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e with carbon nanotubes derived
from CO2†

Gad Licht,a Kyle Hofstetterb and Stuart Licht *abc

Unusual buckypapers, sheets of graphene nanocarbons (GNCs) such as carbon nanotubes, were formed

with GNCs directly derived from CO2 via molten carbonate electrolysis. Examples are presented for

buckypapers made from CO2 using either crushed or chemically washed GNCs, epoxy-infused CNTs, or

GNCs pressed directly using a hot electrolyte to remove excess electrolyte.
Introduction

Buckypapers are graphene carbon nanocarbon (GNC) sheets.
The majority of studies report on buckypapers are formed from
the GNC consisting of carbon nanotubes. Additionally, bucky-
papers of graphene, graphene oxide, and carbon nano-onions
have been studied. Buckypapers have demonstrated enhanced
physical and chemical properties, including but not limited to
high tensile strength; high electrical conductivity; high thermal
conductivity; electronic shielding; magnetic shielding; electrical
charge storage for use in batteries, fuel cells, and capacitors;
piezo resistivity; catalytic activity; reduced friction; and targeted
therapeutic activity.1–15 Many of these properties originate from
planar sp2 bonded carbons of graphene in different geometric
arrangements within a buckypaper GNC sheet. Sheet properties
can be modied through surface or covalent functionalization,
morphology modulation, and doping.16–21

Buckypapers are oen integrated within a composite to
enhance the physical, chemical, or electrical properties of the
buckypaper-free material.22–26 Buckypapers are attractive as they
are lower in weight, stronger, more conductive, and more
resilient for applications such as strain, fracture, chemical and
motion sensors;13,27–36 electrochemical reactors37 for water
treatment;4,37,38 EMF shielding/absorbent coatings;7–9 batteries
and supercapacitors;15,17,18,23,24 stronger plastic composites such
as aeronautics11,12,25 and medicine.39,40

Despite the extensive academic interest and wide range of
applications, the acceptance and widespread use of buckypaper
has been hampered by the high cost and carbon-footprint of
graphene carbon nanocarbon synthesis. The manufacturing
process generally includes a chemical vapor deposition (CVD)
process used in the commercial production of carbon
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nanotubes, graphene, and carbon nano-onions. GNCs have
shown promise, but their CVD production cost has remained
prohibitively high in commercial settings, with the resulting
products carrying both a signicant cost and a signicant
carbon footprint.41 Currently, the price of GNCs such as CNTs,
graphene, and carbon nano-onions are in the range of USD
$100,000–$10 million per tonne. Comparatively, steel is priced
at $400 to $700 per tonne.

To form buckypapers, CVD-formed GNCs are oen rst
added to a liquid, then sonicated to provide a homogenous
dispersion, and the liquid is ltered and/or dried off, leaving the
buckypaper formed as a solid sheet of dispersed GNCs.

The years 2009 and 2010 marked signicant milestones in
the exploration of splitting CO2 into carbon (C) and oxygen (O2)
through molten carbonate electrolysis, offering a decarbon-
ization path to combat climate change. Building upon this
progress, research in 2015 revealed that transition metal
nucleus growth during this electrolysis process facilitates the
direct conversion of CO2 into pure CNTs and other GNCs.42,60

CO3
2− (molten) +/− 4e− /

C (GNC) + O2 (gas) + O2− (dissolved) (1)

CO2 undergoes a chemical reaction with electrolytic oxide, as
depicted in eqn (1), to regenerate CO3

2− according to eqn (2).

CO2 (gas) + O2− (dissolved) / CO3
2− (molten) (2)

The integration of eqn (1) and (2) results in the following net
reaction:

CO2 (gas) / C (GNC) + O2 (gas) (3)

Various GNCs have been synthesized, including helical, thin-
walled, magnetic, and doped CNTs with carbon nano-bamboo,
nano-pearl, and nano-tree morphologies as well as single-
layered or multilayered graphene (nano-platelets), hollow or
concentric buckyball spheres (nano-onions), and three-
dimensional structures such as graphene nano-scaffolds.44–55

Manipulating the electrolysis parameters, such as temperature
RSC Adv., 2024, 14, 27187–27195 | 27187
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Fig. 1 Medium (top) and high (bottom) scanning electron microscopy
images of the carbanogel particles comprised of carbon nanotubes
formed at 770 °C Li2CO3 at J = 0.4 A cm−2.
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and current density, allows for the tailored production of
specic GNCs. For instance, lower temperatures of about 725 °C
are typical for forming carbon nano-onions,44 while a higher
range from 750 to 770 °C is utilized for CNT syntheses.45–47,49,52–58

This communication presents a new low-cost process for the
synthesis of graphene nanocarbons sheets (GNC buckypaper).
CO2 is the sole chemical reactant in eqn (3), and 4 tonnes of CO2

are consumed for each tonne of C(GNC) formed. Carbanogels are
GNC lattices formed by carbon capture directly through the
electrolytic splitting of carbon dioxide (CO2). The electrolysis
occurs inmolten carbonate. The reduced CO2 product builds up
as a carbanogel containing the GNC and excess electrolyte at the
cathode. The carbanogel product is recovered hot (as a red-hot
slush) or cold (as a solid) by scraping and/or pressing from the
cathode. Pressing returns excess electrolyte to the electrolysis
chamber. Residual electrolyte and impurities may be removed
with thermal, mechanical, or electrochemical treatment. The
carbanogel is crushed and compressed within a mold to form
the buckypaper product.

Herein, buckypaper was composed of GNCs derived from
CO2. This buckypaper presents an opportunity to utilize the
greenhouse gas CO2 for producing stable GNCs, contributing as
a reliable decarbonization methodology for the long-term
removal of CO2. Graphite, a macroscopic form of layered gra-
phene, serves as a geological stability benchmark with a life-
span spanning hundreds of millions of years, providing
a stability reference for GNC materials.

Results and discussion
Design of the experiment and carbanogel formation

Lithium carbonate was purchased at a battery grade >99.5% and
was used as received. As analyzed, the lithium carbonate had
a composition of 99.8% (Li2CO3, Shanghai Seasongreen
Chemical Co.). Muntz brass is a high-zinc brass alloy composed
of 60% copper and 40% zinc; this material is also referred to as
280 brass. This material serves as the cathode and was
purchased from https://onlinemetals.com/ and in larger
quantities from Marmetal Industries. Electrolysis was
conducted in 304 stainless steel “carbon pots”. The pot acts as
both the cell case and its inner walls serve as the anode.

In a 770 °C molten Li2CO3 environment, CO2 underwent
splitting according to eqn (1)–(3), utilizing a Muntz brass
cathode and a 304 stainless steel anode at a constant electrolysis
current density J of 0.4 A cm−2. Throughout the electrolysis
process, CO2 was divided into O2 and GNCs. The GNCs devel-
oped as a network of interconnected graphene nanocarbons
and electrolyte on the cathode. An expanded description of this
electrolysis procedure, including product separation from
excess electrolyte and product washing, has been recently
delineated.56 The mixture of GNCs and carbonate electrolyte is
referred to as a carbanogel and further rened through the
electrolyte's separation process, as detailed in the ESI.†,56,57

Thermogravimetric analysis (TGA) of the product, conducted
using a PerkinElmer STA 6000 TGA/DSC, revealed a purity
exceeding 97% (with less than 3% residual oxidation impurities
at 800 °C) and exhibited an inection temperature of 608 °C,
27188 | RSC Adv., 2024, 14, 27187–27195
indicating remarkable resistance to oxidative combustion,
characteristic of graphene-like materials. Scanning electron
microscopy was studied using a PHENOM Pro-X scanning
electron microscope to examine the products of the electrolysis
process at various magnications.

Fig. 1 presents a carbanogel with reduced electrolyte content
achieved through a concentrated HCl wash. In a later example,
the carbanogel was instead directly pressed to remove residual
electrolyte. In Fig. 1, the 770 °C molten Li2CO3 electrolyzed
sample was observed at two different SEM magnications (x720
and x8600). This specic example illustrates the CNT carbano-
gel synthesized through CO2 electrolysis, synthesized in 770 °C
molten Li2CO3 detached from the cooled cathode, fragment,
acid washed, and utilized in the rst several buckypaper GNCs.
Due to its lower combustion temperature compared to GNCs,
amorphous carbon is more susceptible to oxidation, and both
© 2024 The Author(s). Published by the Royal Society of Chemistry
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amorphous carbon, residual electrolyte, and metal impurities
can be removed by oxidation and/or washing, as conrmed by
electron dispersive spectroscopy (EDS) and TGA. Useful alter-
native post-electrolysis product washes include formic acid,
copious water, or ammonium sulfate, although the latter two
primarily remove excess electrolyte without affecting the
amorphous carbon or metal impurities. Another alternative
wash, combining hydrochloric acid and hydrogen peroxide,
eliminates excess electrolyte, metal impurities, and amorphous
carbon impurities, particularly coupled with sonication during
the product wash.

The top SEM image in Fig. 1 presents a large collective size of
the intertwined CNTs forming the carbanogel. One advantage of
grouping nanoparticles within an intertwined macroscopic
matrix is the mitigation of respiratory hazards typically associ-
ated with nanoscale particles during transportation.

Higher-resolution SEM image (Fig. 1 bottom) reveals that the
GNC product comprises highly pure carbon nanotubes. The
SEM shows the diverse lattice intertwined orientation of the
carbanogel product. This product is utilized in subsequent
buckypaper formation steps. Additionally, this structure offers
electrical and thermal conductivity pathways, along with
a highly porous framework suitable for accommodating poly-
mers, catalysts, or battery intercalation. We have recently re-
ported extensive SEM, TEM, X-ray, Raman, high angle annular
dark-eld (HAADF) elemental analysis/TEM of the CNT and
various GNC products, as detailed in the ESI.†,51,58

For the electrolytic CO2 splitting and transformation elec-
trolyses of this study, the kilns utilize a direct (untreated) feed of
5% CO2 from the emissions of the adjacent 860 MW (Shepard,
Calgary Canada) natural gas electric power plant or direct air.
The large kiln modules designed and utilized are pictured in
Fig. 2. These kilns simultaneously sustain electrolysis in several
carbon pots. Cathodes show an increase in the surface area to
over 10 000 cm2. In each case, the cathode is mounted vertically
in the electrolyte, across from which are the 304 stainless steel
anodes; the anodes simultaneously function as the electrolysis
Fig. 2 The Genesis Device® kiln modules facilitate large-scale CO2

molten carbonate electrolysis and was used in this study. Carbon Corp
operates these modules in Calgary, Canada, for onsite
decarbonization.

© 2024 The Author(s). Published by the Royal Society of Chemistry
anodes and as the chamber walls of the 304 stainless steel
“carbon pot”. The electrolyte has a strong affinity for CO2 from
the open air. The kilns shown in Fig. 2 can also be congured
for direct air use. Finally, an amine concentrator is also in place
at the site that can concentrate the 5% CO2 ue gas. From the
amine concentrator as an alternative source, 98% CO2 (con-
taining 2% H2O) was used as the kiln/carbon pot input,
producing equivalent GNCs.
CO2 buckypaper (BP) with CNTs

Fig. 3 presents a typical example of a GNC buckypaper produced
from CO2. In this initial example, the GNC buckypaper was
generated through electrolysis to convert CO2 into carbanogel. The
carbanogel product was cooled, removed from the electrode,
ground, washed, dispersed, and molded to CNT buckypaper.
Specically, the process involved utilizing a 304 stainless steel case
within a 770 °C Li2CO3 molten electrolyte, employing a Muntz
brass cathode and a 304 stainless steel anode to yield the CNT
carbanogel product (Fig. 1). Subsequently, this carbanogel product
underwent cleaning with hydrochloric acid (HCl) and 0.2 grams of
the washed product was mixed in 300 mL of isopropyl alcohol,
followed by sonication for 30 minutes to ensure even dispersion.

The dispersed isopropanol CNT mixture was then transferred
into a vacuum lter assembly (Whatman nylon membrane lter;
0.2 mm Pore, 47 mm diameter), pressed, the liquid was extracted
under vacuum, dried, pressed, and detached by liing from the
membrane lter. The GNC buckypaper had a thickness of 96 mm,
and a measured conductivity of 11 000 S m−1 (s = length/(R,
resistance, x cross section)). This conductivity is consistent with
our measurements of carbonate-synthesized CNTs and may be
increased an order of magnitude by boron doping (addition of
a boron salt during the electrolysis).52,53
Composite, larger, and improved dispersion BP from CO2

Buckypaper strengtheners can include, but are not limited to
epoxies, resins and other polymers, cementitious materials, and
Fig. 3 A 4.7 cm diameter carbon nanotube buckypaper prepared via
the electrolysis of CO2 to form a carbanogel, grinding of the product,
dispersion in isopropanol, pressing and filtering, and forming on a 0.2
mm pore nylon membrane.

RSC Adv., 2024, 14, 27187–27195 | 27189
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Fig. 4 (A) Medium and (B) higher magnification scanning electron
microscopy images of the carbanogel particles composed of carbon
nanotubes. (C) TGA of the carbanogel product, formed in 750 °C
Li2CO3 at J = 0.09 A cm−2.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 9
/2

8/
20

24
 1

2:
22

:0
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
metals. Catalysts to expedite chemical or electrochemical reac-
tions can also be included. Dopants to affect the physico-
chemical properties of the BP can be added. Effective GNC
dopants can enhance the conductivity, catalytic activity, and
battery storage capacity properties. Dopants include boron,
nitrogen, sulfur, and phosphorous.52–54 A magnetic material is
one or more of those with ferromagnetic properties, para-
magnetic properties, diamagnetic properties, and any combi-
nation thereof.4,46

Jetset-Metlab epoxy is a rapidly cured BPA epoxy. Its resin
comprises 80–90 wt% propane, 2,2-bis[p-(2.3-epoxypropoxy)
phenol] polymers, and 10–20 wt% alkyl (C12–14) glycidyl ether.
The hardener consists of 60–70 wt% diethylenetriamine, 30–
40 wt% bisphenol A, less than 0.8% aminoethylpiperazine, and
less than 0.2% ethylenediamine. In a manner similar to the
buckypaper shown in Fig. 3, buckypaper (BP) was formed from
0.25 g of the carbanogel. However, the buckypaper was not
pressed, resulting in a considerably thicker (1133 mm) BP with
an order of magnitude lower density (0.2 g cm−3). 3.6 g of the
Jetset-Metlab epoxy was mixed with 0.38 g of the Jetset-Metlab
hardener. 0.38 g of the epoxy mix was spread on the BP. A sili-
cone sheet was placed over the epoxy-BP, compressed with
a heavy (0.500 thick) stainless steel plate, and cured overnight.
The silicone sheet was readily removed and the epoxy was
infused into the BP and hardened. The composite, again
formed with CNT from CO2, was readily handled and highly
resistant to fracturing or breakage. In an upcoming paper, we
will present that compared to samples without CNTs, even low
levels of added CNTs (1.5 to 2 wt% CNT) increase the tensile
strength of several epoxies. Specically, Timber Cast, Varathane
and Jetset-Metlab epoxies' tensile strengths were increased by
40 to 60% in ASTM D638 “dogbone” type V mold samples tested
with an ETM-10 kN Computer Controlled Electronic Universal
Testing Production Machine (Shore D Durometer). The hard-
ness was also increased. Equivalent tests on the BP resin
composite, upon completion, will be reported in an expanded
paper.

The buckypaper from CO2 presented in Fig. 3 is scalable.
However, thinner BPs, consisting of BP formation with
a decrease in the grams of carbanogel per unit area of the
membrane, were increasingly difficult to detach from the lter
paper. Intermediate diameter BPs could be formed and
removed. Specically, when 0.3 g of ground carbanogel was
washed in HCl, dispersed by sonication for 30 minutes in iso-
propanol, and vacuum ltered through a 270 mmWhatman 0.2
mm pore (grade 4) nylon lter, the BP was formed but could not
be removed in one piece from the lter paper.

A modied dispersion method to facilitate BP detachment
was sought. Polyvinylpyrrolidone (PVP) was utilized to promote
the dispersion of CNTs.59 0.05 g of 10 000 molecular weight PVP
(PVP10, from Sigma Aldrich) was added along with 0.10 g of
CNTs, rather than 0.20 g, ground from the washed CNT, and
dispersed in 300 mL of isopropanol with 15 minutes, rather
than 30 minutes, of sonication. The CNTs were prepared in
a manner similar to those presented in Fig. 1, also in Li2CO3,
but at a lower temperature of 750 °C and a lower current density
of 0.09 A cm−2. Further, the carbanogels were more extensively
27190 | RSC Adv., 2024, 14, 27187–27195
ground using a Magic Bullet Blender. The CNT's SEM and TGA
are presented in Fig. 4.

Once again, in Fig. 4, the carbanogel particles are evident in
the lower magnication SEM (panel A), and the TGA tempera-
ture of inection of 603 °C is high, although the oxidized 9%
residual (panel D) is higher than that in the previous sample.
Fig. 5 presents a typical example of a GNC buckypaper produced
with the PVP isopropanol-dispersed CNT from CO2. The
unpressed BP is considerably thinner at 58 mm than the
unpressed sample prepared without the PVP dispersant.
Direct press CO2 buckypaper

The electrolyte has a strong affinity for CO2, directly from air
(pCO2 = 420 ppm and climbing), or directly sourced from an
industrial stack. Industrial CO2 feedstocks tested vary from
pCO2 = 50 000 ppm (from the Shepard Energy Centre 860 MW
natural gas power plant, Calgary, Canada) to pCO2 = 980
000 ppm (from a liquid amine concentrator onsite at Alberta
Carbon Capture Technology Centre, ACCTC, at the plant). The
electrolysis provides a continuous source of oxide (eqn (1)),
reacting with CO2 (eqn (2)). The capture and transformation of
CO2 was determined by 13C isotopic labeling,60 and the real-time
simultaneous measurement of CO2 and the eqn (1) co-product
O2 was done as presented previously.55 In the rst examples,
buckypapers were formed with carbanogels by the trans-
formation of CO2 in the air. In this next example, the BP was
formed from 50 000 ppm CO2 fed from the Shepard Energy
Centre natural gas power plant exhaust.

Fig. 6 presents an alternate methodology for the preparation
of a GNC buckypaper derived from CO2. This GNC buckypaper
was produced from CO2 transformed into carbanogel, following
the process outlined in the previous example. However, instead
of chemical washing, the electrolyte content of the carbanogel
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 A 4.7 cm diameter carbon nanotube buckypaper prepared via
the electrolysis of CO2 to form a carbanogel, grinding of 0.10 g of the
product, dispersion with PVP in isopropanol, pressing, filtering, form-
ing on the 0.2 mm pore nylon membrane, and lifting from the
membrane.
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was reduced through direct compression while the carbanogel
was hot (containing the GNC product and residual, excess elec-
trolyte). Specically, the carbanogel, containing the solid GNC
and molten electrolyte, was generated at the cathode and then
compressed at 500 psi through layers of 60 mesh 304 alloy
stainless steel mesh while hot, as recently delineated.56 Notably,
the 250 mmmesh pore size is signicantly larger than that of GNC
but smaller than that of the carbanogel particle size. The small
area of the lighter brown discoloration in Fig. 6 is where the GNC
buckypaper adhered to the mesh screen during separation.

During compression, the larger size of the intertwined CNTs
in the carbanogel is retained above the mesh, while the electro-
lyte passes through. The resulting GNC buckypaper's thickness is
linearly proportional to the starting mass of the carbanogel and
approximately inversely proportional to the applied pressure.
Fig. 6 A 35 cm diameter carbon nanotube buckypaper prepared via
the electrolysis of CO2 to form a carbanogel, and pressing of the
carbanogel product while molten to separate residual carbanogel
electrolyte from the graphene nanocarbon, carbon nanotube, and
product.

© 2024 The Author(s). Published by the Royal Society of Chemistry
The GNC buckypaper shown in Fig. 6 has a diameter of 350
mm, and larger versions, approximately two-fold in size, were
produced. A 3700 psi example is seen in our recent carbanogel
electrolyte extraction study.56 Unlike other buckypaper forma-
tion protocols, which call for a prerequisite dispersion step such
as sonication, to provide a homogeneous distribution of the
GNC components, the GNC components are already homoge-
nously distributed in the unground carbanogel. Hence, the BP
formation process does not need a prerequisite GNC dispersion.
CO2 BP generalization and future potential

A broad array of lter pore sizes and solvents are found to be
effective for forming buckypaper from CO2 transformed into the
carbanogel using these BP formation methodologies. Varying
the CO2 electrolysis parameters, including temperature, current
density, and cathode, anode, and electrolyte composition,
generates alternative GNCs for buckypaper (such as CNOs,44 to
be described for buckpaper in a subsequent study).

Forces to align, rather than disperse, the CNMs can additionally
be applied during the carbanogel buckypaper formation and or
liquids added before the pressing to maintain more even layering
of the carbanogel particles. The alignment can provide directional,
anisotropic properties to the carbanogel buckypaper and provide
enhanced carbanogel buckypaper properties, including but not
limited to enhanced strength, conductivity, and directional inter-
actions with visible and other electromagnetic radiation. The
applied alignment forces can be linear, radial, cylindrical, or
spherical to produce directional geometries of anisotropy.23,60–64

The GNC components in the BP can be aligned mechan-
ically, electrically, or magnetically during the BP formation or
a combination thereof to further enhance the BP properties,
including enhancements of the BP strength and/or electrical
and thermal conductivities and EMF absorption, and will be
presented in an expanded article. The mechanical alignment
can be achieved with the application of shear force, such as by
pulling or spinning during the BP preparation steps or dragging
a piston applying the formation pressure. Alternatively, the
shear force can be directionally applied to increase rather than
align the GNC entanglement. The electrical and/or magnet
alignment is achieved with the application of an orienting
electrical or magnetic eld during the BP preparation or pro-
cessing stages. Magnetic GNCs are prepared to incorporate
magnetic materials, such as metals or metal carbides, during
the GNCs preparation stage. The decrease in the distance of the
magnetic eld is greater than that for the electric eld, and the
magnetic alignment is more offset than the electric alignment
effect by the competing random disorder of Brownian motion,
which increases with temperature and modes of freedom and
decreases with increasing molecular mass and viscosity. Hence,
the alignment is enhanced by the decrease in temperature or
molecular mass (as exemplied by multiwalled versus single-
walled carbon nanotubes) and increases with viscosity.

The carbanogel buckypaper may be used alone, such as in
liners, heat retardants, or shields, or in combination, such as
laminates, with other materials to impart improved properties
to other materials. CNT materials have displayed a shape-
RSC Adv., 2024, 14, 27187–27195 | 27191
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memory property (spontaneously returning to their original
shape) under thermal, mechanical, electrical, or magnetic
activation conditions which can be incorporated into BP.65–74

This shape-memory effect is promoted by anisotropic properties
in the buckypaper. The electrical and thermal conductivity of
buckypaper present superior properties for their applications as
heating elements. Both shape-memory and heating element
behavior have been studied alone and in combination with
other material layers.68
Incentivized carbon mitigation

Innovative approaches, such as employing high-solubility
molten pathways and harnessing renewable energy for elec-
trolysis, have shown promise in reducing energy consumption
and production costs. In the formation of graphene nanocarbon
composites (GNCs) via CO2 to carbon nanoallotrope technology
(C2CNT®), the process solely requires CO2 as a reactant. The
energy required for electrolysis to convert CO2 into GNCs falls
within the range from 0.8 to 2 volts.60 When produced in bulk,
they are approximately $1000 per tonne.53 These are akin to the
costs of the industrial aluminum production electrolytic
process, which involves splitting aluminum oxide to yield
commercial-grade aluminum metal.53 C2CNT® costs will be
further reduced as solar and wind energy are increasingly used
as alternative power sources.75–84

An estimate of cost and decarbonization benets is exem-
plied in the context of one application. Typical ratios of plastic
resin to ber infusion are in the range of 60 : 40. The price index
for plastic materials and resins has been $300–$400 per tonne
over the last three years.85 Hence, the infusion of resin in
buckypaper may decrease the material costs to the order of $500
per ton buckypaper resin composite while signicantly lowering
the quantities of the material to achieve the properties needed
for various applications. The buckypaper-resin composite
provides the capability of enhancing the strength, tearing
resistance, and fracture toughness several folds while
increasing the electrical and thermal conductivity by several
orders of magnitude. Reducing the amount of plastic needed to
achieve the desired properties through buckypaper resins made
with GNCs from CO2 provides the incentive of both cost and
carbon footprint reduction.
Conclusions

Buckypapers with GNCs, such as carbon nanotubes made from
CO2, are demonstrated to form a range of conductive, liquid-
dispersed and unusual direct molten pressed forms of bucky-
papers, all prepared from lattices of intertwined carbon nano-
tube carbanogels synthesized by the electrolytic splitting of CO2

in molten carbonates. As with industrial aluminum production
by the electrolytic splitting of aluminum oxide, the production
of GNCs by the electrolytic splitting of carbon dioxide is inex-
pensive, providing a cost-effective path for the synthesis of
buckypapers. The only reactant used in the production of the
GNCs is CO2 (3.7 tonnes of CO2 are consumed for each tonne of
C(GNC) formed), providing a decarbonization path to mitigate
27192 | RSC Adv., 2024, 14, 27187–27195
the greenhouse gas CO2. The captured carbon, transformed
from CO2, provides a storage buffer to remove CO2. Further-
more, the removed CO2 in the form of GNCs is highly stable,
with the potential to permanently sequester CO2 from the
carbon cycle. It is anticipated that with the further alignment
and shape-memory effects that can be achieved with bucky-
papers, a range of useful lightweight, high strength, and high
conductivity applications can be demonstrated with these new
materials.
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