains unchanged under the Euclidean
group E(3) (the group of rotation, translation, and mirroring)
with respect to the input locations of the atoms. However, the
actual chemical shi tensor, d, is a second-rank tensor with an
antisymmetric nature (‘ ¼ 2 with even parity). While it is
possible to predict the complete chemical shi tensors, as
demonstrated by Venetos et al.,30 molecules in solution in
a laboratory setting move around relative to the external
magnetic eld. Consequently, it is the isotropic part of the
chemical shi tensor observed in an NMR spectrum. Even
though the isotropic chemical shi is a scalar quantity, the
relationships governing it are intricate. Therefore, it would be
advantageous to use a model capable of accurately capturing
these relationships.

Euclidean neural networks can represent a comprehensive
set of tensor properties and operations that obey the same
symmetries as symmetries of molecules. Formally, a function f:
X / Y is equivariant to a group of transformations G if for any
input x ˛ X and output y ˛ Y and group element g ˛ G that is
well-dened in both X and Y, we have that fDX(g)(x) = DY(g)f(x),
where DX(g) and DY(g) are transformation matrices parameter-
ized by g in X and Y. In other words, the result is the same
regardless of whether the transformation is applied before the
function or vice versa. An example is if you have a function
deriving the interatomic forces in a molecule. These forces
should be the same relative to the molecule's coordinates,
independent of how the molecule is translated or rotated.

The most fundamental aspect of Euclidean neural networks
involves categorizing data based on how it transforms under the
operations in the Euclidean group E(3), a group in three-
dimensional space that contains translations, rotations, and
mirroring. These data categories are called irreducible repre-
sentations (irreps) and are labeled as ‘ ¼ 0; 1; 2 ;. where
‘ ¼ 0 corresponds to a scalar, while ‘ ¼ 1 corresponds to
a three-dimensional vector. Irreps may also possess a parity,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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which can be either even or odd, indicating whether the
representation changes signs when inverted; odd irreps change
signs upon inversion, while even irreps remain unchanged. An
irreducible representation with ‘ ¼ 1 and odd parity is termed
a vector, representing entities like velocity or displacement
vectors. In contrast, an irreducible representation with even
parity is referred to as a pseudovector, and it characterizes
properties such as angular velocity, angular momentum, and
magnetic elds. The input to an Euclidean neural network is
a concatenation of tensors of different data types; for example,
a scalar representing a mass is concatenated with a vector
representing a velocity.

We call a tensor composed of various irreducible represen-
tations a geometric tensor. In our graph neural network, the
equivariant version of vector multiplication involves two
geometric tensors and is known as a tensor product x 5 wy.
Here, w are learnable weights. Our approach employs these
tensor products for equivariant message passing, departing
from conventional linear operations. For a more in-depth
exploration of Euclidean graph neural networks, we refer
readers to the study by Geiger et al.31
4.2 Machine learning model

We construct an equivariant graph self-attention network where
the input to the network depends on the chemical structure G
and the atom positions matrix R of the specic molecule (see
Fig. 4). We exclude hydrogen atoms from the representation of
molecules to reduce computational complexity. Every atom/
node is represented by a learnable embedding vector xi, where
the embedding depends on the specic atom type Zi (for
example, 4 for carbon or 8 for oxygen) and the number of
hydrogen atoms connected to that particular atom Nih. The
node/atom input embedding vector is

x0i = (Emb(Zi))‖Emb(Ni
h)), (4)

where we denote the concatenation of two vectors with ($‖$). We
create edges between all atoms in the molecule within a cutoff
radius rcut = 6 Å. Every edge is represented by a vector of scalars
(‘ ¼ 0 and even parity) hij

s=(Emb(Eij)‖dij) where Emb(Eij) is an
embedding vector depending on the particular bond type Eij (no
bond, single bond, or double bond), and dij = ‖ri – rj‖ is the
euclidean distance between the nodes i and j. We also construct
an embedding of the normalized relative distance between the
nodes/atoms, r̂ij = ri − rj using spherical harmonics
Ym

‘ðr̂ij=kr̂ijk
�
, where m is the parity and ‘ is the rotation order.

The layers in the network consist of E(3)-equivariant self-
attention/transformer layers,22,32 built using the e3nn library.31

For the layers k = 1, ., K, we derive messages by deriving
queries qk, keys kk, and value vk as

qi
k = Linear(xi

k) (5)

kij
k ¼ xi

k5wij;k
kYm

‘
�
r̂ij
�kr̂ijk

�
(6)

vij
k ¼ xi

k5wij;v
kYm

‘
�
r̂ij
�kr̂ijk

�
(7)
© 2024 The Author(s). Published by the Royal Society of Chemistry
where linear is a generalization of a regular linear layer for
a geometric tensor. The weights of the tensor products 5 are
derived by neural networks, with the invariant edge embed-
dings as inputs: wij

k = NNk(eij
s) and wij

v = NNv(eij
s). The self-

attention is derived as

aij
k ¼ exp

�
qi

k5kij
k
�

P
j˛N ðiÞ

exp
�
qi

k5kij
k
� (8)

where qi5kij maps to a scalar ð‘ ¼ 0Þ. We aggregate the
messages by summing up the weighted messages from all
neighboring nodes N ðiÞ

xi
k
0 ¼

X

j˛N ðiÞ
aijkij

k: (9)

In between the self-attention layers, the geometric tensors
are updated with equivariant Layer Normalization (LN)22 and an
equivariant neural network (NN) as

xi
k+1 = LN(NN(xi

k0) + xi
k), (10)

where the neural network consists of the generalized linear
layers (Linear) and Sigmoid linear units (SiLU) activation
functions. The last layer K output is an invariant vector xi

K.
Finally, a multilayer perceptron with scalar output is applied.

We train the model by minimizing the mean absolute error,

L ¼ 1

N

XN

i¼1

jxi � x̂ij; (11)

where N is the number of chemical shis, xi is the experimen-
tally determined chemical shi, and x̂i is the predicted one.

We train the model with multiple conformations and,
thereby, multiple graphs for each chemical shi xi. This results
in an ensemble of predictions x̂0i ,.,x̂i

j,x̂i
Ni for every output xi.

We want the average of this ensemble to be equal to the
experimentally determined chemical shi, such that

1
Ni

X

j

x̂i
j z xi. Thus, we aim at minimizing

�����xi �
PNi

j¼1
wjx̂i

j

�����. It

follows from the triangle inequality that
�����xi � 1

Ni

XNi

j¼1

x̂i
j

�����#
1

Ni

XNi

j¼1

��xi � x̂i
j
�� (12)

hence, we canminimize the right-hand side of the eqn (12). This
results in the relatively simple conclusion that we, in the
training dataset, can add the ensemble of conformations to
create a single large training dataset.

4.2.1 Implementation details. The dimension of the input
node embedding x0i is 128, and the input scalar edge embedding
e0ij is 32. The model consists of seven layers where the hidden
dimensions between the layers consist of a scalar vector of size
64, 32 tensors with ‘ ¼ 1 and odd parity, and eight tensors with
‘ ¼ 2 and even parity. Between the self-attention layers, the
hidden layer is passed through an equivariant neural network
with one hidden layer and a SiLU non-linearity, followed by an
equivariant layer normalization. The last layers map the tensors
RSC Adv., 2024, 14, 26585–26595 | 26593
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to a scalar vector with 128 dimensions. This vector is passed
through a two-layer multilayer perceptron with a hidden
dimension 384 and an output dimension of one.

The batch size of the models is set to 32 except for SG-IMP-
IR, where the recommended batch size of 128 is used. The
models are optimized using the Adam optimizer33 starting with
a learning rate of 3× 10−4. We used a small validation set of ve
percent of the training data for the models trained using only
one conformation per molecule. The learning rate decreased
during training using the PyTorch ReduceLROnPlateau, which
reduces the error when the validation error stops decreasing. A
patience of 20 epochs and a reducing factor of 0.1 was used. We
did not use a scheduler for instances when multiple confor-
mations were used. Instead, we trained these models during
three epochs, and the learning rate decreases by 0.1 for every
new epoch.

The model is implemented using Python 3.9.13, PyTorch
version 2.0.0, Cuda version 11.7, PyTorch geometric version
2.3.0, e3nn version 0.5.1, RDKit version 2022.09.5, and GlyLES
version 0.5.11. The models are trained using one NVIDIA A100
GPU. The training time per model takes around 30 minutes to
an hour.
4.3 The dataset

The dataset consists of experimental data of 1H and 13C NMR
chemical shis of mono-to trisaccharides. The data is used by
CASPER7,34,35 and is based on published data http://
www.casper.organ.su.se/casper/liter.php, including, inter alia,
those related to structures of biological interest.36–38 In detail,
it encompasses 1H and 13C NMR chemical shis for 375
carbohydrates in aqueous solution. Of these are 107
monosaccharides, 153 disaccharides, and 115 trisaccharides.
By summing up the individual shis, the dataset contains
5356 1H and 4713 13C chemical shis. GlyLES39 was used to
convert the carbohydrates from the IUPAC representation
into SMILES representation. The open-source library40 was
used to convert the molecule from the SMILES representation
to a graph. RDKit was also used to generate molecular
conformations. To obtain 100 conformations per molecule, we
generated 200 conformations using the ETKDGv3method.41 To
gain a spread in the conformational distribution, we enforced
keeping only conformations at a certain distance from each
other; the RMSD between the heavy atoms is larger than 0.01 Å.
By deriving the potential energy using the MMFF94 force
eld,42 we discarded the 100 conformations with the highest
energy.

The CSDB predictions are simulated at http://
csdb.glycoscience.ru/. The NMR spectrum assignment was
done with the help of the chemical shi reference collection
and simulation tool for 13C43,44 and 1H44 nuclei at the
Carbohydrate Structure Database (CSDB).45 To rene a set of
structural hypotheses, the CSDB structural ranking tool46 and
empirical chemical shi simulation47 were used. We use the
hybrid carbon chemical shi simulation.

The NMRDB predictions for 13C48–50 and 1H48,49,51 are simu-
lated at https://www.nmrdb.org/.
26594 | RSC Adv., 2024, 14, 26585–26595
Code availability

The code is available at https://github.com/mariabankestad/
GeqShi.
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