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zation strategy with generality in
asymmetric organocatalysis as a primary target†

Simone Gallarati, a Puck van Gerwen, ab Ruben Laplaza, ab Lucien Brey, a

Alexander Makaveeva and Clemence Corminboeuf *abc

A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is

sometimes called “general”. Despite their great utility in asymmetric synthesis, truly general catalysts are

difficult or expensive to discover via traditional high-throughput screening and are, therefore, rare.

Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of

experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced

substrate breadth. For these reasons, we report an inverse design strategy based on the open-source

genetic algorithm NaviCatGA and on the OSCAR database of organocatalysts to simultaneously probe

the catalyst and substrate scope and optimize generality as a primary target. We apply this strategy to the

Pictet–Spengler condensation, for which we curate a database of 820 reactions, used to train statistical

models of selectivity and activity. Starting from OSCAR, we define a combinatorial space of millions of

catalyst possibilities, and perform evolutionary experiments on a diverse substrate scope that is

representative of the whole chemical space of tetrahydro-b-carboline products. While privileged

catalysts emerge, we show how genetic optimization can address the broader question of generality in

asymmetric synthesis, extracting structure–performance relationships from the challenging areas of

chemical space.
Introduction

Developing catalytic methods that are tolerant to many func-
tional groups exerting different steric and electronic inuences
on the reaction center without signicant reduction in yield or
product selectivity is a long-standing goal of organic chemistry.
Despite being a highly desired feature, such “generality” i.e.,
breadth of substrate scope,1 is rare and only a few trans-
formations become routinely incorporated into the synthetic
chemist's toolbox.2,3 This is due to reaction development usually
beginning with the examination of a simple, readily available
model substrate (Fig. 1A), with subsequent re-optimization on
more complex systems guided by empirical trial-and-error.4

Finding species with enhanced substrate breadth requires
evaluating wider regions of chemical space derived from a large
matrix of diverse catalysts crossed with a panel of substrates
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that effectively represent the whole target molecule class. Today,
“one-pot-multisubstrate” screening5–7 is tractable with high-
throughput experimentation techniques,8–12 but has found
limited applicability due to issues associated with chemical
compatibility and product analysis. The catalyst space investi-
gated remains limited, at best, to tens of candidates and,
perhaps worse, the most general ones might be unwittingly
excluded from the original screening set, biasing the results.13

In the last decade, data-driven computational methods, in
tandem with supervised and unsupervised machine learning
algorithms, have been applied to address numerous challenges
in organic chemistry,14–17 such as prediction of reaction
outcomes,18–20 multistep synthetic planning,21–23 and catalyst
discovery.24–28 In particular, Bayesian optimization29,30 has been
combined with robotic experimentation to nd general condi-
tions for heteroaryl Suzuki–Miyaura coupling.31 Denmark and
co-workers have developed a “catalyst selection by committee”
to identify general disulfonimides for the atroposelective
iodination of a variety of 2-amino-6-arylpyridines,26 and used
active learning to provide substrate-adaptive conditions for C–N
couplings.32 Recently, Reid et al. have proposed a workow for
assigning and predicting generality through clustering of reac-
tion sets, but manually curated literature databases and a user-
dened success value were required.33 Overall, existing data-
driven tools are still aimed at accelerating the evaluation of
a pre-dened set of catalysts,34 rather than suggesting entirely
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Reaction optimization tactics for the development of catalytic methods: traditional specificity-oriented vs. data-driven multi-substrate
screening. (B) Schematic inverse design pipeline powered by NaviCatGA.
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new species exhibiting high performance across the whole
substrate scope.

Generative models35 are an attractive alternative to direct
screening by enabling the inverse design of functional mole-
cules and materials.36,37 In this paradigm, the desired func-
tionality (i.e., the target) is rst dened, and chemical structures
tailored to that property are suggested (Fig. 1B). Although
applications of generative models, such as genetic algorithms,38

to homogeneous catalysis are increasingly being reported,39–44

only specicity-oriented catalyst design has been addressed.
Optimizing generality as primary target requires adapting
existing tools and pipelines to tackle this multi-dimensional
problem.

Here, we show how evolutionary experiments performed
with the genetic algorithm NaviCatGA,45 leveraging the recently
reported OSCAR database of organocatalysts' building blocks,46

are designed to simultaneously probe the catalyst and substrate
space and nd candidates predicted to exhibit both high turn-
over and enantioselectivity. We discuss the nature of tness
function used to estimate how close candidate species are to
achieving optimal performance, the surrogate models that
accelerate tness evaluation, the database of molecular frag-
ments to generate millions of prospective catalysts on-the-y,
© 2024 The Author(s). Published by the Royal Society of Chemistry
and the strategy followed to choose an unbiased and diverse
substrate scope. We select the Pictet–Spengler condensation as
a synthetically relevant case study to illustrate how multi-
objective genetic optimization across an expansive substrate
space affords organocatalysts with good median activity and
selectivity, while simultaneously providing information rich
data on the areas of chemical space where even the best
candidates are underperforming. Analysis of the challenging
substrates gives insights into the set of non-covalent interac-
tions that are necessary for generality, and into the structural
features of the tetrahydro-b-carboline intermediate that disrupt
them. Our pipeline allows us to automatically generate candi-
dates with the broadest scope possible, and also to understand
why truly “privileged” organocatalysts across highly diverse
substrates are difficult to discover.
Methods: the NaviCatGA pipeline and
components

NaviCatGA is a versatile genetic algorithm capable of opti-
mizing homogeneous catalysts by exploiting any suitable tness
function that describes their catalytic performance.45 It
manipulates catalyst structures generated on-the-y from
Chem. Sci., 2024, 15, 3640–3660 | 3641
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Fig. 2 (A) Pictet–Spengler cyclization of tryptamine derivatives (SubA, PG= protecting group, H, or OH) and carbonyls (SubB) in the presence of
chiral organocatalysts and weak acid co-catalysts. Examples of hydrogen-bond donors, acid/anion receptor catalysts, and chiral phosphoric
acids are shown. ArF = 3,5-CF3-C6H3, X = O/S. (B)–(D) 2D t-SNE map52 of the reaction space on the basis of the concatenated MFPs of the
substrates and catalysts color-coded by the experimental selectivity (DDG‡, B), catalyst class (C), and SubB class (D). (Th)Ur = (thio)ureas, Sq =

squaramides, SHBD= single-hydrogen-bond donors, CPA= chiral phosphoric acids, HBA= hydrogen-bond acceptor, RX= benzoyl bromide or
acyl chloride (BzBr, AcCl), ROH = carboxylic acid (e.g., BzOH, AcOH).
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a user-dened library of building blocks (e.g., organocatalysts'
scaffolds and substituents from OSCAR46) using any molecular
representation, including SMILES strings and XYZ coordinates.
By performing an iterative sequence of genetic operations
(tness evaluation, crossover, and mutation), NaviCatGA
quickly nds the combination of building blocks that maxi-
mizes the tness function (Fig. 1B).38 The role of the tness
function is evaluating how close a potential catalyst is to
achieving optimal performance. In the context of asymmetric
catalysis, a good catalyst is both enantioselective (i.e., high
enantiomeric excess, oen converted to DDG‡, values) and
active (i.e., high percentage yield, or turnover frequency, TOF).
3642 | Chem. Sci., 2024, 15, 3640–3660
Measures of selectivity and activity can be obtained either from
experiments or computations. Experimental DDG‡ values are
notoriously difficult to reproduce accurately with computa-
tions,47 while experimental yields, especially in the context of
asymmetric organocatalysis, are oen not reported (or only
high-yielding reactions are reported, see Fig. S1 and S2† for
further details).48 During the evolutionary experiment, the
structure of new, untested catalyst candidates is generated, and
their tness must be evaluated: this constitutes the bottleneck
of genetic optimization.

For these reasons, herein we adopt a hybrid strategy to
evaluate catalyst performance: we (1) exploit experimental DDG‡
© 2024 The Author(s). Published by the Royal Society of Chemistry
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values curated from the literature to train a statistical model
and predict the enantioselectivity of untested catalyst–substrate
combinations, and (2) perform DFT computations to construct
molecular volcano plots49–51 and estimate a catalyst's TOF via
a descriptor variable, training a second surrogate model of
activity on the computed volcano plot's descriptor (which, in
turn, provides the TOF estimate, vide infra). These surrogate
models allow us to bypass otherwise time-consuming experi-
ments or computations and evaluate the tness of new candi-
dates generated during genetic optimization.

In the following sections, we describe in detail the individual
components of the NaviCatGA pipeline (Fig. 1B), highlighting
how they are adapted to nd organocatalysts with a broad
substrate scope. We then discuss the results of the evolutionary
experiments, along with the chemical conclusions, in the
Results and discussion section.
Target property and reaction database

The target of the inverse design strategy (Fig. 1B) is “generality”
i.e., high enantioselectivity and activity across a wide and
diverse substrate scope. Inspired by recent work by Jacobsen
et al.,10 we investigate the asymmetric Pictet–Spengler
reaction53–55 of tryptamine derivatives and carbonyl compounds
(Fig. 2A), one of the most important methods for the synthesis
of privileged pharmacophores such as tetrahydro-b-carbolines,
due to the diversity of catalyst chemotypes capable of inducing
high enantioselectivity. Although dozens of systems have been
reported,56 employing a variety of organocatalysts such as chiral
phosphoric acids (CPAs)57 or single-58 and dual-hydrogen-bond
donors (S/DHBD)59 used cooperatively with weak acids or
Fig. 3 (A) Violin plots of experimental DDG‡ values in the literature d
organocatalysts. The median is indicated with horizontal lines. RX = benz
BzOH, AcOH), HBA = hydrogen-bond acceptor. (B) Tabulated median
literature database. (C) Tabulated number of reactions reported for diffe

© 2024 The Author(s). Published by the Royal Society of Chemistry
bearing an acidic functional group internally,60 no method has
found widespread application, since each study was focused on
a limited number of substrates. This reaction constitutes an
ideal case study to develop an optimization strategy with
generality as primary target.10

At the onset of our investigation, we curated a database of
820 Pictet–Spengler condensations from the literature.10,58,61–73

For simplicity, we constrain ourselves to protected or unpro-
tected tryptamines (as shown in Fig. 2A), excluding isotrypt-
amines,74 aryl ethanols,75,76 phenethylamines,77 and other
substrates involved in more complex cascade reactions.78–85 The
database contains 240 unique transformations (i.e., tetrahydro-
b-carboline products) of 33 SubA and 164 SubB (aldehydes,
ketones, a-ketoacids/esters/amides, and a-diones), catalyzed by
160 distinct organocatalysts and 30 co-catalysts (carboxylic
acids, acyl and benzoyl chlorides and bromides). It is visualized
in Fig. 2B with a 2D t-SNE map52 based on the concatenated
Morgan FingerPrints86,87 (MFPs) of the catalyst, co-catalyst, and
substrates, where each point representing a reaction is colored
according to its selectivity (DDG‡ = −RT lnje.r.j, with e.r. being
the experimentally measured enantiomeric ratio). The map is
divided into two regions, the right-hand side containing cycli-
zations catalyzed by CPAs, the le-hand side those with single
and dual-HBDs (Fig. 2C); 75% of reactions involve aldehydes as
SubB (top and middle parts of the map), while condensations of
other carbonyl compounds are located in the lower regions
(Fig. 2D).

Despite “islands” of high enantioselectivity associated with
catalysts being tested on a selected and limited class of carbonyl
compounds (e.g., SPINOL CPAs with aldehydes,65 or SHBDs with
atabase of 820 Pictet–Spengler reactions for six different classes of
oyl bromide or acyl chloride (BzBr, AcCl), ROH = carboxylic acid (e.g.,
DDG‡ values for different catalyst–substrate combinations from the
rent catalyst–substrate combinations from the literature database.

Chem. Sci., 2024, 15, 3640–3660 | 3643
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ketoamides,58 cf. Fig. 2B–D), nearly 50% of the transformations
display exceedingly low DDG‡ (<0.5 kcal mol−1, and 70%
<1 kcal mol−1). The distribution of DDG‡ values for six families
of organocatalysts [(thio)ureas with benzoyl bromide or acyl
chloride co-catalyst, (thio)ureas, squaramides, or SHBD with
carboxylic acid co-catalyst, CPAs, and bifunctional hydrogen-
bond donor/acceptor cinchona alkaloids] is shown in Fig. 3A.
Although certain chemotypes display high median DDG‡,
choosing the catalyst for carrying out an enantioselective Pictet–
Spengler reaction on a never-before-tested substrate simply
based on literature precedence would lead to biased results, as
only few catalyst–substrate combinations have actually been
tested. This is emphasized in Fig. 3B and C, which display the
median DDG‡ values for different substrate classes, along with
the number of reactions reported. Finding general organo-
catalysts requires evaluating each candidate against a diverse
panel of substrates, covering all types of tryptamine derivatives
(SubA) and carbonyl compounds (SubB), which quickly
becomes too expensive, supporting the need for predictive and
generative models.
Fitness function: evaluation of catalyst activity and selectivity

The database of experimental DDG‡ values (and the statistical
model trained on it, vide infra) allows us to estimate the enan-
tioselectivity of untested catalyst–substrates combinations.
Regarding activity, we evaluate how close a catalyst's turnover is
to the maximum achievable one using DFT computations and
molecular volcano plots.49–51 Together, these measures of cata-
lytic performance constitute the tness function of the inverse
design pipeline (Fig. 1B).

Molecular volcanos provide a way of connecting a descriptor
variable, typically the energy change associated with a step in
a catalytic cycle (x-axis), to the overall catalytic performance (y-
axis, expressed in terms of energy span or TOF),49,88 while
simultaneously giving knowledge of the descriptor value cor-
responding to the volcano peak or plateau (maximum perfor-
mance i.e., the target for genetic optimization).45 Volcano plots
are built from Linear Free Energy Scaling Relationships
(LFESRs, Fig. S3†) that connect the value of the descriptor to the
relative energies of the other cycle intermediates and transition
states. While extensive details on how these plots are auto-
matically constructed using the toolkit volcanic51 are given in
the Computational details and elsewhere,51 Fig. 4A shows the
mechanism of the Pictet–Spengler reaction,89 whose knowledge
is fundamental for building the volcanos. Following conden-
sation of the b-arylethylamine (SubA) with the carbonyl
compound (SubB) and formation of iminium ion 1, nucleo-
philic attack by the aryl group and cyclization can occur either
directly at position C2 of the indole via TS2, or at C3 via TS1 to
form the ve-membered aza-spiroindolenine 1B, which
undergoes C–C migration to yield 2. Deprotonation of 2 by the
conjugate base of the acid co-catalyst, or of the CPA catalyst, is
then necessary to form the tetrahydro-b-carboline product.

Constructing molecular volcanos requires computing the
potential energy proles of a medium-sized pool of sterically
and electronically diverse systems.51 44 reactions from the
3644 | Chem. Sci., 2024, 15, 3640–3660
Pictet–Spengler database are selected via farthest point
sampling of the 2D t-SNE map. This Scaling Relationships Set
(SRS, Fig. 4B) comprises 39 unique transformations (i.e., prod-
ucts) of 11 SubA and 31 SubB, catalyzed by 33 different orga-
nocatalysts. Because the mechanism must be the same for all
systems investigated, reactions catalyzed by cinchona alkaloid
HBD +HBA (corresponding to the pink cluster in the t-SNEmap,
Fig. 2C) are excluded, as these bifunctional catalysts have been
shown to operate via a different mechanism.67 On the other
hand, extensive mechanistic studies68,89–93 have demonstrated
the viability of the mechanism shown in Fig. 4A for reactions
catalyzed by (thio)urea HBDs, acid/anion receptors, and CPAs.

With the SRS, TOF molecular volcanos49 for concerted C2
and stepwise C3 addition are constructed automatically using
volcanic51 and the relative energy of intermediate 2 as descriptor
(Fig. 4C). Computations are performed at the PCM(toluene)/
M06-2X-D3/Def2-TZVP//M06-2X-D3/Def2-SVP level of theory
(see the Computational details); although exhaustive confor-
mational sampling of each intermediate 2 is carried out with
CREST,94–96 in order to reduce the computational cost only one
conformer per stationary point on the Pictet–Spengler potential
energy surface (PES) is used to construct the volcanos. The
deviations of the points in Fig. 4C (each of which represents
a Pictet–Spengler reaction) from the volcano curve may be
attributed to differences in conformations between the various
catalyst–substrate non-covalently bound complexes, which are
characterized by a complex conformational landscape.

Mechanistic aspects of the Pictet–Spengler reaction,
including the preferred pathway and the nature of the rate- and
enantiodetermining step, have been a topic of intensive
research:97 Jacobsen et al. found a strong energetic preference
for C2 over C3 addition in reactions catalyzed by chiral thio-
ureas,89 while You and co-workers showed that the spi-
roindolenine 1B acts as either a productive or non-productive
intermediate depending on the shape of the PES.93 Evaluating
the mechanism over a broad and diverse catalyst and substrate
scope, as afforded by the SRS, reveals that, although the
concerted pathways is generally preferred, the difference
between the barriers for spiroindolization at C3 and electro-
philic aromatic substitution at C2 is on average quite small (the
volcanos are close to each other). Additionally, analysis of the
LFESRs (Fig. S3†) shows that there is oen not one single rate-
and enantiodetermining step, as rearomatization via deproto-
nation (TS3) and C–C bond formation (TS1 or TS2) are almost
isoenergetic: indeed, reactions are found for which TS2 and TS3
have similar degree of TOF-control98 (i.e., the reaction rate is
limited equally by C–C bond formation and deprotonation, see
Fig. S4†). The location of the SRS on the volcano plots indicates
that cyclizations of hydroxylamines in the presence of benzoyl
bromide co-catalyst (blue points),71 as well as reactions of
aldehydes catalyzed by squaramides (green points)70 display the
highest TOFs. This observation is in line with the higher reac-
tivity of ketonitrones99 and the stronger H-bonding ability of
squaramides, which has been found to correlate with faster
turnover.100 Conversely, the performance of CPAs and other
DHBDs is strongly dependent on the nature of the substrates, as
evinced by the bigger spread of TOF values. Among the poorest
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) General mechanism for the Pictet–Spengler reaction via anion-binding catalysis. (Thio)urea catalysts (X=O/S) with carboxylic acid co-
catalysts are shown as an example. (B) The reactions used to construct molecular volcano plots (SRS) are plotted on the t-SNE map from Fig. 2,
colored according to the nature of the organocatalyst. (C) Molecular volcano plots based on the C2 and C3 addition mechanism. The shaded
areas denote the 95% confidence interval based on the Linear Free Energy Scaling Relationships. Computations were performed at the
PCM(toluene)/M06-2X-D3/Def2-TZVP//M06-2X-D3/Def2-SVP level of theory. (D) Distribution of descriptor values and their location on the
volcano plot.
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performing organocatalysts, sulnamido urea derivatives101 and
carboxylic acids equipped with anion-recognition sites66 are
found lower on the volcano.

Having constructed the volcano plots and established the
identity of the descriptor variable, we compute DGRRS(2) for all
the reactions in the Pictet–Spengler dataset (703 datapoints i.e.,
excluding reactions catalyzed by cinchona alkaloids owing to
their different mechanism and those where only the carboxylic
© 2024 The Author(s). Published by the Royal Society of Chemistry
acid co-catalyst is varied, since HOAc is used throughout, see
the Computational details). Structures are generated and opti-
mized according to the pipeline described in the Computational
details. Fig. 4D shows the Gaussian-type distribution of
DGRRS(2) superimposed on the TOF volcano for C2 addition,
centered around 7 kcal mol−1. Most Pictet–Spengler reactions
are found on the right slopes of the volcano (i.e., weak-binding
side), and their turnover is limited by iminium ion formation
Chem. Sci., 2024, 15, 3640–3660 | 3645
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and deprotonation of the tetrahydro-b-carboline intermediate
(or C–C bond formation). Overall, only few condensations have
TOF close to the theoretical maximum. We then use this dataset
to train a XGBoost machine learning model102 to predict
DGRRS(2) using the concatenated Morgan FingerPrints of the
substrates, catalyst, and co-catalyst (acetic acid, BzBr, or none)
as reaction representation (Fig. 5A). A similar model is also
trained on the whole Pictet–Spengler database (Fig. 2B i.e., 820
datapoints, using the real identity of the carboxylic acid co-
catalysts rather than acetic acid) to predict the experimental
DDG‡ values. Despite the relatively large errors in DGRRS(2)
predictions (MAE = 2.9 kcal mol−1) and for large DDG‡ values,
these models are deemed to be an acceptable compromise
between cost and accuracy and are used to accelerate tness
evaluation during genetic optimization (vide infra; see also
Fig. S5† and 11 for out-of-sample predictions).38 The choice of
the representation and regression method is dictated by the
requirement of surrogate models used iteratively in generative
molecular design to be fast and affordable. Although linear103

and non-linear104 models using stereoelectronic features105 (see
Fig. S7† for multivariate linear regression analysis of the DDG‡

of reactions catalyzed by single- and dual-HBDs) or 3D struc-
tures as input106,107 have been extensively developed for reaction
outcome prediction,108 they oen depend on DFT computations
of relatively expensive properties (e.g., vibrational frequencies
and intensities, polarizabilities)109 and are not adapted to the
purpose of fast (GA) optimization, for which bypassing the DFT
bottleneck is key.38 Conversely, 2D descriptors are typically
much faster (and less susceptible to bias as they require less
user input)110 and have been found to be cost-effective alterna-
tives with good accuracy for experimental targets,110–113 some-
times even rivaling models using DFT features.114 The XGBoost
model provides satisfying enantioselectivity predictions (MAE=

0.358 kcal mol−1, MSE = 0.221, Fig. S5†) on 46 out-of-sample
reactions115–117 excluded from the original literature database,
Fig. 5 XGBoost models predicting the (A) descriptor variable [DGRRS(2)]
M06-2X-D3/Def2-TZVP//M06-2X-D3/Def2-SVP level, and (B) the exper
tet–Spengler reactions from the literature. Predictions are obtained by
random 90/10 train/test splits (633/70 for A, 738/82 for B). The error bars
test splits.

3646 | Chem. Sci., 2024, 15, 3640–3660
including condensations involving geminally-disubstituted
tryptamines117 that are absent in the training set (Scheme S1†).

Fragment database: the catalyst and substrate scope

The total combinatorial space explored during the evolutionary
experiments is determined by the extent of the library of catalyst
components and the scheme chosen to fragment them into
building blocks. Here, we leverage the recently reported Organic
Structures for CAtalysis Repository (OSCAR),46 which contains
4000 organocatalysts mined from the literature and CSD along
with their corresponding molecular fragments. From OSCAR,
we select 15 catalyst templates and 402 possible substituents
(grouped into 4 categories R1–4 depending on which template
they may substitute, see Tables S4 and S5† for a full list). The
templates include 10 single- and dual-HBDs [(thio)ureas, (thio)
squaramides, and prolyl-(thio)ureas] and 5 CPAs as shown in
Fig. 2A (and Fig. S8†), which have been experimentally screened
in the asymmetric Pictet–Spengler reaction. They are repre-
sented as exible SMILES strings, written in such a way that
different R1–4 can easily be introduced and exchanged, yielding
valid SMILES. This results in a total combinatorial space of 2.85
× 108 HBDs and 1428 CPAs. Note that only CPAs with equal
substituents at the 6 and 60 positions of the BINOL/SPINOL
scaffold are considered: although this signicantly reduces
the size of their combinatorial space, it ensures synthetic
accessibility, a common problem of generative models.118

Having established the catalyst scope, we turn our attention
to the substrate scope. Since our previous experiments with
NaviCatGA were specicity-oriented,45 we implement a different
workow for selecting a representative subset of substrates for
generality-driven genetic optimization. Inspired by recent work
by Doyle et al.119 and Sigman et al.,120,121 we use the web platform
Reaxys® to identify a list of 743 Pictet–Spengler reactions
(selective and non-, catalytic and non-) between b-arylethyl-
amines and carbonyl compounds. Additionally, 197
of the TOF molecular volcano plots, computed at the PCM(toluene)/
imentally measured enantioselectivity (expressed as DDG‡) of the Pic-
averaging those from a cross-validation scheme with 100 different
are obtained from the standard deviations from the 100 different train/

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) 2D t-SNE map of the substrate scope on the basis of the concatenated MFPs of SubA and SubB. Blue squares indicate organocatalytic
reactions, green squares reactions reported in Reaxys®, red triangles the Generality Probing Set (GPS) from this work. (B) Examples of reactions
found in the GPS.
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unprotected SubA, ltered according to molecular weight
(<300 g mol−1), commercial availability, and functional group
compatibility, are included. Combined with the 240 unique
organocatalytic reactions from the original Pictet–Spengler
database, we obtain 258 distinct tryptamine derivatives (SubA)
and 379 carbonyls (SubB). The total combinatorial substrate
space, shown in Fig. 6A, encompasses 97 782 possible tetrahy-
dro-b-carboline products (grey circles).

Broadly speaking, examples from the literature (blue and
green squares) cover the le half of the chemical space, which
corresponds to unsubstituted tryptamines, while the right and
bottom areas are sparsely covered. To generate a diverse and
unbiased substrate scope for evolutionary experiments, we
perform farthest point sampling and select 50 reactions aimed
at covering the whole chemical space. Examples of this
Generality Probing Set (GPS) are shown in Fig. 6B (the full list
is given in Table S6†). Carbonyls (SubB) include predominantly
aromatic and aliphatic aldehydes, as reected by the popu-
larity of these substrates in the Pictet–Spengler reaction (see
also Fig. 3C),10 but also less explored a-diones, a-ketoamides,
esters, and acids. Substituents on the tryptamine derivative
(SubA) are present on all positions of the indole ring through
mono-, di-, tri-, and even tetrasubstitution patterns, encom-
passing both electron-donating (e.g., hydroxyl, methoxy, alkyl)
and electron-withdrawing (e.g., nitro, halide, ester) functional
groups. This signicantly contrasts the previously reported
scope (i.e., organocatalytic reactions from the literature or
those mined from Reaxys®), dominated by monosubstituted b-
arylethylamines. Approximately 60% of SubA in the GPS are
unprotected, although a variety of protecting groups (e.g.,
benzyl, 4-NO2-benzyl, methylthiomethyl ether,122 allyl123) are
present.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Results and discussion
Evolutionary experiments

With the different components of the inverse design pipeline at
hand (Fig. 1B), we perform evolutionary experiments using the
NaviCatGA algorithm.45 Herein, we are trying to optimize
multiple properties simultaneously: we are looking for general
organocatalysts, meaning that they should exhibit high perfor-
mance across the whole SubA–SubB substrate scope (repre-
sented by the GPS, Fig. 6), and we are looking for candidates
with simultaneously high selectivity and activity.

To validate our strategy, we rst compare specicity-oriented
and generality-oriented optimization on the smaller CPA
combinatorial space (i.e., 1428 candidates; a similar experiment
on the larger HBD space of 2.85× 108 possibilities is reported in
Fig. S9†): in one case (Fig. 7A) the optimization targets are the
selectivity (experimental DDG‡) and activity [DGRRS(2), the
volcano plot descriptor] for the condensation of Nb-benzylser-
otonin and benzyloxyacetaldehyde (reaction 11 in the GPS),
predicted with the aforementioned XGBoost models. This
particular combination of substrates was found to be associated
with poor catalytic performance, and screening of all the 160
organocatalysts in the original literature dataset afforded
median DDG‡ and DGRRS(2) of only 0.2 and 6.3 kcal mol−1,
respectively. Note the volcano peak (maximum activity) corre-
sponds to a DGRRS(2) value of −9.0 kcal mol−1. In the other case
(Fig. 7B), we optimize the median DDG‡ and DGRRS(2) of all 50
reactions in the GPS. Given the multi-objective nature of each
experiment (i.e., simultaneous optimization of selectivity and
activity), we scalarize124 the two targets seeking a minimum
DDG‡ of 2.0 kcal mol−1, trying to reach a DGRRS(2) value of
−9.0 kcal mol−1, but allowing activity to bemarginally degraded
Chem. Sci., 2024, 15, 3640–3660 | 3647
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Fig. 7 Box-and-whisker charts showing the evolution of DDG‡ and DGRRS(2) of the top individual in the CPA population for selected generations
(i.e., when the identity of the best-performing catalyst changes). Each datapoint corresponds to a reaction in the GPS, the yellow diamond
indicates reaction 11 (shown in the top left). Outliers and far outliers are indicated with filled circles and squares, respectively. In (A), DDG‡ and
DGRRS(2) of reaction 11 are optimized, whereas in (B) the median DDG‡ and DGRRS(2) of all reactions in the GPS are optimized.

3648 | Chem. Sci., 2024, 15, 3640–3660 © 2024 The Author(s). Published by the Royal Society of Chemistry
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if DDG‡ is increased (see the Computational details): this
exemplies a standard situation in which enantioselectivity is to
be guaranteed and only subsequently turnover is to be
optimized.

Fig. 7 depicts the results of the rst set of experiments as box-
and-whiskers charts, showing how DDG‡ and DGRRS(2) values
are distributed across the GPS; only results for the best-
performing catalyst in the population and only generations
where the identity of the top candidate changes are shown. In
the case of specicity-oriented optimization (Fig. 7A), DDG‡ of
reaction 11 (yellow diamond) improves from 0.3 to
0.6 kcal mol−1 over the course of 44 generations; DGRRS(2) also
improves from 6.1 kcal mol−1 to 3.0 kcal mol−1 (i.e.,
approaching the volcano peak=−9.0 kcal mol−1, cf. Fig. 4C) but
higher enantioselectivity comes at the expense of activity (e.g.,
from generation 16 to 44). Although at the end of the experi-
ment a SPINOL CPA is found with improved (albeit still rela-
tively low) selectivity and good activity, the median DDG‡

decreases during the GA run, meaning that this organocatalyst
is less general (conversely, this allows DGRRS(2)med to actually
improve, once again showing the conicting nature of the two
objectives).

In Fig. 7B, DDG‡
med increases from 1.4 in generation 1 to

1.5 kcal mol−1 in generation 4; activity also improves, with
DGRRS(2)med going from 7.6 to 6.3 kcal mol−1. To further
enhance DDG‡

med, NaviCatGA is forced to explore solutions in
the activity-selectivity Pareto front with higher DGRRS(2)med

values (generation 7): this iteration corresponds to a change in
Fig. 8 (Left) Evolution of DDG‡ and DGRRS(2) of the top individual in the H
across the GPS, and the shaded areas represent the upper and lower
representing different R1–3 substituents. (Right) Box-and-whisker chart
structure of the best-performing catalyst changes. Each datapoint corre
with filled circles and squares, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
catalyst scaffold, from VAPOL125 to SPINOL. In agreement with
results from Jacobsen et al.,10 the SPINOL scaffold and 1-
naphthyl substituents found in generation 11 are associated
with good enantioselectivity across the GPS (DDG‡

med =

1.7 kcal mol−1), as indicated by the smaller interquartile range
(IQR, from 0.9 to 0.5 kcal mol−1). Therefore, even though DDG‡

for reaction 11 is lower than in the specicity-oriented optimi-
zation (0.4 kcal mol−1), a more general organocatalyst is
discovered. Interestingly, the 2-CF3-phenylalkynyl substituent
found in generation 7 was also identied by Denmark and co-
workers as important for generality in the atroposelective
disulfonimide-catalyzed iodination of 2-amino-6-arylpyr-
idines,26 potentially suggesting that this group is also privileged
across mechanistically-distinct reactions.1

Having validated the inverse design pipeline on the small
CPA combinatorial space, we perform a second set of generality-
oriented evolutionary experiments on the much larger HBD
catalyst scope (2.85 × 108 possible candidates). In the experi-
ment reported in Fig. 8, the targets [DDG‡

med and DGRRS(2)med]
are scalarized as above, meaning we wish to optimize activity
and selectivity simultaneously, but we allow turnover to be
degraded in order to achieve higher enantioselectivities.
Another GA run where only DDG‡

med is optimized (single-
objective optimization, SOO) is shown in Fig. S10,† and
results are discussed in the following section (the structure of
the best-performing catalyst is shown in Fig. 9). Fig. S11†
reports a third experiment where only DGRRS(2)med is optimized,
while in a fourth GA run (Fig. S12†) the two objectives
BD population over 50 generations. The solid lines indicate the median
values. Selected catalysts are shown, with different colored spheres
of DDG‡ and DGRRS(2) for selected generations i.e., only when the

sponds to a reaction in the GPS. Outliers and far outliers are indicated

Chem. Sci., 2024, 15, 3640–3660 | 3649
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Fig. 9 Median selectivity (DDG‡
med) vs. activity [DGRRS(2)med] scatter plot for multi-objective optimization on the HBD scope, color-coded by

catalyst generation. The volcano peak (maximum activity) corresponds to DGRRS(2) = −9.0 kcal mol−1. The dashed lines show the connections
for the set of “noninferior” solutions in the objective space (Pareto optimal solutions). The gray diamond represents the top candidate from the
single-objective optimization experiment (SOO, generation 37).
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(enantioselectivity and turnover) are scalarized differently i.e.,
we allow DDG‡

med to be marginally degraded in order to improve
DGRRS(2)med (see the ESI† for further details).

Over the rst 5 generations, DDG‡
med increases from

1.5 kcal mol−1 to 1.8 kcal mol−1 while the IQR decreases,
indicating that the top candidate is generally more selective
across the GPS (Fig. 8). At the onset of the evolutionary experi-
ment, NaviCatGA locates DHBDs with the amide-based
template [–C(]O)NR2] as important for selectivity. Indeed,
computational studies89 have shown that the amide O engages
the substrate through an H-bonding interaction with the
indoline N–H. This template126 is preserved throughout the GA
run and preferred over catalysts containing the pyrrolidino-
moiety:1,127 Jacobsen et al. similarly found that aryl pyrrolidine
substituted thioureas had lower generality metric than acyclic
amides in the Pictet–Spengler condensation of aldehydes.10

Regarding the identity of the hydrogen-bonding unit, for the
rst 20 generations ureas are selected over squaramides to
increase DDG‡

med but, in accordance with trends extracted from
the volcano plots and the lower acidity/H-bonding ability of
ureas vs. squaramides,100,128 this results in diminished activity
[DGRRS(2)med values farther away from the volcano peak of
−9.0 kcal mol−1]. This situation exemplies a typical problem in
reaction optimization, where improving one objective is some-
times only possible at the expense of another.129,130 The same
amino acid substituent (R1) is also maintained until generation
20, with NaviCatGA favoring the diphenyl group (black spheres
in Fig. 8). At this particular iteration of the optimization, the
squaramide HBD unit is “rediscovered”, which leads to
3650 | Chem. Sci., 2024, 15, 3640–3660
a noticeable improvement in activity [DGRRS(2)med from 9.4 to
3.0 kcal mol−1]. Although this is associated with only marginal
increase in DDG‡

med (1.81 to 1.84 kcal mol−1), the IQR signi-
cantly decreases, and most reactions in the GPS have DDG‡ $

1.7 kcal mol−1. Different R1–3 substituents are also selected, and
in the remaining generations NaviCatGA explores different
substitution patterns to achieve further activity and selectivity
enhancements. In particular, DGRRS(2)med is decreased to
1.5 kcal mol−1 with small IQR (generation 32), while DDG‡

med

reaches the value of 1.9 kcal mol−1. The most general organo-
catalyst found at the end of the evolutionary experiment
exhibits the 2,4,6-iPr-C6H2 substituent as R

1, 3,5-CF3-C6H3 as R
2,

and the CH(2-tBu-C6H4)2 group in place of R3. Clearly, bulky
substituents are privileged in inducing high enantioselectivity
and activity across the GPS.

While Fig. 8 focuses on the best catalyst in each generation,
Fig. 9 shows how different individuals in a generation occupy
the objective space. At each iteration of the NaviCatGA run,
a number of solutions to the optimization problem exist, rep-
resenting tradeoffs between the two objectives. Together, these
catalysts constitute a set of nondominated optimal conditions,
also known as Pareto front (dashed lines in Fig. 9).129,131 During
the evolutionary experiment, the Pareto front moves towards
higher DDG‡

med and lower DGRRS(2)med values (i.e., closer to the
volcano peak, −9.0 kcal mol−1), indicating an overall improve-
ment in generality. The “ideal” organocatalyst i.e., possessing
the highest enantioselectivity and turnover possible over the
whole substrate scope, would be located in the upper right
corner of Fig. 9. The top catalyst from generation 32 constitutes
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the best compromise between selectivity and activity (DDG‡
med =

1.9, DGRRS(2)med = 1.5 kcal mol−1); conversely, nondominated
points in the Pareto front of other generations represent
candidates with higher activity but lower enantioselectivity (e.g.,
generation 5, DDG‡

med= 1.3, DGRRS(2)med = −0.5 kcal mol−1).
Therefore, the results of an evolutionary experiment may be
used to identify catalysts that achieve different activity-
selectivity tradeoffs, regardless of how the targets were
initially scalarized. Fig. 9 also shows the top candidate from the
single-objective optimization experiment (generation 37), which
reaches higher DDG‡

med (2.0 kcal mol−1) at the cost of signi-
cantly reduced activity [DGRRS(2)med = 7.3 kcal mol−1]. In line
with trends extracted from the volcano plot (Fig. 4C), the pres-
ence of the thiourea scaffold instead of the squaramide is
associated with slower turnover,100 while the 2,4,6-iPr-C6H2 and
the CH(2-tBu-C6H4)2 substituents ensure high
enantioselectivity.
Chemical insights into generality

Tabulation of the results of the evolutionary experiments on the
HBD space as a heatmap, converted to ee and log TOF values
(Fig. 10) shows that, although a catalyst with good median
selectivity and activity is found (% eemed = 92, log TOFmed =
Fig. 10 Calculated ee and log TOF values from the predicted DDG‡ and
ations (x-axis) and reactions in the GPS (y-axis), while ee and log TOFmed
top catalyst from the single-objective optimization experiment (structur

© 2024 The Author(s). Published by the Royal Society of Chemistry
3.3), some reactions in the GPS are always associated with poor
performance i.e., no matter how the structure of the catalyst
evolves during the optimization, certain tetrahydro-b-carboline
products may not be obtained in high ee or TOF. This is in
contrast to the majority of condensations in the GPS, where
selectivity and activity signicantly improve as the structure of
the organocatalyst is optimized. Reactions 28, 36, and 48 are
included in Fig. 10 as examples: these transformations involve
a variety of carbonyl compounds (a-ketoester, a-ketoamide,
aldehyde) and electron-poor, neutral, and -rich indoles,
showing that candidates with good generality across distinct
substrate classes are indeed discovered. Note that, due to
deviations in the LFESRs associated with the complex confor-
mational space of the catalyst–substrate non-covalently bound
complexes (Fig. 4C and S3†), signicant differences between
predicted and computed TOF values (up to several log units)
may be expected.

Regarding the challenging areas of chemical space, the best-
performing HBD organocatalyst from the multi-objective opti-
mization experiment is predicted to achieve ee values of only
36% and 19% in reactions 13 and 26, respectively. Both
condensations involve an unprotected b-arylethylamine (SubA)
substituted at the 7-position of the indole ring; similarly, Suzuki
and co-workers found that 7-methyltryptamine and ethyl 2-
DGRRS(2), respectively. Results are shown for selected catalyst gener-
ian values (bottom) consider all 50 reactions in the GPS. SOO-37 is the
e shown in Fig. 9). Selected SubA and SubB combinations are shown.

Chem. Sci., 2024, 15, 3640–3660 | 3651
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oxopentanoate could only be converted in 45% ee.72 These
results can be explained in terms of steric effects of the methyl
group on the substrate disrupting key non-covalent interactions
between the catalyst's amide O and the indole N–H, which are
evidently essential for inducing high enantioselectivity.89 The
top candidate from the single-objective optimization (SOO-37)
affords only marginal improvements for these substrate
combinations (38% and 28% ee). Through the specicity-
oriented optimization of reaction 13 (Fig. S13†), a urea-based
organocatalyst with improved, albeit still low enantiose-
lectivity (53% ee), slow turnover (log TOF = 0.7 s−1) and low
generality is discovered, highlighting the limitation of an
inverse design strategy based on the combinatorial exploration
of known catalyst fragments on pre-described scaffolds.

Considering activity, throughout the NaviCatGA run reac-
tions 3 and 47 are underperforming: according to the volcano
plot (Fig. 4C), the formation of the corresponding protonated
tetrahydro-b-carboline 2 is energetically unfavorable, in line
with the electron-decient nature of SubA and the electron-
withdrawing character of the aldehyde substituent, which
hinders the rate-determining deprotonation step. Regardless of
the specic substitution patterns the GAmay explore during the
optimization, nding organocatalysts that non-covalently
stabilize such unstable intermediates is clearly a challenge.
Reaction 47 also exemplies a situation where high selectivity
and activity are incompatible: while most HBD organocatalysts
explored during the evolutionary experiment are predicted to
exhibit large DDG‡ values, the TOF always remains far from the
theoretical maximum indicated by the volcano. Conversely,
reaction 43, which features an electron-rich indole and an a-
ketoamide (essentially an activated carbonyl compound),132 has
predicted TOF always close to the volcano peak, while selectivity
Fig. 11 Energetically lowest-lying TS for the deprotonation/rearomatiz
reaction 13 (left) and 47 (right) with the top-performing organocatalyst fro
indole N–H is shown. Computed and predicted enantioselectivity (expr
values are reported.

3652 | Chem. Sci., 2024, 15, 3640–3660
is more challenging to optimize,58 and ee values considerably
improve during the GA run (from 63% to 87%).

To verify the accuracy of the ML predictions reported in
Fig. 10 and probe the effect of a methyl substituent at the 7-
position of the indole ring of SubA, DFT computations are
performed on reactions 13 and 47 using the best organocatalyst
from generation 32 in the multi-objective optimization (Fig. 11).
Full conformational sampling of the two diastereomeric TSs for
the rate- and enantiodetermining step (TS3) is carried out with
CREST at the GFN2-xTB level, followed by optimization at the
PCM(toluene)/M06-2X-D3/Def2-TZVP//M06-2X-D3/Def2-SVP
level; enantioselectivity is computed based on the Gibbs free
energy difference between the Boltzmann-weighted TSs
conformers leading to the (R)- and (S)-tetrahydro-b-carboline
products. Good agreement between the computed and pre-
dicted DDG‡ values is achieved for both reactions (Fig. 11); as
expected from Fig. 5B, the XGBoost model underestimates the
larger DDG‡ value of reaction 47, although such comparison
must be taken with care since the XGBoost model is trained on
experimental DDG‡'s, whereas Fig. 11 reports the results of DFT
computations on TS3. Despite such limitation, this approach
allows us to directly analyze the structure of the enantiode-
termining transition states: as expected, the lowest-lying TS3 for
reaction 13 features an elongated indole N–H/amide O inter-
molecular distance (3.85 Å), whereas a stronger hydrogen-bond
is present in the catalyst–substrate complex of reaction 47 (1.85
Å). IRC computations133 are then performed to optimize the
structure of intermediate 2 for both condensations, leading to
relatively good agreement between computed and predicted
DGRRS(2) values. The higher stability (i.e., faster turnover
according to the LFESRs and volcano plot) of the protonated
tetrahydro-b-carboline 2 of reaction 13 is consistent with the
ation step (TS3) of the tetrahydro-b-carboline intermediate of GPS
m generation 32. The distance between the catalyst's amide O and the
essed in terms of DDG‡) and activity [expressed in terms of DGRRS(2)]

© 2024 The Author(s). Published by the Royal Society of Chemistry
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electron-rich nature of the indole ring and the presence of an
activated carbonyl compound such as ethyl 2-oxopentanoate,
whereas the formation of 2 for reaction 47 is thermodynamically
unfavorable [DGRRS(2) = 5.5 kcal mol−1] owing to the electron-
poor character of the intermediate, which makes deprotona-
tion slower.

Taken together, the results from the evolutionary experiment
suggest that multiple “islands” of high ee or TOF exist in the
catalyst–substrate chemical space, and that genetic optimiza-
tion “expands” them. The discontinuity of the activity/
selectivity-response surface is ultimately responsible for
limiting generality;134 areas of poor performance are not simply
due to structural aspects of the organocatalyst being mis-
matched to a particular substrates combination,135 but rather to
the electronic character of a reaction intermediate inevitably
leading to slow turnover or to the disruption of some key non-
covalent interactions necessary for stereoinduction.

Conclusions

Given the synthetic utility of catalytic methods that provide high
enantioselectivities and activities across a wide assortment of
substrates, we have developed an optimization workow
centered on the open-source genetic algorithmNaviCatGA45 and
the OSCAR database46 with the aim of demonstrating how
generative models35 are an enticing alternative to experimental10

or computational34 high-throughput screening, provided that
the various component of the pipeline for de novo catalyst
design are adapted to optimize generality as primary target. We
have adopted a hybrid approach for scoring candidate organo-
catalysts that combines a mechanistic-guided strategy (i.e.,
activity estimations through TOF molecular volcano plots50)
with enantioselectivity predictions based on training on exper-
imental data. Catalysts were generated frommolecular building
blocks extracted from OSCAR.46

We have tested our approach on the asymmetric Pictet–Spen-
gler reaction56 because of the large amount of data available in the
literature and the many catalyst chemotypes that have been tested
on individual substrate classes, resulting in system-specic islands
of high performance.10 We selected a broad and diverse substrate
scope guided by mapping the chemical space of commercially and
synthetically available tryptamine derivatives and carbonyl
compounds tested in the Pictet–Spengler cyclization, and per-
formed evolutionary experiments on this Generality Probing Set
(GPS). Through multi-objective optimization, we have explored
activity/selectivity trade-offs and located solutions in the Pareto
front with good median performance. However, we found that
even the top organocatalysts are underperforming in certain areas
of substrate space, while other areas are less sensitive to the
identity of the HBD/CPA catalyst. Analysis of these outliers
provided support to hypotheses on the principle of stereo-
induction89 and activity trends extracted from molecular volcanos,
demonstrating how genetic optimization also yields mechanistic
understanding and reveals structure–property relationships, as
long as an unbiased substrate scope is chosen.119

Given these encouraging results, we believe the generality-
oriented genetic optimization strategy we have introduced
© 2024 The Author(s). Published by the Royal Society of Chemistry
constitutes an efficient, cost-effective tool to probe large cata-
lyst–substrate spaces and identify potential hits with a broad
substrate scope, which may then be tested experimentally. The
pipeline described herein is generalizable to any asymmetric
reaction and can therefore help accelerate the discovery of
general chiral catalysts for other transformations of interest.
Computational details
Electronic structure

The structure of both enantiomers of intermediate 2 in the
catalytic cycle of the Pictet–Spengler reaction (Fig. 4A, labeled as
“Big group pointing Up”, “BU”, or “Big group pointing Down”,
“BD”, depending on the relative position of R1 and R2 in 2) were
generated by substituting 3D fragments on 20 pre-optimized
templates based on work by Jacobsen et al.89 using Aar-
onTools136,137 and optimizing them with the semiempirical
GFN2-xTB Hamiltonian138 in the gas phase. In analogy with
computational studies by Jacobsen et al.,89 who found no clear
trend relating the benzoic acid electronic properties to the
reaction rate, the carboxylic acid co-catalyst, which sometimes
contains large and bulky groups like triphenylmethyl, 9-
anthracentyl, or 1-adamantyl,70 was modelled with acetic acid to
simplify the conformational complexity and reduce the
computational cost of the system. Conformational sampling of
the resulting 703 complexes was carried out using the
Conformer-Rotamer Ensemble Sampling Tool94–96 (CREST) at
the GFN2-xTB//GFN-FF level of theory,138 constraining positions
of the bond-forming atoms. The lowest-energy conformer was
selected and optimized at the PCM(toluene)/M06-2X-D3/Def2-
TZVP//M06-2X-D3/Def2-SVP level.139–144 The other intermedi-
ates and TSs in the SRS were located using scans and IRC
computations.133 The PES of only one enantiomeric pathway
(corresponding to “BD”-labeled structures) was generated to
construct volcano plots (vide infra). Stationary points were
characterized on the basis of their vibrational frequencies
(minima with zero imaginary frequencies, TSs with one imagi-
nary frequency). Thermal and entropic corrections were calcu-
lated using Grimme's quasi-RRHO approximation145 from
frequencies computed at 298 K using the GoodVibes program146

with a frequency cut-off value of 100 wavenumbers. All DFT
computations were carried out using Gaussian16 (revision
C.01).147 The relative Gibbs free energies were automatically
post-processed using the toolkit volcanic51 to establish LFESRs,
determine the choice of the descriptor variable [the relative
energy of intermediate 2, DGRRS(2)], and construct TOF–volcano
plots. Extensive instructions on how volcano plots are con-
structed are given elsewhere,51 while the input for volcanic is
provided in Table S1.†
Statistical models

MFPs of catalysts, co-catalysts, substrates, and solvents with
a ngerprint size of 1024 were generated using RDKit148 from
their SMILES strings.149 Chemical space maps were generated
using Scikit-learn150 on the basis of the concatenated MFPs with
dimensions reduced to 100 using Principal Component
Chem. Sci., 2024, 15, 3640–3660 | 3653
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Analysis, followed by t-SNE embedding52 with perplexity of 30 to
further reduce the featurization to two dimensions for visuali-
zation. Random forest models from the XGBoost library were
used with default hyperparameters. The input was the concat-
enated MPFs of Cat, Co-cat, SubA, SubB, and solvent for DDG‡,
and of Cat, Co-Cat (i.e., AcOH, BzBr, or none), SubA, and SubB
for DGRRS(2). A cross-validation scheme was used with 100
different 90/10 training/test splits [738/82 for DDG‡, 633/70 for
DGRRS(2)]. From the 100 different train/test splits, the target
[DDG‡ or DGRRS(2)] was predicted approximately 10 times; these
test predictions were then averaged to obtain one nal predic-
tion. The standard deviation from the test predictions were
used to generate the error bars.107

Evolutionary experiments

Genetic optimization was performed with the NaviCatGA algo-
rithm.45 Genes were represented with SMILES strings (see Table
S3† for a full list), and the assembler function generated the
chromosomes by introducing the SMILES of different R1–4

substituents in a scaffold's SMILES string. The XGBoost models
were used for tness evaluation, with toluene xed as solvent
and benzoic (for DDG‡ evaluation) or acetic acid [for DGRRS(2)
evaluation] xed as co-catalyst; no co-catalyst was included in
the GA runs on the CPA combinatorial space. Experiments were
initiated with 10 randomized individuals per population,
a mutation rate of 10%, a selection rate of 25%, and run for 50
generations. Multi-objective optimization was performed by
integrating NaviCatGA with the achievement scalarizing func-
tion Chimera.124 Four objectives were hierarchically scalarized
to obtain the nal tness value for each catalyst candidate i. The
rst objective was the median selectivity (DDG‡

med) across the
GPS, which was required to be $2 kcal mol−1. Secondly, the
activity of each candidate i was evaluated as

fi ¼ exp
�
� 1

2

�
DGRRSð2Þ � x

5

�2�
, a normalized Gaussian

distribution centered on the target x (−9 kcal mol−1, the
volcano peak); the median fi value across the GPS was maxi-
mized with a 10% degradation threshold. The third and fourth

objectives were the standard deviations of DDG‡
med and median

fi in the GPS, which were minimized with a 25% compromise.

Data availability

Data can be found on the Materials Cloud (https://
archive.materialscloud.org/record/2023.175). See the ESI† for
further details.
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