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f 5-acylated N-fluoroalkyl-1,2,3-
triazoles to trifluoromethylated ring-fused
isoquinolines, 1,3-oxazines, and 1,3-oxazin-6-ones
via ketenimines†

Lukáš Janecký, ab Blanka Klepetářováa and Petr Beier *a

A one-pot multistep methodology leading to trifluoromethylated cyclopenta[c]isoquinolines, indeno[1,2-c]

isoquinolines, 6,6-difluoro-1,3-oxazines, or 1,3-oxazin-6-ones, based on the reaction of 5-acylated N-

pentafluoroethyl-substituted 1,2,3-triazoles is presented. A thermal ring opening of the starting triazoles,

followed by a 1,2-acyl shift formed reactive ketenimines which cyclized after a rearrangement in

a substrate-specific manner to provide new trifluoromethylated heterocyclic products.
Introduction

Isoquinolines with fused 5-membered rings, 6H-1,3-oxazines, or
oxazin-6-ones constitute important classes of biologically active
compounds known as anti-tubercular, anti-inammatory,
sedative agents, or enzyme inhibitors (Fig. 1).1–5 Despite the
few known synthetic strategies to indeno[1,2-c]isoquinolines1,6–8

or cyclopenta[c]isoquinolines,9 the preparation of 2-
triuoromethyl-5-membered ring-fused isoquinolines was
described for only one specic example.10 Similarly, non-
uorinated fully substituted 6H-1,3-oxazin-6-ones can be
synthesized from b-lactams,11 isoxazolones,12–14 cyclo-
propenones15 or ynamides.16 However, 2-triuoromethyl-
substituted 1,3-oxazin-6-ones or 1,3-oxazines remain unex-
plored (Fig. 1). Since triuoromethylated heteroaromatics of
novel structures are highly valued chemicals, which nd use in
medicinal chemistry17–20 and agrochemistry21–23 research pro-
grammes, we set out to investigate the synthetic approaches
towards the proposed novel triuoromethylated heteroarenes
shown in Fig. 1.

We recently reported a denitrogenation strategy for multi-
substituted N-uoroalkylated 1,2,3-triazoles24–31 with Brønsted
or Lewis acids proceeding via vinyl cation intermediates and
leading to various N-alkenyl compounds.10,24,30–32 We also
showed that N-uoroalkyl 1,2,3-triazoles in microwave reaction
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conditions undergo a rearrangement to form ketenimines,33

which can further cyclize to isoquinolines (Scheme 1).34

Herein, we propose a new synthetic methodology to prepare
triuoromethylated 5-membered ring fused isoquinolines, 6,6-
diuoro-1,3-oxazines or 1,3-oxazin-6-ones from 5-acyl-N-
pentauoroethyl-1,2,3-triazoles involving ketenimine interme-
diates (Scheme 1).
Results and discussion

Denitrogenation of N-uoroalkylated 1,2,3-triazoles to kete-
nimines by microwave heating33 was extended to 5-acylated
Fig. 1 Selected examples of bioactive 5-membered ring fused iso-
quinolines or 1,3-oxazine and 1,3-oxazin-6-ones and compounds of
interest – their trifluoromethylated derivatives.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Microwave-assisted transformation of N-penta-
fluoroethyl-1,2,3-triazoles to trifluoromethylated isoquinolines via
ketenimines (previous work) or to (fused)isoquinolines, 1,3-oxazines,
or 1,3-oxazin-6-ones (this work).
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triazoles.24 Thus, microwave heating of 5-methacryloyl-
substituted triazole 1a resulted in the formation of a mixture
of ring-fused 1-triuoromethylisoquinolines 2a and 3a,
presumably via ketenimine A, imidoyl uoride B and iso-
quinoline C intermediates (Table 1, entry 1). The addition of
uoride salts can enhance the 1,3-uorine shi of A to B,
therefore an optimization study was conducted to improve the
selectivity of the reaction. Copper(II) uoride was identied as
the most effective uoride additive (entry 8). A combination of
potassium uoride and sodium hydroxide was used to obtain
dehydrouorinated 1-triuoromethyl-isoquinoline 3a
(entry 9).

A small library of 4-aryl-5-methacryloyl triazoles, obtained
from the intercepted click reaction of aromatic copper(I) ace-
tylides, azidopentauoroethane and methacrylic chloride in
the presence of DIPEA (see ESI† for details), was subjected to
Table 1 Optimization of the reaction conditions leading to cyclopenta[c

Entry Time (min) Additive

1 120 —
2 60 KF
3 60 AlF3
4 60 CsF
5 60 AgF
6 60 NaF
7 60 FeF3
8 30 CuF2
9 30 KFc

a 19F NMR ratio. b Isolated yield. n.d. not determined. c With added NaOH

© 2024 The Author(s). Published by the Royal Society of Chemistry
the reaction providing ring-fused isoquinolines 2 in moderate
to good yields (Scheme 2). The structure of derivative 2c was
conrmed by crystallography. Substrate with electron-
acceptor group (nitro) on the aryl ring did not form the
product (2e). Additionally, two examples of dehydro-
uorinated isoquinolines 3 were prepared albeit in moderate
to low yields.

When electron-rich 5-(3,5-dimethoxybenzoyl)-substituted
1,2,3-triazoles were used, ring-fused 1-triuoromethyl-
isoquinolines 4 bearing various substituents on the isoquino-
line ring formed in good yields (Scheme 2).

All other investigated 5-acylated 1,2,3-triazoles except
strongly electron-rich 5-(3,5-dimethoxybenzoyl)- or 5-
methacryloyl-substituted ones afforded different products
under the thermal denitrogenation conditions. Thus, 5-(4-
methoxyphenyl)-substituted triazole underwent a unique
transformation presumably via ketenimine D, followed by 1,3-
aryl group transfer to ketene E,35 1,5-uorine shi to interme-
diate F, and cyclization involving another 1,5-uorine shi to
6,6-diuoro-2-triuoromethyl-1,3-oxazine 5a or a product of its
hydrolysis 1,3-oxazin-6-one 6a (Table 2). Short reaction time (5
min) and no additive favoured the formation of product 5a,
while a longer reaction time (20 min) and the use of CuF2 fav-
oured the product of hydrolysis 6a. Four examples of 1,3-oxa-
zines 5 were prepared in moderate to good yields, including the
crystal structure of 5c and nine examples of 1,3-oxazinones 6
were synthesized in moderate to high yields including the
crystal structure of 6g (Scheme 3). While the presence of an
alkenyl group led to oxazinone 6d with this substitution in
position 4, the products with alkyl groups in position 4 or 5 or
an alkenyl group in position 5 did not form. Also, products 6
with the diuoromethyl or ethoxycarbonyl groups in position 2
did not form.
]isoquinolines 2a and 3a from 5-acylated triazole 1a

Ratio 2a/3aa 2a Yieldb (%) 3a Yieldb (%)

48 : 52 n.d. n.d.
27 : 73 12 23
37 : 63 n.d. n.d.
42 : 58 n.d. n.d.
78 : 22 42 10
54 : 46 n.d. n.d.
38 : 62 n.d. n.d.
84 : 16 41 12
13 : 87 Traces 31

(3 equiv.).
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Scheme 2 Scope of products of the microwave-assisted trans-
formation of 5-acyl-N-pentafluoroethylated 1,2,3-triazoles 1 (0.1–0.2
mmol) to cyclopenta[c]isoquinolines 2 and 3 or indeno[1,2-c]-iso-
quinolines 4. a2.11 mmol scale. bUsing KF (1.1 equiv.) and NaOH (3
equiv.) instead of CuF2.

Table 2 Optimization of the reaction conditions leading to 6,6-difluoro

Entry CuF2 (equiv.) Reaction time (min)

1 0 20
2 0 5
3 1.1 10
4 1.1 20

a 19F NMR ratio. b Isolated yield. n.d. not determined.

Scheme 3 Scope of products of the microwave-assisted trans-
formation of 5-acyl-N-pentafluoroethyl-1,2,3-triazoles 1 (0.1–0.25
mmol) to trifluoromethylated 6,6-difluoro-1,3-oxazines 5 and 1,3-
oxazin-6-ones 6. a195 °C, 120 min.
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Conclusions

In conclusion, thermal denitrogenation of N-penta-
uoroethylated 4-substituted-5-acyl-1,2,3-triazoles in the pres-
ence of copper(II) uoride affords depending on the nature of 5-
acyl substitution 1-triuoromethylcyclopenta[c]-isoquinolines,
indeno[1,2-c]-isoquinolines, 2-triuoromethyl-6,6-diuoro-1,3-
oxazines, or products of their hydrolysis 2-triuoromethyl-1,3-
oxazin-6-ones. All these compounds result from the formation
of ketenimine intermediates which undergo either 1,3-uorine
shi, SEAr and SNAr sequence, or 1,3-aryl shi, 1,5-uorine
shi, cyclization and another 1,5-uorine shi sequence. The
-1,3-oxazine 5a and 1,3-oxazinone 6a

Ratio 5a/6aa 5a Yieldb (%) 6a Yieldb (%)

78 : 22 28 n.d.
92 : 8 60 n.d.
8 : 92 n.d. 39
1 : 99 n.d. 85

© 2024 The Author(s). Published by the Royal Society of Chemistry
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presented methodology showcases advanced cyclization of
ketenimine intermediates generated from triazoles and their
application in the C–C bond formation for the synthesis of new
heterocyclic structures.
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B. Klepetá̌rová, P. Slav́ıček and P. Beier, Aza-Wolff
Rearrangement of N-Fluoroalkyl Triazoles to Ketenimines,
Org. Chem. Front., 2023, 10, 3201–3206.
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