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Electrophilic aromatic substitution at the C5 position of isoxazolines and construction of a new

quaternary carbon center were achieved in this paper. This is the first report of carbon–carbon (C–C)

bond formation onto isoxazoline without compromising the ring structure. Various aromatics

including heteroaromatics gave the desired products in good yields, especially aromatics bearing

electron-donating groups. The reaction proceeds via the SEAr reaction mechanism, in which

carbocation intermediates generated from the fluorinated isoxazolines via C–F bond cleavage reacted

with aromatics.
Introduction

Heterocycles are important frameworks that are widely distrib-
uted in nature. The isoxazoline pharmacophore is one of the
most important classes of ve-membered nitrogen–oxygen
containing heterocyclic compounds.1 Acivicin is a fermentation
product of Streptomyces sviceus and used as an effective inhib-
itor of g-glutamyl transferase (Fig. 1).2 Isoxadifen-ethyl is used
as a herbicide safener that minimizes the effect of the herbicide,
and can effectively alleviate a sulfonylurea herbicide ‘nic-
osulfuron’ injury inmaize.3 Roxiban is a selective antagonist of
the platelet glycoprotein IIb/IIIa receptor, which is the major
receptor for brinogen on the platelet surface.4 Among such
isoxazoline scaffolds, in particular, uorinated or uoroalky-
lated derivatives exhibit remarkable biological properties. For
example, uxametamide is an insecticide with a wide spectrum,
and acts as an antagonist of GABA- and glutamate-gated chlo-
ride channels (GABA-Cl and Glu-Cl).5 Furthermore, CBM-
301940 exhibited excellent in vivo PK/ADME properties and
improved the cardiac efficiency in a rat heart global ischemia/
reperfusion model.6

These scaffolds are commonly synthesized from uori-
nated and/or uoroalkylated building blocks which include
classical reactions such as cycloaddition of nitrile oxide with
alkene, condensation of diketone with hydroxylamine, and
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cyclization of oxime (Fig. 2).7 However, both 4-uorinated and
4-uoroalkylated isoxazolines scaffolds have been little
synthesized, especially isoxazolines bearing a quaternary
carbon center at C5 position, which is important for the
expression of biological activity. The Khisamutdinov group
and the Shibata group succeeded in uorination of isoxazo-
lines bearing electron-withdrawing group at C4, respectively.8

These reactions afforded the corresponding 4-uorinated
products in good yields, but the formation of a new quater-
nary carbon center was not achieved owing to the use of
starting substances that already have substituents at the C5
position (Scheme 1a and b). In 2020, an interesting uoro-
spirocyclization of isoxazoles was reported by Hamme and
his co-workers.9 They also succeeded in the synthesis of 4-
uorinated isoxazolines, and achieved the construction of
a new quaternary carbon center at C5 via C–O bond formation
as well (Scheme 1c). To the best of our knowledge, there are
only three reports regarding uorine-containing isoxazolines
at C4 position, although Houk et al. also reported the [3 + 2]
cycloaddition of nitrile oxides to give the related isoxazoline
system, but those were not main products.10
Fig. 1 Isoxazolines in bio-active compounds.
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Fig. 2 Synthetic methods for fluorine-containing isoxazolines.

Scheme 3 Fluorine-alkoxy group exchange reaction of fluorinated
isoxazolines and unexpected SEAr products.

Scheme 4 Direct introduction of carbon nucleophiles on fluorinated
isoxazolines via C–F bond cleavage.
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On the other hand, a carbon–uorine (C–F) bond is one of
the most stable chemical bonds, because it has the highest
bond dissociation energies.11 For this reason, trans-
formations through stable C–F bond cleavage are difficult, but
also challenging reactions. In recent years, several C–F bond
cleavage reactions have been achieved by some groups, but
there is still room in this eld.12 Based on such important
background, we are interested in the construction of uori-
nated isoxazoline system bearing a quaternary carbon center
at C5 by using stable C–F bonds cleavage aimed at synthe-
sizing a wide range of functional uorinated 5-membered
heterocyclic systems.

We reported selective uorination of isoxazoles (1), which
gave 4-uorinated isoxazoles (2) or 4,4,5-triuorinated isoxazo-
lines (3) by using different amounts of Selectuor, respectively
(Scheme 2).13 Furthermore, when isoxazolines 3 and various
alcohols were treated with SnCl4, the corresponding 5-alkoxy-
lated products 4 were obtained in moderate to good yields
(Scheme 3a).14 This reaction proceeds via an SN1 type process
along with C–F bond cleavage, and then C–O bond formation by
Scheme 1 Synthesis of 4-fluorinated isoxazolines bearing a quater-
nary carbon at C5.

Scheme 2 One-pot synthesis and selective fluorination of isoxazoles.

39544 | RSC Adv., 2024, 14, 39543–39549
alcohol formed new quaternary carbon center at C5 position. In
addition, this reaction could apply to other hetero atom
nucleophiles such as thiols or amines to generate a new C–S or
C–N bond at C5 position on starting isoxazolines.15 During the
process of the synthesis of 4, sterically demanding phenol such
as 2,6-diphenylphenol gave a novel aryl substituted product 5aA
via electrophilic aromatic substitution (SEAr) as shown in
Scheme 3b.14 Furthermore, the reaction with N,N-dimethylani-
line gave the similar C–C bond forming product 5aD that was
introduced the aromatic ring directly at the C5 position of the
isoxazoline scaffold, although the yield should be improved as
shown in Scheme 3c. This is the rst report for introducing
carbon nucleophiles directly at the C5 position of the isoxazo-
line ring without compromising ring structure. In view of the
results, we made the following hypothesis that the reaction of 3
with aromatic compounds might give various 4,4-diuoro-5-
arylated isoxazolines (5) via SEAr type processes which was
directly constructed C–C bond at C5 position of isoxazolines
(Scheme 4).
Results and discussion

For introducing an aromatic ring at the C5 position of iso-
xazoline 3a, we investigated the reaction conditions by using
toluene as a carbon nucleophile. According to the previous
result, we applied the best condition of the uorine-alkoxy
group exchange reaction as shown in entry 1 (Table 1).14
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Reaction conditions for SEAr using toluene

Entry Lewis acid Solv. (mol L−1) Temp (°C)

Yielda (%)

3a 4a 5aB

1 SnCl4 14-Dioxane (0.125) Reux Trace 79 Trace
2 SnCl4 DCE (0.125) Reux (34)b 47 —
3 SnCl4 THE (0.125) Reux (23)b (20)b —
4 SnCl4 CH3CN (0.125) Reux — 57 18
5 SnCl4 DMF (0.125) 90 82 Trace —
6 SnCl4 Sulfolane (0.125) 90 — Trace 37
7 LiCl Sulfolane (0.125) 90 96 — —
8 BF3$Et2O Sulfolane (0.125) 90 — — 58
9 TiCl4 Sulfolane (0.125) 90 — 19 —
10 FeC13$6H2O Sulfolane (0.125) 90 — 61 —
11 SnCl2 Sulfolane (0.125) 90 — 98 —
12 YbC13$6H2O Sulfolane (0.125) 90 — 94 —
13 BF3$Et2O Sulfolane (0.125) 90 — — 66
14 BF3$Et2O Sulfolane (0.5) 90 — — 27
15 BF3$Et2O Sulfolane (0.125) 120 — — 12
16c BF3$Et2O Sulfolane (0.125) 90 — — 64

a Isolated yield. b The yield in parentheses was calculated by 19F NMR using PhCF3 as an internal standard. c The reaction was carried out for 1 h.
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However, compound 5aB was not obtained, but the main
product is 5-hydroxylated compound 4a in 79%. Therefore,
various reaction solvents were examined. As shown in entries
4 and 6, acetonitrile and sulfolane gave the desired product
5aB, and we found that sulfolane is the best solvent in this
reaction. Next, various Lewis acids were examined. As shown
in entry 7, using LiCl did not give the product at all, and only
the starting material 3a was recovered. On the other hand,
using other Lewis acids such as YbCl3, FeCl3, SnCl2 or TiCl4
gave 5-hydroxylated product 4a, although the 3a was
consumed as shown in entries 9–12. Based on these exami-
nations, BF3$Et2O was the best Lewis acid and it gave the
desired product 5aB in 58% (entry 8). In further optimization
of the reaction conditions, the solution concentrations and
the temperature were investigated. In entry 13, increasing the
solution concentration improved the yield of 5aB. However,
further high concentration or high reaction temperature
greatly decreased the yield as shown in entries 14 and 15. On
the other hand, the shortened reaction time did not affect the
reaction yield (entry 16). So, we decided entry 16 is the best
condition to give the desired product 5aB.

On the basis of the optimized conditions, we explored the
scope for this reaction, and the results are summarized in
Table 2. The aromatics that are bearing on electron-donating
groups proceeded smoothly to give the corresponding
compounds (5aB–5aD, 5aH and 5aI) in moderate to good yields.
On the other hand, the electron-decient aromatics such as
bromobenzene, benzotriuoride and acetophenone did not
© 2024 The Author(s). Published by the Royal Society of Chemistry
work well, but only 5-hydroxylated product 4a was identied on
19F NMR. Heteroaromatic compounds could be applied to this
reaction. Using N-methylpyrrole as the substrate, the desired
compound 5aJ was obtained in 43% together with its
regioisomer 5aJ0 in 43% yield. Fortunately, these isomers (5aJ
and 5aJ0) were separable by column chromatography and the
total yield of this reaction was 86%. With furan and thiophene,
the reaction gave rise to the corresponding SEAr products (5aK
and 5aL) including a small amount of their regioisomers in 54%
and 86% yields. However, pyridine did not give the product at
all, but the only starting material 3a was recovered. Pyridine is
a basic amine, so the formation of a BF3 salt might be pre-
dominated during the reaction. Isoxazolines having substituted
aromatics and alkyl group also reacted with toluene to give the
corresponding products (5bB, 5cB, and 5dB). It is interesting
that 5cB involving chlorophenyl group at C5 could be obtained
in a good yield by using the corresponding starting material,
although the introduction of halobenzene via the SEAr reaction
failed (see 5aE). As a side note, the molecular structures of 5aH,
5aI and 5aJ were characterized by using single-crystal XRD
analyses (5aH (CCDC: 2349494), 5aI (CCDC: 2349492) and 5aJ
(CCDC: 2349493)).

We envisage that the reaction proceeds via SEAr reaction
mechanism (Fig. 3). The C–F bond of 3awould be dissociated by
Lewis acid and give the carbocation intermediate A (Int A). The
stabilized Int A by the adjacent oxygen atom and/or benzene
ring was trapped by the aromatics via SEAr mechanism to give 5-
arylated product 5 that bears a new quaternary carbon center.
RSC Adv., 2024, 14, 39543–39549 | 39545
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Table 2 SEAr reaction of 4,4,5-trifluorinated isoxazolines with aromatics via C–F bond cleavage

a The product and the starting material (3a) were identied on 19F NMR. b Only the 5-hydroxylated product (4aA) was identied on 19F NMR.
c Separable regioisomer (5aJ0) was obtained in 43%. d lnseparable regioisomer was obtained in a small amount. e The starting material (3a) was
recovered.
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On the other hand, using poorly reactive electron-decient
aromatics preferentially led to the trapping of sulfolane and/
or H2O towards Int A to give 5-hydroxylated product 4a reect-
ing the lower nucleophilicity of the aromatic substrate bearing
an electron withdrawing substituent. So, it is important to use
‘dry’ solvent in this reaction.

In the last part, we explored several constructive reactions to
demonstrate the synthetic utility of uorinated isoxazoline
products (Scheme 5). A reductive N–O bond cleavage of 5aB
followed by hydrolysis of imine to give a,a-diuoro-b-hydroxy
39546 | RSC Adv., 2024, 14, 39543–39549
ketone 6 in 68% yield.16 Furthermore, treatment of 5bB under
reductive ring-opening condition by NaBH4 and NiCl2 afforded
the corresponding a,a-diuoro-b-amino alcohol 7 in 62%
yield.17 Interestingly, these are the rst synthetic examples of
a,a-diuoro-b-hydroxy ketone and a,a-diuoro-b-amino alcohol
bearing two aromatic rings on the quaternary carbon center,
although many syntheses of similar compounds using
Reformatsky-type reaction and/or aldol-type reaction have been
reported.18
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Proposed reaction mechanism of SEAr reaction.

Scheme 5 The synthetic utility of fluorinated isoxazolines.
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Conclusions

In conclusion, we succeeded in introducing various aromatic
substituents at the C5 position of the uorinated isoxazolines.
Using the aromatics bearing electron-donating groups and
heteroaromatics gave the desired products 5 in good yields. On
the other hand, electron decient aromatics did not give the
products. The reaction would proceed via the SEAr reaction
mechanism, in which carbocation intermediates generated
from the uorinated isoxazolines via stable C–F bond cleavage
reacted with aromatics. Isoxazoline is an important framework
for bioactive compounds, and we expect that these products
also have interesting activities.
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